
Лямбды. Stream API.
Разбор домашних.

Практика 37 - Айрат Хасьянов

Минута Паттерна

Map, Reduce примеры

Пример 1
ArrayList<String> articles = new ArrayList<>(Arrays.asList("one", "two",

"three", "four", "five"));

String reduced2 = articles.stream()
.reduce((acc, item) -> acc + " + " + item)
.get();

System.out.println(reduced2);

one + two + three + four + five

Пример 2
ArrayList<Article> articles = new ArrayList<>(Arrays.asList(
new Article("one"), new Article("two"), new Article("three"), new Article("four"),

new Article("five")));

String reduced = articles.stream().map(art -> art.toString())
.reduce("", (acc, art) -> acc + " - " + art);

System.out.println(reduced);

 - one - two - three - four - five

Пример 3

class Article{
String _title;
Article(String title){ _title = title; }

 public Article setTitle(String title){
_title = title;
return this;

}
…..

}

ArrayList<Article> articles = new ArrayList<>(Arrays.asList(
new Article("one"), new Article("two"), new Article("three"),
new Article("four"), new Article("five")));

Article reduced3 = articles.stream().
reduce(new Article("Collection: "), (acc, art)

-> acc.setTitle(acc.getTitle() + " & " + art.getTitle()));
System.out.println(reduced3.getTitle());

Collection: & one & two & three & four & five

35.2 Используйте java.util.Map для того, чтобы
посчитать количество 1, 2, 3 и так до 12 в
выборке из 1000000 случайных чисел.

 list.stream()
 .filter(number -> number < 13 && number > 0)
 .collect(Collectors.groupingBy(key -> key))
 .forEach((k, v) -> System.out.println("Количество " + k + " равно " + v.size()));

Map<Integer, Long> result =
list.stream().collect(Collectors.groupingBy(Function.identity(),Collectors.counting()));

35.4. Напишите два итератора, которые позволяют
обходить вашу приоритетную очередь, в порядке

приоритета посадки, так и в алфавитном порядке для
распечатки списка пассажиров. Продемонстрируйте

обход коллекции, используя разные итераторы.

 Comparator<Person> personComparator =
(o1, o2) -> o1.getId() - o2.getId();

 Comparator<Person> alphabetComparator =
(o1, o2) -> o1.getName().compareTo(o2.getName());
 ……
 Iterator ai =

new PriorityIterator(a, alphabetComparator);
 Iterator pi =

new PriorityIterator(a, personComparator);

 while(pi.hasNext()) {
 System.out.println(pi.next());
 }

class PriorityIterator implements Iterator {
 private PriorityQueue pq;

 public PriorityIterator(List list, Comparator comparator) {
 pq = new PriorityQueue(list.size(), comparator);
 list.stream().forEach(element -> pq.add(element));
 }

 @Override
 public boolean hasNext() {
 return !pq.isEmpty();
 }

 @Override
 public Object next() {
 return pq.poll();
 }}

35.6. Используйте метод subList для очистки
каждых 5 элементов через 5 элементов, которые
остаются нетронутыми.

 IntStream
 .iterate(0, i -> i + 10)
 .limit(a.size() / 10 + 1)
 .mapToObj(i -> a.subList(Math.min(i, a.size()), Math.min(i + 5, a.size())))
 .forEach(element -> System.out.println(element));

[100, 101, 102, 103, 104]
[110, 111, 112, 113, 114]
[120, 121, 122, 123, 124]
[130, 131, 132, 133, 134]
[140, 141, 142, 143, 144]
[150, 151, 152, 153, 154]
[160, 161, 162, 163, 164]
[170, 171, 172, 173, 174]
[180, 181, 182, 183, 184]
[190, 191, 192, 193, 194]
[200, 201, 202]

IntStream.rangeClosed(0, list.size() / 10)
 .forEachOrdered(element -> list
 .subList(5 * element, (5 * element + 5 < list.size()) ? 5 * element + 5 : list.size())
 .clear());

36.2. Преобразовать каждый текст в
последовательность слов;

 Files.lines(file.toPath(), StandardCharsets.UTF_8)
 .forEach(line -> Arrays.asList(line.split("[^A-zА-я]+"))
 .forEach(word -> {

 if (word.length() > 0)
 words.add(word.toLowerCase());
 }));

Map<String, Integer> words = new HashMap<>();
 wordSequence.stream()
 .filter(element -> Pattern.compile("[а-яА-Я]+").matcher(element).matches())
 .map(String::toLowerCase)
 .forEach(element -> {
 if (words.containsKey(element))
 words.put(element, words.get(element) + 1);
 else
 words.put(element, 1);
 });

36.3. Преобразовать коллекцию текстов
в коллекцию слов с частотой
употребления каждого слова;

 words.stream()
 .collect(Collectors.groupingBy(key -> key))
 .forEach((k, v) -> statistics.put(k, v.size()));

Map<String, Long> wordsMap = words.stream()
 .collect(Collectors.groupingBy(Function.identity(),Collectors.counting()));

36.4. Отфильтровать ненужные
слова не на кириллице;

statistics.forEach((k, v) -> {
if (Pattern.compile("[А-я]+").matcher(k).matches())

statisticsKir.put(k, v);
});

statistics.filter((k, v) -> Pattern.compile("[А-я]+").matcher(k).matches()));

36.5. Найти наиболее и наименее
употребительное слово;

 statisticsKir = statisticsKir.entrySet()
 .stream()
 .sorted(Map.Entry.comparingByValue())
 .collect(Collectors.toMap(
 Map.Entry::getKey,
 Map.Entry::getValue,
 (e1, e2) -> e1,
 LinkedHashMap::new
));

Примеры кода на паттерны,
угадываем :)

Что за паттерн?
public class Cook {
 private BreakfestComposer breakfastComposer;
……..

 public Breakfast getBreakfast() {
 return breakfastComposer.getBreakfast();
 }

 public void composeBreakfast() {
 this.breakfastComposer.makeSandvich();
 this.breakfastBuilder.makeBeverage();
 this.breakfastBuilder.makeDessert();
 }
}

Builder

Что за паттерн?
public class Department implements Employee{

 private ArrayList<Employee> employees = new ArrayList<>();

 @Override
 public void getInformation() {
 for (Employee employee : employees)
 employee.getInformation();
 }

 public void add(Employee employee) {
 employees.add(employee);
 }

 public void remove(Employee employee) {
 employees.remove(employee);
 }
} Composite

Что за паттерн?
public class test {
 public static void main(String[] args) {
 Originator originator = new Originator();
 Caretaker caretaker = new Caretaker();
 originator.setState(5);
 System.out.println(originator.getState());
 caretaker.setMemento(originator.saveState());
 originator.setState(4);
 System.out.println(originator.getState());
 originator.restoreState(caretaker.getMemento());
 System.out.println(originator.getState());
 }
}

Memento

Что за паттерн?
public class SmartDrawer implements IDrawer{
 Drawer drawer;

 public void draw() {
 if (drawer == null) drawer = new Drawer();
 // checking...
 drawer.draw();
 }
}

Proxy

Что за паттерн?

State

public class Context {
 private Satus status;

 public Context(Status status) {
 this.status = status;
 }

 public void setStatus(Status status) {
 this.state = state;
 }

 public void action() {
 status.action(this);
 }
}

Домашнее задание

1. Обзор калькулятора с точки зрения SOLID -
взять у любого.

2. Преобразовать текст в последовательность
слов, отсекая все лишнее. Получить слово,
состоящее из самых часто встречающихся
букв в соответствующих позициях. Например,
для текста Абба, Баба, Лаб, Ассоль резульат
будет «Ааба».

