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ABSTRACT 
The eigenvalue problem for guided modes of an integrated optical guide is reduced to a 
strongly-singular domain integral equation. It is proved that the operator of the domain integral 
equation is a Fredholm operator with zero index. It is also proved that the spectrum of the 
original problem can only be a set of isolated points. 

INTRODUCTION 
In this work we study the natural modes of an optical fiber integrated into a three-layer planar 
medium, which is representative of typical optical circuits. In the absence of a planar 
background, the basic properties of optical fibers are described in [I] .  More recently, rigorous 
mathematical methods have been applied to the analysis of the modes of optical fibers, see, e.g., 
[2]-[4]. For the integrated optical guide, rigorous mathematical analysis has been presented for 
the guided modes in [5]-[7].  Due to the complexity of the integrated optical structure, domain 
integral equations utilizing appropriate Green's functions (to account for the background media) 
are a popular practical approach for computing the natural fiber modes [SI-[lo]. In this work a 
rigorous mathematical analysis of the guided modes of an integrated optical fiber is presented 
based upon a strongly-singular domain integral equation. 

STATEMENT OF THE PROBLEM 
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Fig. 1.  An integrated optical guide. 

We consider the guided modes of the integrated optical guide (see Fig. 1). Let the three- 
dimensional space be occupied by an isotropic source-free medium, and let the refractive index 
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be prescribed &s a positive real-valued function n = n ( x l ,  x2 ) independent of the longitudinal 

coordinate 5 .  We assume that there exists a bounded domain R on the plane 

R2 = ( ( j c l , x 2 ) : - ~ < x I , x 2  <CO} such that n = n , ( x , ) ,  x = ( x 1 , x 2 ) ~ R ,  = R 2 \ R ,  where 

n, (x2) depends only on the x2 variable. It is a piecewise-constant function represents the 
refractive index of so-called associated planar waveguide. For simplicity, we take 
n, (x,) = { n, if x2 > d , n2 if 0 < x2 < d , n, if x2 < 0) . We assume without loss of generality 

that yt2 2 n3 2 n, . Denote by n, the maximum of the function n in the domain R . We assume 

that Cl c Cl, = { ( xl , x 2 )  : -CO < x, < CO, 0 < x,  < d )  , n, > n, , and also that function y2 is a 

continuous function in a,, i.e., that the guide does not have a sharp boundary. 
The modal problem can be formulated as a vector eigenvalue problem for the set of differential 
equations (we use notations [2] for differential operators) 

- 

Rotp E = bpoH,  Rot, H = -ioEon2E. (1) 

Here E , ,  po are the free-space dielectric and magnetic constants, respectively. We consider the 
propagation constant p as an unknown complex parameter and radian frequency o > 0 as a 

given parameter. We seek non-zero solutions [E, H] of set (1 ) in the space ( L2 (R' )) . 6 

Denote by A(') the sheet of the Riemann surface of the hnction dk2n: - p 2  , where 
k 2 2  =o ~ , p , ,  which is specified by the condition ImJk2N:-P2>0. Denote by p, the 

propagation constants of TE and TM modes of the associated planar waveguide [l]. l t  is well 
known that there exist no more than a finite number of values p, . All of the values pJ belong 

to domain { p E A") : Im p = 0, kn, < Ip I < kn2} . In a similar way to [7] we can see that the 

domain D = { p  ~ A ( l ) : R e p  =O)u{p E A ( ~ ) : I ~ P  = O , I p l < y } ,  where y = m a x p , ,  

corresponds to the continuum of propagation constants of radiation modes that do not belong to 

( L2 ( 
Definition 1. A nonzero vector [E,  H ]  E (L ,  ( R 2 ) )  is referred to as an eigenvector ofproblem 

( I )  corresponding to an eigenvalue p E A = A"' \ D if relation ( I )  is valid. The set of all 
eigenvalues ofproblem (1) is called the spectrum of this problem. 

MAIN RESULTS 

Thieorem 1. The set { p E A") : Im p = 0, Ip I 2 kn, } isfree of the eigenvalues ofproblem (I ) .  

This theorem was proved in [ I ]  for the case n2 = n3 = n, . For the general case the proof is 
analogous. 
If [k, H] is an eigenvector of problem (1) corresponding to an eigenvalue p E A ,  then 

J 

. Therefore we do not investigate the values p E D .  
6 

1 

no3 R 
E(x) = ( k2n: + Grad, Div, )y I( n2 ( y )  - n: ) G( p ; x, y)E(y)dy,  
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where function G is the well known tensor Green function [9]. 
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(3) 

For any ( x , y )  E R2 the 

function G is analytic for p E A .  Passing the operator Grad, Div, under the integral in 
relation (2), and using the differentiation rule [ I l l  for weakly singular integrals we obtain a 
nonlinear spectral problem for a strongly-singular domain integral equation 

A(P)E=O,XEQ; A : ( L 2 ( Q ) ) 3  +(L2(Q) )1 .  (4) 

Theorem 2. For all p E A the operator A( p) is Fredholm with zero index. 
This theorem is proved by general results of the theory of singular integral operators. 

Definition 2. A nonzero vector E E ( L2 (0)) is called an eigenvector of the operator-valued 

function A( p ) corresponding to an eigenvalue p E A ifrelation (4) is valid, 

Theorem 3. Suppose [E, H] E ( L2 ( R 2 ) )  is an eigenvector of the problem ( I )  corresponding 

to an eigenvalue p E A .  Then E E (L,  (0)) is the eigenvector of the operator-valued 

function A ( P )  corresponding to the same eigenvalue p . Suppose E E (L2 (a)) is an 

eigenvector of the operator-valued function A( p ) corresponding to an eigenvalue p E A and 

also let vector [E,H] is deJined by (3), (4) on R2 Then [E,H] E (L2  (R2))6 and [E,H] is the 

eigenvector of the problem Cl) corresponding to the same eigenvalue p . 
This theorem is proved by direct calculations. 
Theorem 4. The spectrum ofproblem (1) can be only a set of isolatedpoints on A .  
This theorem is followed from theorems 1-3 and general results of the theory of operator-valued 
functions [ 121. 
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