

## PHYSIOLOGY

# Peculiar Effects of Muscarinic $M_1$ , $M_2$ , and $M_3$ Receptor Blockers on Cardiac Chronotropic Function in Neonatal Rats

N. I. Ziyatdinova, A. M. Sergeeva, R. E. Dementieva, and T. L. Zefirov

Translated from *Byulleten' Eksperimental'noi Biologii i Meditsiny*, Vol. 154, No. 7, pp. 4-6, July 2012  
Original article submitted February 2, 2011

The effects of muscarinic  $M_1$ ,  $M_2$ , and  $M_3$  cholinergic receptor blockade on the regulation of chronotropic function of the heart were studied *in vivo* in 7-day-old rat pups. Intravenous injection of  $M_2$  receptor blocker gallamine produced no changes in cardiac chronotropy. In contrast,  $M_1$  receptor blocker pirenzepine and  $M_3$  receptor blocker 4DAMP provoked bradycardia. These data attest to the involvement of  $M_1$  and especially  $M_3$  cholinergic receptors in the regulation of cardiac chronotropy in rat pups, which confirms the view on pronounced species-specific and age-related peculiarities in the heart control mechanisms.

**Key Words:** heart; muscarinic  $M_1$ -,  $M_2$ -, and  $M_3$ -cholinoreceptors; vagus; rat; ontogeny

The parasympathetic branch of the autonomic nervous system realizes its effects via muscarinic cholinoreceptors (MCR). In the heart of various mammal species,  $M_2$ CR is the predominant fraction [5,8]. Probably, this explains the fact that  $M_1$  receptors received little attention. However, recently the researchers focused on  $M_1$  and  $M_3$  receptors with particular emphasis on the latter [1,2,7,12]. A hypothesis was put forward that interaction of Ach with various MCR subtypes, activation of the second messenger systems, and modulation of the activity of various effectors underlie some features of cardiac control [4,6,9-11]. There are species-specific peculiarities in the expression of various types and subtypes of the cholinoreceptors in mammalian myocardium. However, the role of various subtypes of MCR in physiological, pathophysiological, and pharmacological processes is still unclear. Elucidation of the role of various MCR subtypes in myocardium of animals at different

stages of maturation of the sympathetic innervation is an important problem.

Our aim was to study the effect of selective blockade of various subtypes of MCR on heart rate variability in neonatal rats.

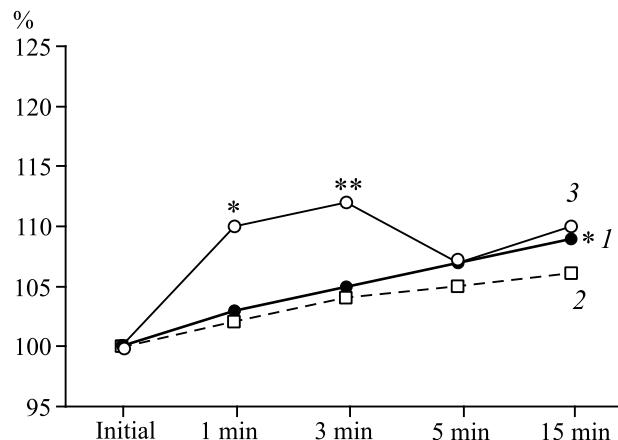
### MATERIALS AND METHODS

The study was carried out on random-bred 7-day-old albino rat pups ( $n=22$ ) narcotized intraperitoneally with 25% urethane (1000 mg/kg body weight). The hair in the operative field was sheared off shortly and the skin was treated with iodine and alcohol solutions.  $M_1$ CR blocker pirenzepine,  $M_2$ CR blocker gallamine, and  $M_3$ CR blocker 4DAMP (all reagents were from Sigma) were injected into femoral artery (0.02 mg/kg, bolus injections). During the experiments, ECG was continuously recorded and processed using original software to obtain ECG, BP, and 28 parameters of variation pulsogram [3].

The data were analyzed statistically using Microsoft Excel software. Significance of differences was assessed using Wilcoxon test and Student *t* test.

Department of Anatomy, Physiology, and Human Health Protection, Kazan (Volga Region) Federal University, Russia. **Address for correspondence:** zefirovt@mail.ru. T. L. Zefirov

## RESULTS


For evaluation of the role of MCR subtypes in vagal control over the heart in neonatal rats, three series of experiments were carried out. In series I, II, and III, the specified parameters of cardiovascular systems were recorded before and during application of  $M_1$ CR,  $M_2$ CR, and  $M_3$ CR blockers, respectively. It should be remembered that neonatal rats have no sympathetic innervation in the heart.

$M_1$ CR blocker pirenzepine gradually increased the mean cardiac interval  $X_m$ , by the 15th minute post-injection (Fig. 1). On postinjection second 30, it insignificantly increased from  $187.3 \pm 5.9$  to  $191.8 \pm 4.9$  msec. The insignificant elevation of  $X_m$  was observed on minutes 1, 3, and 5 to  $192.4 \pm 6.5$ ,  $197.6 \pm 4.5$ , and  $200.4 \pm 6.1$  msec, respectively. Finally, the difference from the baseline value became significant by minute 15 ( $p < 0.5$ ), when  $X_m$  attained the value of  $205.1 \pm 4.8$  msec (Fig. 1). Pirenzepine also changed the parameters of variational pulsogram. The mode amplitude (AMo) significantly decreased from  $61.1 \pm 2.5$  to  $53.4 \pm 2.0$  and  $51.1 \pm 1.9$ % on postinjection minutes 1 and 3, respectively ( $p < 0.05$ ); by postinjection minute 15 this parameter decreased to  $41.1 \pm 6.5$ % ( $p < 0.01$ ). On post-injection second 30, the variational range  $dX$  insignificantly increased from  $3.6 \pm 0.2$  to  $3.8 \pm 0.1$  msec. On the following,  $dX$  significantly increased on minutes 1, 3, and 5 to  $4.4 \pm 0.3$  msec ( $p < 0.05$ ),  $4.6 \pm 0.3$  msec ( $p < 0.01$ ), and  $4.7 \pm 0.4$  msec ( $p < 0.01$ ). However, the increase in  $dX$  became insignificant on minute 15, when it attained the value of  $10.9 \pm 6.5$  msec.

In contrast to pirenzepine, gallamine produced only insignificant gradual increase in  $X_m$  from the baseline value of  $172.4 \pm 10.7$  to  $175.7 \pm 11.2$ ,  $176.4 \pm 11.2$ ,  $179.5 \pm 11.1$ ,  $180.3 \pm 11.6$ , and  $182.5 \pm 12.6$  msec on post-injection second 30 and minutes 1, 3, 5, and 15, respectively (Fig. 1). Other parameters of variational pulsogram also changed insignificantly.

The effect of 4DAMP on  $X_m$  was not monotonic (Fig. 1). At first, this  $M_3$ CR blocker significantly increased  $X_m$  from the baseline value of  $241.5 \pm 6.7$  to  $332.1 \pm 15.6$  ( $p < 0.01$ ),  $264.4 \pm 8.6$  msec ( $p < 0.05$ ), and  $271.5 \pm 9.2$  msec ( $p < 0.01$ ) on postinjection second 30 and minutes 1 and 3, respectively. However,  $X_m$  decreased to  $257.0 \pm 13.8$  msec on minute 5 (and became insignificantly different from the starting value), but significantly increased again to  $266.7 \pm 12.9$  msec on minute 15 ( $p < 0.05$ , Fig. 1).

Thus, our experiments revealed the chronotropic response of the heart in neonatal rats to blockade of



**Fig. 1.** Dynamics of cardiac interval  $X_m$  during selective blockade of various subtypes of M-cholinoreceptors. 1) pirenzepine; 2) gallamine; 3) 4DAMP.

$M_1$  and  $M_3$  cholinoreceptors. The corresponding MCR-blockers significantly decreased the heart rate, the effect of  $M_3$ CR blocker being more pronounced. It is noteworthy that electrical stimulation of the vagus nerve also induces bradycardia in rat pups [3]. These findings suggest that the tonic vagal influences on the heart rate are opposite in neonatal and mature rats [2]. The absence of sympathetic innervation in the heart of neonatal rats is probably compensated by additional accelerating chronotropic mechanisms.

## REFERENCES

1. T. L. Zefirov, A. E. Gibina, M. A. Kh. Salman, et al., *Byull. Eksp. Biol.*, **144**, No. 8, 135-137 (2007).
2. T. L. Zefirov, N. I. Ziyatdinova, L. R. Saifutdinova, A. L. Zefirov, *Byull. Eksp. Biol.*, **141**, No. 6, 609-612 (2006).
3. N. I. Ziyatdinova, A. L. Zefirov, F. G. Sitsdikov, and T. L. Zefirov, *Ross. Fiziol. Zh.*, No. 2, 154-160 (2003).
4. T. Anger, N. Klintworth, C. Stumpf, and W. G. Daniel, *J. Biochem. Mol. Biol.*, **40**, No. 6, 899-910 (2007).
5. M. P. Caulfield, *Pharmacol. Ther.*, **58**, No. 3, 319-379 (1993).
6. S. Ganzinelli, L. Joensen, E. Borda, et al., *Br. J. Pharmacol.*, **151**, No. 2, 175-185 (2007).
7. P. Z. Hang, J. Zhao, Y. P. Wang, et al., *Naunyn Schmiedebergs Arch. Pharmacol.*, **380**, No. 5, 443-450 (2009).
8. E. C. Hulme, N. J. Birdsall, N. J. Buckley, *Annu. Rev. Pharmacol. Toxicol.*, **30**, 663-673 (1990).
9. R. I. Hussain, E. Qviqstad, J. A. Birkeland, and H. Eikemo, *Br. J. Pharmacol.*, **156**, No. 4, 575-586 (2009).
10. J. Myslivecek, M. Klein, M. Novakova, and J. Ricny, *Naunyn Schmiedebergs Arch. Pharmacol.*, **378**, No. 1, 103-116 (2008).
11. M. M. Van Borren, A. O. Verkerk, R. Wilders, et al., *Basic Res. Cardiol.*, **105**, No. 1, 73-87 (2010).
12. C. Vieira, M. Duarte-Araújo, S. Adães, et al., *Neurogastroenterol. Motil.*, **21**, No. 10, 1118-1195 (2009).