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Abstract 

It is shown, that continuous changes of angular velocity of rotation of the is plastically-elastic Earth 

should cause the continuous coupled deformation of a crustal layer, redistribution of masses in a sub-

crustal layer and the change of density associated with it, and also, as consequence of these phenome-

na, a polar pulsation of a figure when polar diameter of the Earth increases and decreases with time. 

The mechanism of occurrence of deformations of a body of a planet under action of a deforming (cen-

trifugal) variable force is found, the tensors of deformations and pressure are written out, and on the 

basis of the rheological equations the equations of balance are deduced, and also calculation of the 

module of change of polar compression and radial displacements is made at real fluctuations of angular 

velocity of rotation of the Earth. The calculated values have given the quite real changes of compres-

sion and radial displacements of the Earth's crust and its other shells. The opposite process is also 

shown, namely: observed fluctuations of amplitude of the polar compression, leading to respective al-

terations of the moment of inertia of the Earth, quite correspond to real fluctuations of duration of a 

day. 

1 Introduction 

As you know, the rotation of the Earth, characterized by angular velocity, determines its ellipti-

city, which is the main consequence resulting from the rotation of the figure itself. The shape of the 

planet  its eccentricity e (or compression )  depends only on two parameters: the angular velocity of 

rotation  and the law of density distribution over depth drd / , as well as, as follows from numerous 

studies, and latitude , i.e. )/,( drdFe   where ),(/  rfdrd . 

Considering the polar compression of the planets of the Solar System, their angular velocities of 

rotation and average densities, we can conclude that the degree of compression of a planet mainly de-

pends on its rotation speed, and therefore, a change of the planet's rotation regime1 should, first of all, 

affect the change of polar compression. 

From the law of conservation of angular momentum of the Earth, which is written as 

const,J                                                                   (1) 

it follows that a change of the angular velocity of the Earth's rotation should inevitably cause a change 

of the moment of inertia, 

J

J










, 

                                                           
1 The question of the reasons for the change of the Earth's rotation velocity is not considered in this paper; rather complete 

reviews of the hypotheses explaining this phenomenon was published by Belashov (1978, 1984) and Belashov et al. (2018). 
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where  and  are the length of the day and its change. Moreover, according to the simplest calcula-

tions, the change of the moment of inertia corresponding to real changes of the day duration 

( 0034.0 s) should reach 

8104
86400

0034.0 


J

J
.                                                          (2) 

According to Pariisky (1948), such a change can occur as a result of a change of the density of the sub-

crustal layer, its “bulging” (as a result of which deformations arise in the crustal layer). Moreover, ac-

cording to the calculations given by Pariisky (1948), if we take the thickness of the subcrustal layer 

where the density redistribution takes place, as 80 km, and the thickness of the outer layer that only de-

forms but does not change its density, as 1 km, then to change the moment the inertia of the Earth cor-

responding to (2), a vertical displacement of 6-7 m is sufficient. 

Note that, as a result of the deformation of the Earth’s figure resulting from a change of , as it 

was found by Pariisky (1948), Melchior (1976) and Belashov (1987), the density redistribution in the 

subcrustal layer actually occurs. Let 0
P  is the density at the point P in the initial state. After defor-

mation due to radial displacement, the density at point P becomes equal 

















 
 0

0
0

0
0 )1( P

P
P

P
PP

dr

d

dr

d
                                     (3) 

where  is the displacement, and 
dt

dQ

Q

1
  where dzdydx  is the volume. In our case (we be-

lieve that the Earth is deformed conjugatedly, without changing the volume), 0  and equation (3) 

takes form 

dr

d P
PP

0
0 

 . 

Since  is positive, the substance at the point P becomes denser (since 0/0  drd P , and therefore 

0/0  drd P ). This corresponds to the above noted considerations [see also statement of Pariisky 

(1948)]. 

The “bulging” of the subcrustal layer should be accompanied by a redistribution of the internal 

masses (that is, their overflow into this region from the regions in which the negative radial displace-

ment occurs). As it is known (Pariisky, 1948), for any internal point P in the initial state, the Poisson 

equation is written in form 
00 4 PP GV  , 

where 0
PV  is the Laplacian of gravitational potential in the initial state, G  is the gravitational con-

stant. For a deformed state we have 

 
















 0

0
00 4 P

P
PPP

dr

d
GVV . 

After differentiation, we find 













 


dr

d
GV P

PP

0
04  

or, if we again assume that the substance of the subcrustal layer is incompressible, 
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dr

d
GV P

P

0

4


 .                                                                 (4) 

Equation (4) shows that when  decreases, that is, when the deforming centrifugal force is removed, 

the Earth will tend to return to its original undeformed state due to the occurrence of gravitational ef-

fects [which are given by formula (4)] caused by the new distribution of masses in the Earth’s body. 

However, it should be noted that the change of density and the redistribution of masses can, by virtue 

of equation (1), affect the change of the angular velocity of the Earth’s rotation, that is, the opposite 

effect can occur (and really occurs). 

To find out the effect of the rotation velocity on the change of the shape of the Earth, we con-

sider the relationship of deformations (and displacements) with stresses applied to the volume. For this, 

as is customary in rheology, we first write down the tensors of the resulting strains and stresses, and 

then investigate their relationship with each other. 

2 Strain and Stress Tensors 

Let и is the displacement of the particle ),,(1 zyxP , and duu   is displacement of particle 

),,(2 dzzdyydxxP  . We have 
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    (5) 

The deformation is characterized by a tensor dsdu /  because it consists of three elongations and three 

angular deformations. Elongation is expressed through the components 

z

u

y

u

x

u zyx












,, , 

and shear is expressed through 



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y

uxtg  for small strains.  

To study the deformation proper, we extract the symmetric tensor from the tensor dsdu / , then 

we write the deformation tensor in form 
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We denote 
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etc. The strain rates in this case are expressed by the relations 





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

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1
,  . 

Similarly to (5), the stress tensor is written, it is also a symmetric tensor, that is jiij pp  , and 

it can also be represented in a form similar to (6). 

Both the strain tensor and the stress tensor can be decomposed into the main tensor and the de-

viator tensor (deviator). In the case of the strain tensor, these concepts are easy to come by considering 

the most general deformation of a cube: a change of length (three components) and changes of angles 

(three components). Then the main tensor is written in the form rsiirsv ee )(  where rs  is the unit 

axial tensor. This tensor corresponds to cubic isotropic expansion without changing shape, when all 

sides change proportionally, the angles do not change, and, therefore, the cube remains a cube 

eeeeee vzzyyxx 3;  . 

The deviator tensor which corresponds to the cube skew, that is, changing its shape without 

changing the volume, has the following form: .)(
3
1

0 rsiirsrs eee   Similarly, the stress tensor can be 

decomposed into the main one: 3/ ppm  and the deviator .0 rsmrs ppp   

Now we need to find a rheological equation that relates the strain tensor to the stress tensor. We 

restrict ourselves only to deviator tensors, that is, we accept our physical body (Earth) as incompressi-

ble, which is usually done. We choose the rheological function that defines the solid body of Hooke. 

Such a model is an approximation to the real Earth from a side of a solid. In this case: 

00,3/,2,/ epepkp vm   

where  is the compression modulus,  is the shear modulus, )]1(2[/  E  is the Lame coefficient, 

Е is the Young's modulus, and  is the Poisson's coefficient. 

The mechanical analogue of Hooke's body is an ideal spring. Such a spring is really a solid in 

the sense that we defined it, because if it is in a state of constant deformation ( се 0 ), a constant stress 

appears сp 0 . 

As one can see from formula (4), in the case of the real Earth, a similar picture is observed, that 

is, an analog representing the Hooke’s solid corresponds in some approximation to the problem of de-

scribing the deformation of a planet under the action of an applied stress from a tensile (centrifugal) 

force. 

We now derive the so-called equilibrium equations that specify the relationship between the de-

formation (through displacements) and the stress arising from the deformation that has occurred. The 

cause of the initial deformations will be considered an increasing (with increasing angular velocity of 

the Earth's rotation) centrifugal force. Then the stresses arising from the deformation of the figure will 

be due to the action of gravitational forces and surface tension forces. As a result of these three forces, 

the figure of the Earth will tend to some equilibrium state. This means that with a decrease of the angu-

lar velocity of rotation, the ellipticity of the Earth will decrease and vice versa. 

3 Equilibrium Equations 

As it is known, the balance of the body is described by the following three fundamental equa-

tions: 
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                                                (7) 

where X, Y, and Z are the components of gravitational forces, and zx ZX ...,,  are the components of 

the surface tension forces, that is, the elements of the stress tensor. Thus, the set of three equations (7) 

contains nine unknowns: zx ZX ...,, . If now to use the three equations of equilibrium of moments, then 

three unknowns can be excluded, since the stress tensor ijp  is symmetric, that is 

zxyzxy XZZYYX  ;; . Now three equations with six unknowns remained: 
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                                               (8) 

If now we will can express the stress tensor through the strain tensor using the rheological law obtained 

in the previous section (Sect. 2) for the Hook solid, we obtain a system of three equations with three 

unknowns, since the strains can be expressed through the components of the displacement vector u, v 

and w (Melchior, 1976). This is the simple method proposed by the theory of elasticity. 

We first consider Hooke's law when applying the uniaxial compression tensor to the body. 

Since only one component in this case is not equal to zero (we denote it as 1Р ), we have deformations 

131211 ,,
1

P
E

eP
E

eP
E

e





                                              (9) 

and volume expansion 1

21
P

E


 . Here  is the Poisson's coefficient, and E is the Young's modulus. 

If 1Р  is the tensile stress, then > 0, and 0/)21(  E   5.0 . In the case when 5.0  then 

0 , and incompressibility takes place. 

Generalize (9) assuming that there are three uniaxial and normal stresses. At this, suppose that 

the substance is isotropic. Then we get 

3322
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                                      (10) 
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where 321 PPP  . It is easy to find that, on the contrary, 

332211 2,2,2 ePePeP                               (11) 

where  

)1(2
,

)21)(1( 







EE
 

( and  are the Lame coefficients). If  = 0.5 then  = and, therefore,  is called incompressibility 

modulus. 

If now to consider the Hooke law in an arbitrary basis and, accordingly, denote the mixed com-

ponents of two tensors as 
j

i
j

i eP , , then by virtue of equations (10) and (11) we obtain in tensor nota-

tions 
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Now six unknowns in equations (8) will be expressed in terms of the displacements u, v and w as fol-

lows: 

.                              

,                          

,,    

,2,2,2

z

w

y

v

x

u

y

u

x

v
YX

x

w

z

u
XZ

z

w

y

w
ZY

z

w
Z

y

v
Y

x

u
X

xy

zxyz

zyx























































































                      (12) 

Substituting equations (12) into (8), we finally obtain three equilibrium equations with three 

unknowns expressed in terms of displacements (equations of motion in displacements in the Lame 

form): 
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Thus, as mentioned above, we obtained the equations expressing the equilibrium state of the 

Earth's ellipsoid of revolution, which is under the action of a centrifugal force (which causes a change 

of the figure and, therefore, deformation of the Earth’s body), and gravitational and surface tension 

forces, tending to return the Earth to its initial shape, from which, under the influence of a change of 
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centrifugal force (of its increase with growth of ), it passed to a stressed state. 

Equations (13) are second-order partial differential equations, therefore, it is difficult to give a 

quantitative estimate of deformations (and displacements) when a conjugated change of the Earth's 

shape occurs due to non-uniform rotation of the planet (Belashov, 1987). To clarify the reality of the 

effect of periodic changes of the Earth's rotation velocity on its deformation, we will use further the 

technique proposed by Stovas (1957, 1961). 

4 Conjugate Deformation of the Ellipsoid at Changing the Angular Velocity of Rotation 

The potential of the deforming forces V, which directly determines the polar compression of the 

ellipsoid, can be represented in the following form: 

]tg)1[(6

]tg21)[1(
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a
V  

where a is the equatorial semi-axis of rotation,  is the polar compression of the ellipsoid, and  is the 

geocentric latitude. 

We now turn to the deforming forces. The radial deforming force is determined by the follow-

ing formula: 
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and the normal and tangential deforming forces are given by 
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A change of the deforming forces causes the change of the polar compression of the ellipsoid of revolu-

tion and, consequently, the conjugate change of all its main parameters. 

Let us now consider how the radial deforming force on the surface of an ellipsoid will changed 

with a change of its rotational regime. To do this, we differentiate (14) with respect to : 
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where r is the radius vector of a point lying on the surface of an ellipsoid of revolution. 

From formula (15), which expresses a change of the radius vector with a change of the polar 

compression of the ellipsoid, one can see that at 0/5.181235  r , that is, in the zone of this 

latitude the radial displacements do not occur with a conjugate change of the figure,. The maximum 

radial displacements are observed at the poles (  90 ) and equator (  0 ). In the terminology of 

Stovas (1957), the zone  )4030(  is the zone of “critical parallels”. 

The value of function )(F  is within 002225.1)(997750.0  F . The maximum value of 

function f is 160 gcms1 or 0.7% of  /rF . Neglecting the value of f and equating 1)( F , with a 

sufficient accuracy, we obtain 










 rFr

)1(2

1
,                                                          (16) 

whence it follows that a change of the radial deforming force with a change of the angular velocity 

causes a conjugate change of the radius vector of the ellipsoid and, therefore, a conjugate deformation 

of all its main parameters. 

The displacement Nu  of a point on the surface of the ellipsoid along the normal N when chang-

ing the polar compression  is represented by the equation 







2/1242/122

22

]tg)1[(]tg)1[(

tg2)1(

3

a
uN                               (17) 

where   is the change of polar compression. It follows from (17) that the greatest vertical displace-

ment will be observed at the poles (  90 ) and equator (  0 ), that we have already seen from 

analysis of (15). 

If now to use the obtained relations (16) and (17) and perform elementary calculations, taking at 

 0  that Nu = 6 m or r = 6 m [as indicated in the Introduction, that is sufficient to change the mo-

ment of inertia of the Earth corresponding to (2)], then one can obtain the change of polar compression, 

which should occur at real fluctuations of the day duration 6103~   or, as a percentage, 

%09.0~  of the average compression of the Earth obtained by geodetic methods, as well as using 

satellites, which is 1/298.25 ( 02.0 ), according to the MGGSM / MAC data. 

We believe that such a change of compression is real, although calculations which use some 

theoretical models [see, for example, the Lallemand model described by Melchior (1976)] give a signif-

icantly smaller result. We think that these theoretical models do not in any way take into account either 

the redistribution of masses in the Earth’s body, and the related density change in the subcrustal layer 

(see Introduction), and the heterogeneity of the Earth (in any case, the extremely complicated law of 

density distribution in the body of planet), and, finally, the difference in the compressions of the two 

hemi-spheres of the Earth (Melchior, 1975) and also the ellipticity of the equator. 

5 Discussion and Conclusion 

We summarize the results as follows. It was established in the paper that since the angular ve-

locity of the Earth’s rotation changes abruptly and continuously, increasing and decreasing on a general 

tidal background of its damping, the signs of the displacement vectors change passing through zero 

and, therefore, continuous changes of angular velocity of rotation of the plastic-elastic Earth should 

cause continuous conjugate deformation of the crustal layer, redistribution of masses in the subcrustal 

layer and the associated change of density, and also, as a consequence of all these phenomena, the polar 
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pulsation, when the Earth polar diameter increases and decreases. 

We have clarified the mechanism of the occurrence of deformations of the planet’s body under 

the action of a time-varying deforming (centrifugal) force, we have written strain and stress tensors, 

and based on rheological equations we have derived equilibrium equations and also calculated the 

modulus of variation of polar compression and radial displacements with real fluctuations of the angu-

lar velocity of the Earth’s rotation. The calculated values gave quite real, in our opinion, changes of 

compression and radial displacements of the Earth's crust and its underlying shells. The opposite was 

also shown: the observed fluctuations of the amplitude of polar compression, leading to corresponding 

changes of the moment of inertia of the Earth, are consistent with real fluctuations of the day duration. 

Our next work will be devoted to considering the possible consequences of the deformation of 

the Earth’s figure based on the approaches proposed by Belashov (1978, 1985). 

Acknowledgments. The work is performed according to the Russian Government Program of Compet-

itive Growth of Kazan Federal University. Data were not used, nor created for this research.  
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