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Abstract Optical waveguides are regular dielectric rods having various
cross-sectional shapes where generally the permittivity may vary in the waveguide’s
cross section. The permittivity of the surrounding medium may be a step-index
function of coordinates. The eigenvalue problems for natural modes (surface and
leaky eigenmodes) of inhomogeneous optical waveguides in the weakly guiding
approximation formulated as problems for Helmholtz equations with partial ra-
diation conditions at infinity in the cross-sectional plane. The original problems
are reduced with the aid of the integral equation method (using appropriate
Green functions) to nonlinear spectral problems with Fredholm integral operators.
Theorems on the spectrum localization are proved. It is shown that the sets of all
eigenvalues of the original problems may consist of isolated points on the Riemann
surface and each eigenvalue depends continuously on the frequency and permittivity
and can appear or disappear only at the boundary of the Riemann surface. The
original problems for surface waves are reduced to linear eigenvalue problems
for integral operators with real-valued symmetric polar kernels. The existence,
localization, and dependence on parameters of the spectrum are investigated. The
collocation method for numerical calculations of the natural modes is proposed, the
convergence of the method is proved, and some results of numerical experiments
are discussed.

1 Introduction

Optical fibers are dielectric waveguides (DWs), i.e., regular dielectric rods, having
various cross-sectional shapes, and where generally the refractive index of the
dielectric may vary in the waveguide’s cross section [10]. Historically, the first DWs
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to be studied were step-index waveguides with circular cross section; interior to
the waveguide, the refractive index was either homogeneous or coaxial-layered.
In these cases, by using separation of variables, modal eigenvalue problems are
easily reduced to families of transcendental dispersion equations associated with
the azimuthal indices (see, e.g., [6, 10]). The study of the source-free electro-
magnetic fields, called natural modes, that can propagate on DWs necessitates
that longitudinally the rod extend to infinity. Since often DWs are not shielded,
the medium surrounding the waveguide transversely forms an unbounded domain,
typically taken to be free space. This fact plays an extremely important role in the
mathematical analysis of natural waveguide modes and brings into consideration a
variety of possible formulations. They differ in the form of the condition imposed
at infinity in the cross-sectional plane, and hence in the functional class of the
natural-mode field. This also restricts the localization of the eigenvalues in the
complex plane of the eigenparameter [3]. During recent years partial condition has
been widely used for statements of various wave propagation problems [9]. All of
the known natural-mode solutions (i.e., guided modes, leaky modes, and complex
modes) satisfy partial condition at infinity. The wavenumbers β may be generally
considered on the appropriate logarithmic Riemann surface. For real wavenumbers
on the principal (“proper”) sheet of this Riemann surface, one can reduce partial
condition to either the Sommerfeld radiation condition or to the condition of
exponential decay. Partial condition may be considered as a generalization of the
Sommerfeld radiation condition and can be applied for complex wavenumbers. This
condition may also be considered as the continuation of the Sommerfeld radiation
condition from a part of the real axis of the complex parameter β to the appropriate
logarithmic Riemann surface.

In this paper we consider the problem of determination of eigenwaves propagating
along inhomogeneous optical waveguides with piecewise continuous permittivity in
the weakly guiding approximation when the hybrid-mode character of the normal
waves is neglected. In this approximation, the considered problem on eigenwaves
is virtually equivalent to the determination of eigenoscillations of the cylindrical
resonators having the same cross section as the guides under study [4].

We reduce the analysis to the boundary eigenvalue problems for Helmholtz
equations with partial radiation conditions at infinity in the cross-sectional plane
and latter to finding characteristic numbers of integral equations.

The methods of the spectral theory of integral operator-valued functions were
applied to the study of the oscillations in slotted resonators [8] and to the study of
the normal waves of slotted waveguides [7].

2 Statement of the Problem

We consider the natural modes of an inhomogeneous optical fiber. Let the three-
dimensional space be occupied by an isotropic source-free medium, and let the
refractive index be prescribed as a positive real-valued function n = n(x1,x2)
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independent of the longitudinal coordinate x3 and equal to a constant n∞ outside a
cylinder. The axis of the cylinder is parallel to the x3–axis, and its cross section is a
bounded domain Ω on the plane R2 = {(x1,x2) : −∞ < x1,x2 < ∞} with a boundary
Γ belongs to the class C1,α . Denote by Ω∞ the unbounded domain Ω∞ = R2\Ω , and
denote by n+ the maximum of the function n in the domain Ω , where n+ > n∞. Let
the function n belong to the space of real-valued twice continuously differentiable in
Ω functions. It is supposed that U is the space of twice continuously differentiable
in Ω and Ω∞, continuous and continuously differentiable in Ω̄ and Ω̄∞ real-valued
functions. The modal problem for the weakly guiding optical fiber can be formulated
[2] as an eigenvalue problem for a Helmholtz equation:

[
Δ +

(
k2n2 −β 2)]u = 0, x ∈ R2\Γ . (1)

Here k2 = ω2ε0μ0; ε0, μ0 are the free-space dielectric and magnetic constants,
respectively. We consider the propagation constant β as a complex parameter
and radian frequency ω as a positive parameter. We seek nonzero solutions u of
equation (1) in the space U . Functions u have to satisfy the conjugation conditions:

u+ = u−,
∂u+

∂ν
=

∂u−

∂ν
, x ∈ Γ . (2)

Here ν is the normal vector. We say that function u satisfies partial condition if u
can be represented for all |x|> R as

u =
∞

∑
l=−∞

alH
(1)
l (χr)exp(ilϕ), (3)

where H(1)
l is the Hankel function of the first kind and index l, (r,ϕ) are the

polar coordinates of the point x and χ(β ) =
√

k2n2
∞ −β 2. The series in (3) should

converge uniformly and absolutely.

The Hankel functions H(1)
l (χ(β )r) are many-valued functions of the variable β .

If we want to consider these functions as holomorphic functions, it is seen that β
should be considered on the set Λ , which is the Riemann surface of the function
ln(χ(β )r). This is due to the fact that Hankel functions can be represented as

H(1)
l (χ(β )r) = c(1)l (χr) ln(χr)+R(1)

l (χr), (4)

where c(1)l (χr) and R(1)
l (χr) are holomorphic single-valued functions [1]. The

Riemann surface Λ is infinitely sheeted, with each sheet having two branch points,
β = ±kn∞. More precisely, due to the branching of χ(β ) itself, we consider an
infinite number of logarithmic branches Λm, m = 0,±1, . . . , each consisting of two

square-root sheets of the complex variable β : Λ (1)
m and Λ (2)

m . By Λ (1)
0 denote the

principal (“proper”) sheet of Λ , which is specified by the following conditions:

−π
/

2 < argχ(β )< 3π
/

2, Im(χ(β ))≥ 0, β ∈ Λ (1)
0 . (5)
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The “improper” sheet Λ (2)
0 is specified by the conditions

−π
/

2 < argχ(β )< 3π
/

2, Im(χ(β ))< 0, β ∈ Λ (2)
0 . (6)

Denote also the whole real axis of Λ (1)
0 as R(1)

0 and that of Λ (2)
0 as R(2)

0 . All of the

other pairs of sheets Λ (1),(2)
m�=0 differ from Λ (1),(2)

0 by shift in arg χ(β ) equal to 2πm
and satisfy the conditions

−π
/

2 < arg χ(β )< 3π
/

2, Im(χ(β ))≥ 0, β ∈ Λ (1)
m , (7)

−π
/

2 < arg χ(β )< 3π
/

2, Im(χ(β ))< 0, β ∈ Λ (2)
m . (8)

Hence on Λ (1)
0 there is only a pair of branch-cuts dividing it from Λ (2)

0 ; they run

along the real axis at |β |< kn∞ and along the imaginary axis. On Λ (2)
0 , additionally,

there is a pair of branch-cuts dividing it from Λ (1)
±1 ; they run along the real axis at

|β |> kn∞.

Definition 1. A nonzero function u ∈ U is referred to as an eigenfunction (gener-
alized mode) of the problem (1)–(3) corresponding to some eigenvalues β ∈ Λ and
ω > 0 if the relations of problem (1)–(3) are valid. The set of all eigenvalues of the
problem (1)–(3) is called the spectrum of this problem (Fig. 1).

Fig. 1 Cross section of the waveguide which is in free space

Let us describe the geometry and give the problem statement for a waveguide
in the half-space. Denote by Ω∞ the unbounded domain Ω∞ = {x ∈ R2 : x1 ∈
R,x2 > 0}\Ω . The refractive index n∞ of Ω∞ is very different from the refractive
index of the bottom half-space nb. Suppose that the refractive indices of Ω and
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Ω∞ are approximately equal. So we can suggest that u = 0 for x2 = 0 and use the
approximation of weakly guiding waveguide (Fig. 2).

Fig. 2 Cross section of the waveguide which is in the half-space

The problem of the waveguide in the half-space yields as an equivalent Helmholtz
equation

[
Δ +

(
k2n2 −β 2)]u = 0, x ∈ Ω ∪Ω∞. (9)

Functions u also have to satisfy the following conjugation conditions:

u+ = u−,
∂u+

∂ν
=

∂u−

∂ν
, x ∈ Γ . (10)

In this case partial condition means that the function u can be represented for all
|x|> R as

u =
∞

∑
l=−∞

alH
(1)
l (χr)sin(lϕ). (11)

3 Spectrum Properties

In this section the original problems will be reduced to the spectral problems for
integral operators. Some results of integral operators spectrum properties will be
formulated. If u is an eigenfunction of problem (1)–(3) corresponding to some
eigenvalues β ∈ Λ and ω > 0 , then [2] the following integral presentation is valid:

v(x) = λ
∫

Ω

K1,2(x,y)v(y)dy, x ∈ Ω , (12)
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where

K1,2(x,y) = Φ1,2(β ;x,y)p(x)p(y), v(x) = u(x)p(x),

p(x) =
√
((n(x))2 − n2

∞)/(n
2
+− n2

∞), λ = k2(n2
+− n2

∞),

Φ1 =
i
4

H(1)
0 (χ(β ) |x− y|).

An equivalent integral presentation for a waveguide in the half-space is also valid.
Note that function

Φ2 =
i
4
(H(1)

0 (χ(β ) |x− y|)−H(1)
0 (χ(β ) |x− y∗|))

is Green’s function of the problem (9)–(11). Here y∗ is (y1,−y2).
The original problem (1)–(3) is spectrally equivalent [2] to the problem (12). Let

the frequency ω have a fixed positive value. Rewrite problem (12) in the form of
spectral problem for operator-valued function

A(β )v = 0, (13)

where A(β ) = I−λ T (β ) : L2 (Ω)→ L2 (Ω), T is the operator, defined by the right
side of the Eq. (12), and I is the identical operator.

Definition 2. Let ω > 0 be a fixed parameter. A nonzero vector v ∈ L2 (Ω) is called
an eigenvector of operator-valued function A(β ) corresponding to an eigenvalue
β ∈ Λ if the relation (13) is valid. The set of all β ∈ Λ for which the operator
A(β ) does not have a bounded inverse operator in L2(Ω) is called the spectrum
of operator-valued function A(β ). Denote by sp(A) ⊂ Λ the spectrum of operator-
valued function A(β ).

Theorem 1. The following assertions hold:

1. For all ω > 0 and β ∈ Λ the operator T (β ) is compact.
2. If ω has a fixed positive value, then the spectrum of the operator-valued function

A(β ) can be only a set of isolated points on Λ , moreover on the principal sheet

Λ (1)
0 it can belong only to the set

G =
{

β ∈ R(1)
0 : kn∞ < |β |< kn+

}
.

3. Each eigenvalue β of the operator-valued function A(β ) depends continuously
on ω > 0 and can appear and disappear only at the boundary of Λ , i.e., at
β =±kn∞ and at infinity on Λ .

This theorem was proved in [3]. The equivalent theorem for the second problem
is valid. The proof of this theorem is based on the spectral theory of operator-valued
Fredholm holomorphic functions.
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The well-known surface modes satisfy to β ∈ G. In this case χ(β ) = iσ(β ),
where σ(β ) =

√
β 2 − k2n2

∞ > 0. Let transverse wavenumber σ have a fixed positive
value. Rewrite problem (12) in the form of usual liner spectral problem with integral
compact operator

v = λ T (σ)v, T : L2 (Ω)→ L2 (Ω) . (14)

Definition 3. Let σ > 0 be a fixed parameter. A nonzero function v ∈ L2 (Ω) is
called an eigenfunction of the operator T corresponding to a characteristic value λ
if the relation (14) is valid. The set of all characteristic values of the operator T is
called the spectrum and is denoted by sp(T ).

Theorem 2. For all positive σ the following statements are valid:

1. There exist the denumerable set of positive characteristic values λl , l = 1,2, . . .,
with only cumulative point at infinity.

2. The set of all eigenfunctions vl, l = 1,2, . . ., can be chosen as the orthonormal
set.

3. The smallest characteristic value λ1 is positive and simple, corresponding
eigenfunction v1 is positive.

4. Each eigenvalue λl , l = 1,2, . . ., depends continuously on σ > 0,
5. λ1 → 0 as σ → 0.

This theorem was proved in [3]. The proving of this theorem is based on the
combination of three equivalent statements: original statement, statement in form
of spectral problem with integral operator with symmetric weakly polar kernel
and on the special variational formulation on the plane and on the half-plane. The
corresponding integral operators are self-adjoint and compact; therefore (see, e.g.,
[5]) there exists a denumerable set of λl , l = 1,2, . . ., with only cumulative point
at infinity. We use special variational statement and equivalence of variational and
original statements for proving positiveness of these integral operators. Then we
obtain that all characteristic values are positive. Moreover, the minimal value λ1 is
simple (it means that multiplicity of λ1 is equal to one) and λ1 → 0 as σ → 0.

However, the last assertion for the problem (9)–(11) has the other form. In
particular, λ1 → const > 0 as σ → 0. The well-known fundamental mode satisfies
to the smallest characteristic value λ1. We can conclude that the fundamental mode
exists for all ω > 0 in case of a waveguide in free space. The fundamental mode will
appear from the certain value of ω for a waveguide in the half-space. If some values
of the parameters λ and σ are known, then β and ω can be calculated by evidence
formulas.
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4 Collocation Method

Let us consider the collocation method [11] for numerical approximation of the
integral equation (12). We suppose that σ > 0 is a fixed parameter. We cover Ω
with small triangles Ω j,h such that

max
1≤j≤Nh

diam(Ωj,h)≤ h

and Ωi,h
⋂

Ω j,h = /0, if i �= j. Denote by Ωh the sub-domain Ωh =
Nh⋃

j=1
Ω j,h ⊆ Ω . Let

Ξh = {ξ j,h}Nh
j=1 be a grid for Ω (a finite number of points of Ω ) such that ξ j,h is a

centroid of Ω j,h, j = 1, . . . ,Nh and

dist(x,Ξh)→ 0, h → 0, ∀x ∈ Ω .

It is well known that each solution of the equation (12) belongs to a space E =
C(Ω) [11] with norm

||v||E = sup
x∈Ω

|v(x)|.

Introduce the space Eh =C(Ξh) of functions on the grid Ξh with the norm

||vh||Eh = max
1≤ j≤Nh

|vh(ξ j,h)|, vh ∈ Eh.

Define ph ∈ L(E,Eh) as the operator restricting functions v ∈ E to the grid Ξh:
phv ∈ Eh is a grid function with the values

(phv)(ξ j,h) = v(ξ j,h), j = 1, . . . ,Nh.

Then the discrete convergence vh to v means that

max
1≤ j≤Nh

|vh(ξ j,h)− v(ξ j,h)| → 0, h → 0.

We represent an approximate solution of the integral equation (12) as a piecewise

constant function ṽh(x) =
Nh

∑
j=1

v j,h f j,h(x), x ∈ Ωh, where f j,h are basis functions,

f j,h(x) = 1, if x ∈ Ω j,h, f j,h(x) = 0, if x /∈ Ω j,h. In the integral equation (12) we
approximate the domain of integration Ω by Ωh:

v(x) = λ
∫

Ωh

K(x,y)v(y)dy. (15)
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Replacing v by ṽh and collocating at points ξi,h, we obtain a system of linear
algebraic equations to find the values v j,h, namely,

vi,h = λ
Nh

∑
j=1

∫

Ω j,h

K(ξi,h,y)v j,hdy, i = 1, . . .Nh. (16)

Let us introduce a discrete analogue of operator T :

(Thṽh)(ξi,h) =
Nh

∑
j=1

∫

Ω j,h

K(ξi,h,y)ṽh(ξi,h)dy.

Therefore, using collocation method for solving linear spectral problem for the
integral equation (12), we obtain finite-dimensional linear spectral problem.

Let us formulate the convergence theorem for the linear case.

Theorem 3. The following assertions hold:

1. If 0 �= λ0 ∈ sp(T ) then there exists λh ∈ sp(Th) such that λh → λ0 as h → 0.
2. Conversely, if sp(Th) � λh → λ0 as h → 0 then λ0 ∈ sp(T ).
3. The convergence rate for a simple characteristic value is estimated as follows:

for sp(Th) � λh → λ0 ∈ sp(T ), λ0 �= 0

|λh −λ0| ≤ ch2.

The proof of this theorem is based on the discrete convergence theory [11].
Let us describe calculation of integrals in (16). Taking into account that the

diagonal elements have singularities, we obtain these formulas:

aii =
p2(ξi)

2π

(
πR2

i

2
− lnRi|Ωi,h|− ln

σγ
2
|Ωi,h|

)
,

where Ri is the minimal distance from the centroid of triangle to triangle’s sides.
Nondiagonal elements were calculated by following formulas

ai j =
|Ω j,h|

2π
K0(σ |ξi − ξ j|)p(ξi)p(ξ j),

where K0 is McDonald’s function.
The latter formulas for a waveguide in the half-space take the forms

aii =
p2(ξi)

2π

(
πRi

2

2
− lnRi|Ωi,h|− ln

σγ
2
|Ωi,h|−K0(2σ |ξ i

2|)|Ωi,h|
)
,
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Fig. 3 The first ten dispersion curves for surface modes of circular step-index fiber calculated
by the collocation method (plotted by solid lines) with comparison to exact solutions (marked by
circles); n+ =

√
2, n∞ = 1
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Fig. 4 The first ten dispersion curves for surface modes of semicircle step-index fiber in the half-
space calculated by the collocation method; n+ =

√
2, n∞ = 1

ai j =
p(ξi)p(ξ j)|Ω j|

2π
(
K0(σ |ξi − ξ j|)−K0(σ |ξi − ξ ∗

j |)
)
.

Now we describe numerical results based on the collocation method. Dispersion
curves show dependence for σ of λ . They are presented on the Fig. 3 for the
circular waveguide in free space and on the Fig. 4 for the semicircle waveguide
in the half-space, respectively. Figures 5 and 6 show the eigenfunction isolines
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λ1 = 3.0509 λ2 = 8.0092
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Fig. 5 Eigenfunction isolines for surface waves of circular waveguide in free space; n+ =
√

2,
n∞ = 1
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Fig. 6 Eigenfunction isolines for surface waves of circular waveguide in free space; n+ =
√

2,
n∞ = 1
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Fig. 7 Eigenfunction isolines for surface waves of semicircle waveguide in the half-space; n+ =√
2, n∞ = 1
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Fig. 8 Eigenfunction isolines for surface waves of semicircle waveguide in the half-space; n+ =√
2, n∞ = 1
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Table 1 Numerical results for eigenvalue λ6 (σ = 1) of circular waveguide in free
space; n+ =

√
2, n∞ = 1

N 64 256 512 1032 2304 4128 6528

h 0.4856 0.2573 0.1551 0.1217 0.0800 0.0618 0.0491
λ̃6 16.0095 17.7529 18.1083 18.2402 18.3337 18.3842 18.4020
e 0.5576 0.5572 0.7315 0.7041 0.8384 0.6868 0.6881
ε 0.1315 0.0369 0.0176 0.0104 0.0054 0.0026 0.0017

Table 2 Numerical results for eigenvalue λ6 (σ = 1) of semicircle
waveguide in the half-space; n+ =

√
2, n∞ = 1

N 61 240 506 1059 2024 4236

h 0.3531 0.1693 0.1210 0.0863 0.0605 0.0432
λ̃6 39.3336 48.0972 49.5528 50.2392 50.5952 50.7702
e 1.8172 1.8956 1.7561 1.6377 1.4209 0.9432
ε 0.2266 0.0543 0.0257 0.0122 0.0052 0.0018

0 5 10 15 20 25 30 35 40 45 50
−5

−4

−3

−2

−1

0

1

2

3

4

5

λ

Imχ

Reχ

σ = Imχ

Fig. 9 Dispersion curves for surface and leaky modes of the circular step-index fiber calculated by
collocation method (marked by circles) with comparison to exact solutions (plotted by sold lines);
n+ =

√
2, n∞ = 1

for surface waves of circular waveguide in free space. Figures 7 and 8 show the
eigenfunction isolines for surface waves of semicircle waveguide in the half-space.
We present a Table 1 for circular waveguide that evaluates dependence for relative
error ε = |λ6 − λ̃6|/λ6 and e = ε/(h/R)2 of Nh with σ = 1. Here λ6 = 18.4324 is
the exact value, λ̃6 is the approximate value, R is the radius of the circular fiber.

The Table 2 describes the behaviour of inner convergence for semicircle waveg-
uide in the half-space. We compare λ̃6 with λ6 = 50.8596 which is calculated for
Nh = 8096. We also applied this method for solving nonlinear problem (13). In this
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λ1 = 2.002
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Fig. 10 Isolines for real and imaginary part of the first eigenfunction of circular waveguide; n+ =√
2, n∞ = 1
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Fig. 11 Isolines for real and imaginary part of the fourth eigenfunction of circular waveguide;
n+ =

√
2, n∞ = 1

Table 3 Numerical results for eigenvalue χ3 for λ3 = 10.02 of circular waveg-
uide; n+ =

√
2, n∞ = 1

N 512 1032 2304 4128

h 0.1551 0.1217 0.0800 0.0618
χ̃3 5.8018-1.0489i 5.8030-1.0655i 5.8047-1.0702i 5.8050-1.0726i
e 0.1859 0.1124 0.1300 0.1099
ε 0.0045 0.0017 0.0008 0.0004

case we fixed value for parameter ω and therefore for λ and find values of β . Let us
formulate the convergence theorem for the nonlinear case.

Theorem 4. Let Ah(β ) = I−λ Th(β ). The following assertions hold:

1. If β0 ∈ sp(A) then there exists βh ∈ sp(Ah) such that βh → β0 as h → 0.
2. If βh ∈ sp(Ah) and βh → β0 ∈ Λ as h → 0 then β0 ∈ sp(A).

The proof of this theorem is based on the discrete convergence theory [11].
The dispersion curves for surface and leaky modes of the circular step-index fiber

calculated by collocation method in comparation with exact solutions are presented
at Fig. 9. Figures 10 and 11 show isolines of the first and second eigenfunctions for
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Fig. 12 Dispersion curves for surface and leaky modes of the semicircle step-index waveguide in
the half-space; n+ =

√
2, n∞ = 1
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Fig. 13 Isolines for real and imaginary part of the first eigenfunction of semicircle waveguide in
the half-space; n+ =

√
2, n∞ = 1
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Fig. 14 Isolines for real and imaginary part of the fourth eigenfunction of semicircle waveguide
in the half-space; n+ =

√
2, n∞ = 1
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Table 4 Numerical results for eigenvalue χ4 for λ4 = 20.02 of semicircle waveg-
uide; n+ =

√
2, n∞ = 1

N 240 506 1059 2024

h 0.1693 0.1210 0.0863 0.0605
χ̃4 2.7616−0.9311i 2.7897− 1.0195i 2.7978−1.0556i 2.8020−1.0715i
e 1.8019 1.4209 1.1408 0.8241
ε 0.0516 0.0208 0.0085 0.0030

leaky waves for circular waveguide, respectively. The Table 3 shows dependence
for relative error ε = |χ3 − χ̃3|/|χ3| and e = ε/(h/R)2 of Nh with λ3 = 10.02. Here
χ3 = 2.96-0.8469i is the exact value, χ̃3 is the approximate value.

We provided the same calculations for the semicircle waveguide in the half-
space. The dispersion curves for surface and leaky modes of the semicircle
step-index waveguide are presented at Fig. 12. Figures 13 and 14 show isolines
of the first and second eigenfunctions for leaky waves for circular waveguide,
respectively. The Table 4 shows dependence for relative error ε , value e of Nh. Here
χ4 = 2.8042− 1.0803i is the value which is calculated for N = 4236 and λ = 20.2.
Our numerical calculations show that the collocation method has the second rate of
convergence. This is consistent with the theoretical estimates.
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