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Abstract

In this study, we underline the peculiarities of the refraction prob-
lem of elastic waves from a layer with a fractal density distribution.
The refraction problem is reduced to the system of ordinary differential
equations with linear coefficients. Analytic solutions for each of its equa-
tions are found. The case for the layer with fractal density distribution
is investigated numerically. Characteristic maxima of the reflected wave
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energy are outlined. Graphs illustrate the dependence of the reflected
energy from self-similar properties of the fractal curve.
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1 Statement of the problem

Let harmonic elastic wave of the form ug(x) exp{iwt}, in which

up(z) = Age ™7, ky = 2,
U1
fall from domain {x < 0} onto the layer of thickness L(medium denoted as
2 {0 < x < L}, with density pa(x) and velocity vy). As a consequence of
diffraction, a portion of u;(z) of the incident wave is reflected, part of the
us(x) passes to medium 3 {z > L}. We need to find the completed diffracted
field.

For harmonic oscillations of a homogeneous and isotropic elastic medium,
displacement satisfies the wave equation

u’(z) + Ku(x) = 0, (1)

where k = w/v is wave number of the medium. The solution of Eq. (1) has
the form . A
u(z) = Ae™** 4 Be't®,

with stress ' A
o(z) = iwpv(—Ae ™ 4 Be'®),

In the general case [25], oscillations of elastic waves are described by equa-
tion

0*u  Oo
P(I)W = oz’ (2)

x
where stress associated with displacement via the following relation:

o(x) = p(x)v*u'(z).

Here p(z)v? is the modulus G(x). Then Eq. (2) for harmonic waves takes the
form

0 50U 2
3 P20 ) + p(w)wu = 0.

Reflected and transmitted waves are solutions of Eq. (1). They will be
sought in the form ui(z) = B1e™® and us(z) = Aze~#s@—L),
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At the interface, displacement and stress must be continuous. Then for
x = 0 we have

Ao + Bl = UQ(O), (3)
iwprvr(—Ag + Br) = p2(0)v3u5(0), (4)
for x = L:
us(L) = As, (5)
pa(L)vaub(L) = —iwpsvsAs. (6)

Thus, by eliminating the unknowns By and Az of Egs. (3)—(6), we reduce the
solution of the diffraction problem to the determination of displacement us(x),
which satisfies the equation

(p2(2)v3us(2))" + pa(a)w?us(z) = 0 (7)
with the boundary conditions of the third type

p2(0)v3ub(0) — dwprviun(0) = —i2wpiv1 Ay,
(8)
pa(Lyvzus(L) +dwpsvgua(L) = 0.

We consider the case where vy = vy = v3 = v, p1 = p3 = p, and py(x) is
the fractal interpolation function.
2 Solution of the problem

We consider the set of N adjacent sectors located close to each other instead
of the layer (0 < = < L). In each of the layer, the density distribution is
given by p,(x) = k,z + b,, and v is velocity, which is constant. Moreover,
pn(z)v? is a continuous function all ever. Then the wave equation for each
layer (x,_1 < x < x,) takes the form

((knz + bp)v*ul, () + (kpz + by )w?un,(z) = 0. (9)

We make the substitution

and consider the following function

yn(2) = un(=2 = 7).
Equation (2) becomes the Bessel equation

2y (2) + yn(2) + 2yn(z) = 0.
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The sign of z for each interval (z,-; < = < z,) in the obtained equation
remains constant and depends on the sign of k,,. After combining the solutions
for positive and negative z, the general solution can be written as

yn(2) = AnJo(|2]) + BnYo(|2]).

Thus, the solution of Eq. (2) will be of the following form:

) + B,Y, ( ) . (10)

The following conditions must be satisfied at the junction of the layers

w . wb,,
_"[‘ [
v vk,

w . wb,,
_"E —_—
v vk,

un (@) = Ao (

Un(Tp) = Uny1(Tn), u/n(xn) = u;'b—i-l(xn)? n=1,...,N—1,
which leads to the following equations:

AnJo([&n]) + BaYo([6n]) = Ant1o([Gal) + Bni1Yo(l¢al),

A i(6a]) + BYA(€]) = 2B (4, 1 (1Gal) + BarVi(1Ga]).

signgy,
where
fn:x i w, Cnfl:‘r ! i w, :17' '7N'
’Uk?n Ukn
Conditions at boundaries of layers with half-planes are
Byvd/(0) —iwpu(0) = —i2wpAy,

(knL + by )vu' (L) +iwpu(L) = 0.
The conditions define relationships between coefficients
As[=br signoJi([Col) — ipJo(|Co])]+

+B1[—b signGoY1([¢o]) — ipYo(|Co])] = —i2p Ao,
An[=(knL + by)signén Ji([En]) + ipJo([En )]+
+By[=(knL + by)signén Y (|€n]) + ipYo([En])] = 0.

The above equations for coefficients A,, and B,, can be written in the ma-
trix form via 2 -c = f, where ¢ = {4,814, B, ..., Ay,By} and f =
{—i2A0p/b1,0,...,0}.

The matrix €2 is a five-diagonal matrix
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Qll QIQ 0
Jo(l€1])  Yo(l&:i])
Ji([&1]) Yi(l&])  sida((Cal)

0 0

0 0

0
0

0

0
—Jo(|¢2]) —Yo([¢2])

- s21(

Gl s2Yi(lGl)

Yollex-a)  —Jo(Cya])

YVi(l€vaal) svoai([v-al)  Sn-1Ya([{v-1l)

0 Qnn-1

where s,, = —sign(, /sign&,,

Oy = —signdoJi(|Co]) — i

—Jo(I¢1)

Jo([€2])
J1([€])

5879

0
—Yo(|¢1])
51Y1([C1])
Yo([&21)
Vi(l&) —

Joléx—1)
Ji(|En=1])
0

0
—Yo([¢{v-1])

QNN

I

2l

Q1 = —sign¢eVi(|Co]) — ib—plyo(\(o’),

Onnv-1 = —signén i (|{n]) + i

Oy = —signénYi(|En]) + 1

kN.TN + bN

p

A ’
. o(lEn])

)

The resulting linear algebraic equation is solved using the Thomas algo-

rithm [26].

3 Fractal interpolation functions

There exist two ways of constructing fractal interpolation functions.

Such

functions are presented in [1] in the form of attractors of iterated function
systems of a special form. In this study, we adopt a more general approach

developed by P. Massopust [27].
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Let [a,b] C R be a non-empty interval, 1 < N € Nand {(x;, ;) € [a,b] xR |
a=x9<mx <---<xn_1 <xx = Db} be points of interpolation. We consider
the affine transformation of the plane for each i =1, N

T a; O T Q;
v a(3)- (2 () (3)

We require that for all i = 1, N, the following two conditions be
Ai(zo,0) = (Tic1,yi1),  Ai(en, yn) = (4, Yi)-
In that case,

Ti— Ty Y — Y1 — Ni(yn — Yo)
—_—, C;, = )
b—a b—a

a; =

o br;_1 — aw; N byi—1 — ay; — Ni(byo — ayn)
Q= ——F——, = )
b—a b—a

and \;, i = 1, N is considered as a family of parameters. Note that under this
definition, the operators A; transform a given line segment connecting points
(x0,y0) and (zx,yn) to a zigzag-shaped line, by sequentially connecting the
points of interpolation to each other.

For each i = 1, N, we denote

Bi

wi : [a, b = [z, 2], wi(z) = ae + oy,

piila,b] = R, pi(z) =+ 5,
N
pla) =Y (0 0 ui ) (@) Xfaior.e (2),
i=1
where ys is the characteristic function of S. In [27], it is shown that the
functional operator T', which make use of the following rule,

N

(Tg)(x) = p(.ﬁlﬁ) + Z Ai(go uz‘_l)(x)x[xiﬂ,xi}(x)»

=1

maps continuous functions into some other continuous functions. Moreover, if
|\i] < 1foralli=1,N,then T is a contraction operator on the Banach space
(Cla,b], || |les) With a contraction ratio A := max{|\;| | i =1, N}.

According to the fixed point theorem, there exists a unique contraction
mapping function f € Cfa,b] such that Tf = f. Moreover, for any f € Cla, b,
we have

T [|77(f) — fllo0 = 0.
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The function f is called the fractal interpolation function. It is easy to see that
if f € Cla,b], f(xo) = yo and f(zn) = yn, then T'(f) passes through the points
of interpolation. In this case, the function 7"(f) is called an interpolation pre-
fractal function of order n.

In Fig. 1, the fractal interpolation function constructed from the interpola-
tion points (0, 1000), (50, 1500) and (100, 1000) is shown for values A\; = Ay =
0.5.

1 4)050 1 Z)O
1300 1 600
1150 1300
1000 1000
0 20 40 60 80 x 0 20 40 60 80 T

Figure 1: Graphs of pre-fractals, left one is for pre-fractal of the first level,
right one is for pre-fractal of the ninth level.

4 Numerical results

We consider the differential Eq. (7) with boundary conditions (8). We seck
dependence of solutions us(0) (reflected energy) on density p(x) and frequency
w. In other words, if p : [0, L] — R, is density of the layer, then we seek the
function

Ep:Ri —[0,1], Ep(w)=ux(0).

We investigate the behavior of the function Ep when p is a pre-fractal
interpolation function. Let p be a fractal interpolation function constructed
from interpolation points (0, 1000), (50, 1500) and (100, 1000) with parameters
A = Ay = 0.7. We denote p° = 1000; p" is a pre-fractal interpolation function
of order n. Note that p™ is a continuous piecewise linear function consisting
of 2" line segments, passing through points (27, y"), i = 0,27. From the
construction, it follows that z' = 100 -¢-27". In addition, the set of break
points A" := {(27,y")}2., is a subset of A",

The following conclusions are inferred through comparing the graphs for
Ep® and Ep° (Fig. 2). First, the graphs are nearly identical except for the
observed Ep® maximum at frequencies close to 9700. This effect is due to the
fact that the graph of p” is obtained from p® by replacing each line segment
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Figure 2: Graphs of functions: left one is for Ep®, right one is for Ep®, where p"
is pre-fractal interpolation curve constructed by interpolating points (0, 1000),
(50,1500) and (100, 1000) with parameters having values Ay = Ay = 0.7.

with a zigzag line comprising of two parts. Second, the function Ep" inherits
self-similar properties of the function p™ in the sense that the peaks of the
function Ep" are the points C - 2%, where C' is a constant and k& = 1,n. This
is due to the fact that the ratio of lengths of (z}, 27, ,) and (2], 2'1{) equals
2. Third, the presence of distinct peaks in the function Ep” is due to the fact
that projections onto the axis X of all line segments that make up the graph
p" have the same length equal to 100-27". In other words, 7, | — 27 = 100-27"

for any + = 0,2 — 1.
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Figure 3: The graph of Ep° where p° is a pre-fractal built by using interpola-
tion points (0, 1000), (51,1500) and (100, 1000) with parameters having values
)\1 - )\2 == 07

We displace one point of interpolation by one unit to the right on axis X
to verify the last conclusions. Now let p be a fractal interpolation function
constructed from the interpolation points (0, 1000), (51, 1500) and (100, 1000)
for the parameters \y = Ay = 0.7. As in the previous case, pre-fractal p™ is
a continuous piecewise linear function and consist of 2" line segments passing
through the point (z7,y?), i = 0,2". However, 2" # 100 -i - 27", It is easy to
verify that the number of segments of length x}, , — 7" is distributed according
to the binomial law, i.e. for any k = 0,n has exactly C* intervals of length
100 - 0.51% - 0.49"%. Comparison of Figs. 3 and 2 shows that the presence
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of distinct peaks of the function Ep™ depends on the partitioning of interval
[0,100] by points x!.
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Figure 4: Graphs of functions Ep® and Ep°, where p" is a pre-fractal, con-
structed by interpolating points (0,1000) (61.8,1500) and (100, 1000) with
parameters having values A\; = Ay = 0.7.

Some more interesting results are also illustrated in Fig. 4. Selection of the
second point of interpolation (61.8,1500) is not accidental. Let a =~ 0.618 be
the golden ratio, i.e. the smallest root of the equation 2?2 = 1 — 2. Among
the intervals 27, — z is the C¥ intervals of length 100a*(1 — )" 7%, Since

(2

a? = 1—a, we find that among the intervals of the (n+1)-th level of 27} —27**
are intervals of lengths exactly equal to the lengths of intervals of the n-th level.
Thus, the peaks corresponding to different pre-fractals are superimposed onto

each other.

5 Conclusions

Through exploring behavior of the reflected energy Ep™ for the case, when p"
is a pre-fractal, the following conclusions can be made.

Fine bursts of reflected energy show up only in those fractals whose line
segments in graph p(z) have projections onto axis X of the same length. More-
over, increase in the number of segments of equal length increases the value of
reflected energy. These self-similar structures include pre-fractals derived from
a pre-fractal of a smaller level by means of dividing the segments into equal
parts, or dividing the segments using the golden ratio.

If the fractal is built via the principle of dividing into equal parts, the
increase in order does not alter pre-fractal peaks of the reflected energy, but
only adds new peaks at higher frequencies.

In case, when the fractal is constructed by dividing the segments in the
golden ratio, increase in the order increases pre-fractal peaks of the reflected
energy as well as adds new ones at higher frequencies.
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