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Abstract—In this paper we show the use of commutative operads in public-key cryptography.
Commutative operads were introduced by S.N. Tronin in 2006. They are a special case of
algebraic operads and a natural generalization of commutative algebraic theories. We consider some
cryptographic protocols based on commutative operads. For the protocol of the creation a common
secret key, we describe and investigate its implementation and cryptographic security in particular
cases.
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1. INTRODUCTION

In the modern mathematical cryptography we see algorithms which use various algebraic platforms.
For example, widely used groups [9]. Our goal is to show that the cryptographic algorithms can be
constructed by using the platform of commutative operads introduced in [13]. The definitions and the
notations necessary for the further can also be found in [13].

2. COMMUTATIVE OPERADS

Definition 1. A Σ-operad is a family R = {R(n)|n = 1, 2, . . .} of sets such that at each R(n)
the permutation group Σn, n = 1, 2, . . . acts on the right and for arbitrary ordered sequences of
nonnegative integers m,n1, . . . , nm, there are defined some composition operations

R(m) × R(n1) × · · · × R(nm) −→ R(n1 + · · · + nm),
(ω, ω1, . . . , ωm) → ωω1 . . . ωm.

The following properties hold:
(1) Associativity

ω(ω1ω1,1 . . . ω1,k1) . . . (ωmωm,1 . . . ωm,km)
= (ωω1 . . . ωm)(ω1,1 . . . ω1,k1 . . . ωm,1 . . . ωm,km)

(2) There is a distinguished element ε ∈ R(1) (the identity of the operads), such that the
identity ω(ε . . . ε) = ω and εω = ω are valid for all ω ∈ R(m).
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Also, the properties which bind the composition operation and the actions of the group Σn

must be performed. These properties can be found (in a slightly different form and in another
context) in [13].

Consider two examples of operads.
Example 1.
Let X be an arbitrary set and let Map(A,B) be the set of all mappings from A into B. Assume

EX = {EX(n)|n ≥ 1}, EX(n) = Map(Xn,X) and define the composition as follows.
Given ωi : Xni → X, 1 ≤ i ≤ m, and ω : Xm → X and then ωω1 . . . ωm : Xn1+···+nm → X.
Let x̄ ∈ Xn1+···+nm . Since by definition, Xn1+···+nm = Xn1 × · · · × Xnm , then x̄ = (x̄1, . . . , x̄m),

where x̄i ∈ Xni .
Then the composition in this operad is defined as follows:

ωω1 . . . ωm(x̄) = ω(ω1(x̄1), . . . , ωm(x̄m)).

The permutation group Σn acts as follows:

ωσ(x1, . . . , xm) = (xσ(1), . . . , xσ(m)),

where ω ∈ EX(m), x1, . . . , xm ∈ X, and σ ∈ Σm.
Example 2.
Let G be a semigroup with the identity element 1.
Assume G = {G(n)|n ≥ 1}, where G(n) = Gn. An element G(n) is a sequence (string) x̄ =

(x1, . . . , xn) of elements xi ∈ G. The action of an element g ∈ G on the string x̄ is defined as follows
gx̄ = (gx1, . . . , gxn). The composition in this operad is defined as follows:

G(m) × G(n1) × . . . × G(nm) → G(n1 + · · · + nm)
(x̄, ȳ1, . . . , ȳm) �→ x̄ȳ1 . . . ȳm,

where x̄ = (x1, . . . , xm) ∈ G(m), ȳi = (yi,1, . . . , yi,ni) ∈ G(ni) for
1 ≤ i ≤ m, and x̄ȳ1 . . . ȳm = (x1ȳ1, . . . , xmȳm).

The permutation group Σn acts on a set G(n) as follows:

(x1, . . . , xn)σ = (xσ(1), . . . , xσ(n)).

Definition 2. Suppose that R is a Σ-operad. By an algebra over R we mean a set A that is
endowed with some mappings of the form:

R(n) × An −→ A, (r, ā) �→ rā,

where r ∈ R(n), ā = a1 . . . an, ai ∈ A. Moreover, the following conditions must be satisfied:
(1) (rr1 . . . rm)ā1 . . . ām = r(r1ā1) . . . (rmām).
(2) εa = a for all a ∈ A, where ε ∈ R(1) is the identity of R.
(3) The identity (rf)a1 . . . am = raf(1) . . . af(m) holds for all r ∈ R(m), a1, . . . , am ∈ A, f ∈ Σm.
Definition 3. Assume that Z is a Σ-operad. We call the operad Z commutative if the identity

λ

n
︷ ︸︸ ︷

ω . . . ω = (ω

m
︷ ︸︸ ︷

λ . . . λ)σn,m

is hold for all λ ∈ Z(n) and ω ∈ Z(m), where σn,m ∈ Σnm and

σn,m(i + (j − 1)n) = (j + (i − 1)m),

for 1 ≤ i ≤ n, 1 ≤ j ≤ m.

We denote by
n
∑

i=1

(λ)ai the result of the composition of λ ∈ Z(n) with a1, . . . , an ∈ A. Let Z be a

commutative operad, then for all λ ∈ Z(n) and ω ∈ Z(m) the equality
n

∑

i=1

(λ)
m

∑

j=1

(ω)ai,j =
m

∑

j=1

(ω)
n

∑

i=1

(λ)ai,j
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is hold in every Z-algebra.
In these notations, a homomorphism between the algebras over the commutative operads is a map h,

such that

h

(

n
∑

i=1

(λ)ai

)

=
n

∑

i=1

(λ)h(ai)

for all λ ∈ Z(n) and a1, . . . , an ∈ A.
The value of a commutative operad is showed by the following theorem proved in [14].
Theorem 1. The center of a multicategory is a commutative operad. The center of a

commutative operad R coincides with R.
Next, consider several examples of commutative operads.
Example 3.
Consider an operad Z for which Z(0) = ∅, Z(1) is a singleton, and if n ≥ 2, then Z(n) = ∅. We may

assume that Z is a FSet-operad. The definition of a commutative operad for Z is fulfilled trivially. The
category of algebras over this operad is actually the category of all sets.

Example 4.
Generalizing Example 3 to some extent consider an operad with a unique nonempty component Z(1),

which is a commutative monoid. This operad is also commutative, and the category of algebras over it is
rationally equivalent to the category of left Z(1)-sets, i.e. the sets on which the left action of the monoid
Z(1) is defined.

Example 5.
Let G be a commutative monoid with the operation written multiplicatively. Consider an operad

from Example 2. Easy verification shows that the so-constructed operad is commutative. If G is
a commutative associative ring with unity then the variety of algebras over the operad is rationally
equivalent to the category of left G-modules. In some cases, it will be convenient to denote the above
operad like the monoid itself, i.e. by G.

Example 6.
Clearly, a suboperad of a commutative operad is also commutative. In many cases, some important

examples are given by operads defined over a smaller verbal category than that over which the ambient
commutative operad is defined. However, there are interesting cases when no restriction of the verbal
category appears. For example, the operad of simplices Δ, studied in [12], is a suboperad in the FSet-
operad R, where R is the field of reals, and the corresponding operad is constructed as in Example 5. We
proved in [12] that Δ admits a FSet-operad structure.

3. CRYPTOGRAPHIC PROTOCOLS

Let Z be a commutative operad, let A be an algebra over Z. Assume that these data are public (not
secret).

Protocol 1. The creation of a common secret key
Alice’s secret is a ω ∈ Z(n). Bob’s secret is a λ ∈ Z(m). Public elements are ai,j ∈ A, 1 ≤ i ≤ n,

1 ≤ j ≤ m.

(1) Alice computes αj =
n
∑

i=1

(ω)ai,j , 1 ≤ j ≤ m.

(2) Bob computes βi =
m
∑

j=1

(λ) ai,j , 1 ≤ i ≤ n.

(3) Alice sends the elements αj to Bob.

(4) Bob sends the elements βi to Alice.

(5) Finally, Alice computes
n
∑

i=1

(ω)βi, and Bob computes
m
∑

j=1

(λ)αj .
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By definition of a commutative operad,
n
∑

i=1

(ω)
m
∑

j=1

(λ)ai,j =
m
∑

j=1

(λ)
n
∑

i=1

(ω)ai,j . Thus, Alice and Bob

receive a common secret key.

The security of the protocol is based on the complexity of the task of finding ξ ∈ Z(k) using known

b1, . . . , bk ∈ A and
k
∑

i=1

(ξ)bi ∈ A.

Protocol 2. The key exchange

The public data are a commutative operad Z, a number n, and an element ω ∈ Z(n).

(1) Alice picks a random element α ∈ Z(m) and sends to Bob the element α

m
︷ ︸︸ ︷

ω . . . ω = αωm.

(2) Bob picks a random element β ∈ Z(k) and sends to Alice the element βωk.

(3) Alice computes α(βωk)m = (αβm)ωmk .

(4) Bob computes

β(αωm)k = (βαk)ωmk = ((αβm)σm,k)(ωmk) = (αβm)(ωmk)σ′.

The security of the protocol is based on the complexity of the task of finding α using known αωm

and ω.

Protocol 3. The encryption

A bit string m of length 	 is encrypted. The public data are an element g ∈ Z(n) and a hash function
h that maps the elements of the operad Z to bit strings of length 	. The secret key is x ∈ Z(m). The
public key is y = xg . . . g ∈ Z(mn).

The encryption begins with a random selection of the session key k ∈ Z(d).

The first part of the ciphertext is the element c1 = kg . . . g ∈ Z(dn). The second part of the ciphertext
is the bit string c2 = m ⊕ h(ky . . . y).

The decryption: m = c2 ⊕ h((xc1 . . . c1)σ), where σ = σ ∗
d,m α, α =

dm
︷ ︸︸ ︷

(n, . . . , n) (see [14]). The security
of this protocol is based on the complexity of the task of finding an element x of the operad according to
the known g and xg . . . g.

Protocol 4. The authentication

Alice’s secret is an element x ∈ Z(n).

(1) Bob picks an element g ∈ Z(m) and sends it to Alice.

(2) Alice computes y = xgn and sends it to Bob.

(3) Bob picks an element k ∈ Z(	) and sends it to Alice.

(4) Finally, Alice computes z = xkngn�, where z ∈ R(n	m) and sends it to Bob.

Verification. Bob knows g, k, y and can compute:

k y . . . y
︸ ︷︷ ︸

�

= k (xgn) . . . (xgn)
︸ ︷︷ ︸

�

= (k x . . . x
︸ ︷︷ ︸

�

)gn�

= ((xk . . . k)σ�,n)gn� = ((xk . . . k)gn�)σ′.

Then Bob compares this element with the received z.

The security of the protocol is based on the complexity of the task of finding element of operad
x ∈ Z(n) using known g ∈ Z(m) and y = xgn.
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4. IMPLEMENTATION AND CRYPTOGRAPHIC SECURITY
In this section, we describe and investigate the cryptographic security and the implementation of

Protocol 1.
Let K be an associative commutative ring or semiring, Z be a commutative operad from Examples 2

and 5, where G = K, Z(n) = Kn.
Let k be a fixed positive integer. Consider an arbitrary suboperad R of operad Z, and determine the

structure of R-algebra on A = Km. We define mappings:
R(n) × An −→ A

ξa1 . . . an =
n

∑

i=1

(ξ)ai = xk
1a1 + · · · + xk

nan,

where ξ = (x1, . . . , xn) ∈ R(n), ai = (a1,i, . . . , am,i), 1 ≤ i ≤ n.
Lemma 1. A is an R-algebra.
Proof. By definition. �

Lemma 2. Let b = (b1, . . . , bm) ∈ A. The equality ξa1 . . . an = b is equivalent to the system of
equations in the ring or semiring K:

⎧

⎪
⎨

⎪
⎩

a1,1x
k
1 + · · · + a1,nxk

n = b1

. . . . . . . . . . . .

am,1x
k
1 + · · · + am,nxk

n = bm

(1)

Proof. By definition. �

Theorem 2. The cryptographic security of Protocol 1 depends on the complexity of solving a
large system of equations of the type (1) over the ring or semiring K. Moreover, it should be
considered only solutions (x1, . . . , xn) ∈ R(n).

Proof. The proof follows from Lemmas 1 and 2. �

Next, consider some examples of rings and semirings.
Example 7.
Let K be a tropical semiring. Recall [11] that the tropical semiring is the semiring which has support

R ∪ {+∞} and operations a ⊕ b = min{a, b} and a ⊗ b = a + b.
The tropical semiring are already used in cryptography (see [8]). There are several works, where it

was introduced and investigated algorithms for solving systems of linear equations over such K (see
[2, 3, 7]). A.P. Davydow in [2] recently proved that the Grigoriev’s algorithm is a non-polynomial time
algorithm, where

t = Ω(n
m
6 log(poly(n

m
6 ))).

Thus, the case of the tropical semiring looks promising.
Example 8.
Let K = Z and A = Z

m. Then (1) is a system of the Diophantine equations. The complexity of
the solutions for the case k = 1 (linear Diophantine equations) was studied in [4, 5, 10]. According to
the following lemma, the Euclidean algorithm gives the polynomial solvability of one linear diophantine
equation.

Lemma 3. A linear diophantine equation with rational coefficients can be solved in polynomial
time [10].

It was shown by M.A. Frumkin in [4] and J. von zur Gathen and M. Sieveking in [5] that also systems
of linear diophantine equations can be solved in polynomial time.

Example 9.
Let K be a finite field and k = 1. Yu.V. Nesterenko considered (see [6]) only the case of the square

sparse matrixes. G.V. Bard considered in [1] the case of GF (2). There is an polynomial-time algorithm
in both cases. However, these cases does not cover all interesting for us systems of linear equations over
finite fields.

Obviously, these three examples do not exhaust the plurality of rings and semirings that should be
explored. Our research will be continued in subsequent publications.

Some results of this paper were announced in [15].
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