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Clustering of the points lying on monotonous curves

as a partition into antichains

Eduard Lerner and Dmitry Voloskov

Kazan Federal University, Kremlevskaya str.18, Kazan 420018, Russia

E-mail: eduard.lerner@gmail.com, voloskovdmitriy@gmail.com

Abstract. Let us consider some set of points on the Cartesian plane. Each point is a part
of one of few curves describing the dependency between abscissas and ordinates. In our case
these are dependencies between the rock occurrence depth and the oil saturation described
by Skelt-Harrison equation. In this work a problem of distributing these points into clusters
corresponding to different curves is being investigated. Our original method based on presenting
data points as elements of partial ordered sets with coordinate order is proposed. Thus to solve
clustering problem one needs to find all the points which are parts of maximum length chains and
to distribute them into corresponding antichains. One can propose obvious algorithm to solve
the problem in quadratic time, based on Mirsky’s theorem. In this work algorithm of O(n logn)
complexity is proposed. The algorithm is based on the fact that Dushnik–Miller dimension of
the partially ordered set is equal to 2 and can be applied to a wide class of dependencies.

The problem: Assume that P is a given set of distinct points (xi, yi), i = 1, . . . , n, where n
is sufficiently large (about a million or several millions). The main assumption is that there exists
a small unknown set of continuous functions fj(x), j = 1, . . . , k, whose graphs do not intersect
in the considered domain, and each point (xi, yi) satisfies one of dependencies yi = fj(xi) for
some j (the number k of these dependencies is also unknown). Denote the corresponding set of
points by Ij , j = 1, . . . , k. The simplest requirement to functions fj is their increase. A weaker
condition consists in the existence of a homeomorphism h of some domain D containing all points
of P to a part of the plane D′, under which all functions are increasing. This means that there
exists a biunique continuous map h of the domain D to D′ such that if {(x, y), (x′y′)} ∈ Ij , then
both coordinates of the difference h(x′, y′)−h(x, y) have one and the same sign. The problem is
to find the least value of k and to distribute as many points as possible over sets Ij . We propose
an algorithm which solves this problem within the time of O(n log n+ kn).

Note that the homeomorphism allows us to reduce to the case of increasing functions a wide
class of functions such as the case when all functions satisfy the Lipschitz condition of the first
order with one and the same constant L. It alows us to consider withour loss of generality only
the case of increasing functions.

Let us describe one specific situation, when we needed to solve the stated problem. We
were given a 70Mb array consisting of 12 million numbers representing oil saturation values in
each cell of a 3D grid that described the underground part of an oil deposit. The data were
provided as is, though we were not aware of the technique used for determining the oil saturation
values. The problem consisted in describing the data in the shortest possible form (without loss
of accuracy) in order to send them via Internet. We treated the oil saturation values in the
given file as one of several (unknown to us) functions of the depth. Nonzero values started to
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appear at the depth of a little less than 2 489 meters, so by adding 2 489 to the (negative) value
of the depth we have concluded that the depth that corresponded to nonzero values of the oil
saturation ranged from 0.236 to 112.387 meters. All these points are shown in Fig. 1.

According to the Skelt–Harrison formula [1], the dependence of the oil saturation value (y)
on the depth (x) takes the form y = a exp{−b/(x − d)c}, x > d. This function equals 0 with
x = d and increases with x > d. After the performed transformations we have got d = 0, but
the rest parameters of the curves remained unknown.

In Fig. 2 we see 6 curves. First we had to pick out (to cluster) points of these curves and then
to parameterize the curves themselves. Using the algorithm described below, we have obtained
6 sets of points I1, . . . , I6, which had to be parameterized then (each set had to be parameterized
by its own curve). The number of points in the set I1 (located on the lowest curve) appeared to
be much less than the number of points located on the rest curves. Note that

∑
i |Ii| < n (here

n is the total number of points) therefore, having determined values of parameters of curves
by the Levenberg–Marquardt method (see Fig. 2), we had to refer each of points that initially
remained nonclustered to the cluster whose functional formula gave the ordinate closest to that
of the point under consideration. This approach has allowed us to describe the initial 70Mb
array of 12 million oil saturation values with the help of subscripts 0–6 (i.e. 1–6 — numbers
of functional dependencies and 0 corresponds to zero values) and thus to reduce the size of the
archive file to 679KB.

Figure 1. All points (depth,
saturation) with nonzero saturation
values.

Figure 2. Approximating curves
on the entire set of points (depth,
oil saturation)

Before we describe the proposed method, let us consider other approaches. Note that the
nearest neighbor method, which is a classical clustering technique, theoretically is applicable
in our case. However, its time consumption equals O(n2), which is too much. Moreover, not
everywhere in the domain under consideration the curves are separated enough.

We can simplify the problem by considering it in the characteristic part of curves (in our
graph we can distinguish the domain, where the abscissa ranges from 4 to 25). The number of
points in this domain is somewhat less. In view of the said above, it seems possible to solve
the problem with a large number of clustered points by means of random sampling. However,
according to results of our numerical experiments with the nearest neighbor method, in order
to make the time consumption of the quadratic algorithm acceptable, it is necessary to reduce
the sample size, at least, to several dozens of thousands of points. If the number of points on
the lower curve (or the upper one) is not so much (in our specific example after the reduction
of the sample size the number of such points appeared to be less than 100), then the clustering
process leads to the merge of the lower curve with the upper one (because the distance between
its points becomes comparable with the distance to it), or/and it falls into several parts (which
has happened in our experiments).
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Thus, we did not succeed in solving even the considered specific problem without several
tricks. Below we describe the algorithm which solves the clustering problem for a set of points
satisfying various functional dependencies in the most general case and, which is essential, does
it in reasonable time.

The key moment in the formal statement of the problem, in a general case, does not consist
in imposing conditions under which points can belong to one curve. On the contrary, the key
moment consists in imposing conditions that make this case impossible. Note that one can
numerate curves “in a natural way”; we treat the first of them as the “lower” and do the last
curve as the “upper” one. Let us now introduce a partial order on the mentioned set of points;
namely, let us assume that for points a and b it holds a � b, if the point a belongs to the curve
that is located “above” the curve that contains the point b. Note that for “increasing” polylines
a partial order is introduced as follows: for a = (x1, y1) and b = (x2, y2) it holds

a � b iff x1 < x2, y1 ≥ y2 or x1 = x2, y1 > y2. (1)

Now we can easily construct a quadratic algorithm for our problem based on the use of a POSET
(a partially ordered set). Recall [2] that a chain is defined as a set of pairwise comparable
elements, while an antichain is a set, all whose elements are pairwise incomparable. Thus, the
problem consists in finding the least possible number k of antichains, whose union represents
the whole set of points, and in finding points which (under any partition) belong to the first,
second, . . ., kth antichain.

Really, it is evident that the number of curves (antichains) is not less than the number of
elements in the maximal chain of a POSET. Moreover, according to the Mirsky theorem [2], such
a partition on an antichain exists and can be obtained by two classical methods (evidently, it is
nonunique). The first technique (the ascend) implies the determination of the least elements of
the POSET as points of the first antichain and their consequent deletion. Then a similar process
is performed for the second antichain, and so on, until there remain only incomparable points
of one kth antichain. In the second technique (the descent) we, on the contrary, start with the
maximal elements of the POSET which form the kth antichain and so on.

Recall that the problem under consideration consists in finding points which under any
partition belong to the first, second, . . ., kth antichain. Evidently, these points exactly coincide
with points which belong to some chain of length k. It is clear that points, which under
both partitions belong to an antichain with one and the same number, have the mentioned
property. Therefore, the intersection of two techniques for constructing a partition on an
antichain mentioned in the Mirsky theorem gives a solution to our problem.

As a result, we obtain a simple algorithm. However, it is quadratic and therefore inapplicable
in the case of millions of points. Note that for an arbitrary POSET we cannot propose a better
variant, because it is possible that a POSET contains only two comparable elements; in this
case k = 2 and we can refer to the first and second curve (exactly) one element, namely, each
of comparable ones. Evidently, in order to find a pair of comparable elements, we are forced to
enumerate all possible pairs, so the time consumption of the program is quadratic. However, in
our concrete POSET there exists a certain correlation between comparable elements, and the
number of them is rather large.

Let us try to describe this correlation. Assume that along with the partial order there exists
a strict order > agreed with the partial order in the following sense: if a � b, then a > b.
Evidently, this assumption is not restrictive, because one can introduce the indicated order in
many ways. The next assumption imposes an essential constraint. Let a � b, then a > b; denote
by (b, a) the set of elements c satisfying the inequality b < c < a. Our basic assumption is that

for any c ∈ (b, a) the element c is comparable either with a or with b. (2)
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If the strict order is defined, then we can sort n points in the ascending order within the time
of O(n log n). Let us now discuss a linear solution algorithm for the initial problem, where the
list of points π is sorted in the strict order. More precisely, below we propose a linear ascend
algorithm (the descent is performed by an analogous linear algorithm). Our algorithm divides
points on an antichain within one pass through the list π; its time consumption is O(kn).

Evidently, the first element in the list π belongs to the first (lower) antichain. We compare
the next element a with the last point c referred to the lower antichain. If it is incomparable
with c (in the sense of a partial order), then we refer it to the lower antichain; but if it exceeds c
in the sense of the partial order (evidently, no other case is possible), then we immediately refer
it to the second antichain, if the latter is empty, otherwise we compare it with the last element
of the second antichain and so on.

Let us prove that the algorithm works correctly. It suffices to make sure that the set of points
referred to the lower antichain contains no extra elements. Really, let a be the first point, for
which there exists an element b such that a � b. Let us first make sure that b cannot belong to
the set of elements referred to the lower antichain. In this case c ∈ (b, a), but c (by the algorithm
and by the induction hypothesis) is comparable neither with a nor with b, which contradicts the
main assumption. Let us now assume that b does not belong to the set of elements referred to
the lower antichain. This means that there exists b′ referred to the antichain such that b � b′.
But then in view of the transitivity of the partial order a � b′, which contradicts the proved
assertion. Since, evidently, when referring points to the set of least elements in accordance with
the algorithm, we cannot miss anyone (and, as was proved earlier, there are no extra elements),
the algorithm works correctly.

It remains to verify the existence of a strict order satisfying property (2) in the case of
POSET (1). We can easily make sure that the inverse lexicographical order a = (x1, y1) > b =
(x2, y2) iff either x1 < x2 or x1 = x2, y1 < y2, can serve as the desired strict order.

In conclusion, let us generalize the obtained results from the point of view of the POSET
theory. Thus, let a certain nonstrict order be defined. It appears to be insufficient for solving the
stated algorithmic problem (to determine all elements of the POSET that belong to all maximal
chains and to divide them into the corresponding antichains within a linear time or close to it).
Therefore we assume that it is possible to define one more construction, namely, a strict order
which agrees with the partial one and, in addition, has property (2). If such an order exists,
then, as was described above, after sorting elements in this strict order, we can solve the stated
algorithmic problem within a linear time.

However, it remains to solve one more problem, namely, to find necessary and sufficient
conditions for introducing order (2). It appears that all such POSETs are isomorphic to
the POSET of points on the two-dimensional plane with the partial order generated by the
coordinatewise comparison

a = (x1, y1) � b = (x2, y2) iff x1 ≥ x2, and y1 ≥ y2. (3)

Recall that the order dimension (or the Dushnik–Miller dimension) [2] of a POSET (P,
preceq) is defined as the least number of linear orders (chains) (P,�i), i ∈ {1, . . . , k} on P such
that their intersection gives (P,�): (P,�) =

⋂
i∈{1,...,k}(P,�i) (i.e., a � b iff a �i b for all

i ∈ {1, . . . , k}.
In the Dushnik–Miller paper [3] one, in fact, proves that condition (2) is equivalent to the

fact that the order dimension of a POSET does not exceed two (note that in modern papers
condition (2) is not used so often). It remains only to note that if the order dimension of a
POSET equals m, then we can associate each element of the POSET with a point in Rm so as
to make the coordinatewise order of these points coincide with the order on the corresponding
elements of the initial POSET. Therefore, all POSETs with property (2) are equivalent to
POSET (3).
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Evidently, if the direction of the abscissa changes to the opposite one, then the partial
order (1) turns into order (3). Thus, the case of increasing functions, in fact, describes the
most general case, which allows the application of the developed algorithm.

The authors are grateful to Vladislav Sudakov for the provided data and to Artur Aslanyan
for the problem statement.
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