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A B S T R A C T

Blood clots form at the site of vascular injury to seal the wound and prevent bleeding. Clots are in tension
as they perform their biological functions and withstand hydrodynamic forces of blood flow, vessel wall
fluctuations, extravascular muscle contraction and other forces. There are several mechanisms that generate
tension in a blood clot, of which the most well-known is the contraction/retraction caused by activated
platelets. Here we show through experiments and modeling that clot tension is generated by the polymerization
of fibrin. Our mathematical model is built on the hypothesis that the shape of fibrin monomers having two-fold
symmetry and off-axis binding sites is ultimately the source of inherent tension in individual fibers and the
clot. As the diameter of a fiber grows during polymerization the fibrin monomers must suffer axial twisting
deformation so that they remain in register to form the half-staggered arrangement characteristic of fibrin
protofibrils. This deformation results in a pre-strain that causes fiber and network tension. Our results for
the pre-strain in single fibrin fibers is in agreement with experiments that measured it by cutting fibers
and measuring their relaxed length. We connect the mechanics of a fiber to that of the network using the
8-chain model of polymer elasticity. By combining this with a continuum model of swellable elastomers
we can compute the evolution of tension in a constrained fibrin gel. The temporal evolution and tensile
stresses predicted by this model are in qualitative agreement with experimental measurements of the inherent
tension of fibrin clots polymerized between two fixed rheometer plates. These experiments also revealed that
increasing thrombin concentration leads to increasing internal tension in the fibrin network. Our model may
be extended to account for other mechanisms that generate pre-strains in individual fibers and cause tension
in three-dimensional proteinaceous polymeric networks.
1. Introduction

Blood clots are formed at the sites of vessel wall injuries to seal or
plug the damage and stem bleeding. Clots result from multiple reactions
that involve blood cells and plasma components, including fibrinogen,
the soluble protein converted enzymatically to insoluble fibrin (Weisel
and Litvinov, 2017). A three-dimensional polymeric fibrin network
comprises the scaffold of a blood clot and, in combination with em-
bedded platelets and red blood cells (Chernysh et al., 2020), largely
determines the clot’s biological and mechanical properties.

To fulfill its biomechanical function and prevent or stop bleeding,
the blood clot and the fibrin scaffold must have certain mechani-
cal resilience to be able to withstand hydrodynamic forces of blood
flow, pulsation of a vessel wall, extravascular muscle contraction, and
more (Litvinov and Weisel, 2017). Among many factors that con-
tribute to the mechanical behavior of fibrin, one of the least studied
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is the physiological tension of the fibrin network generated by at least
two mechanisms. The most apparent and well-studied is the external
traction and compression of fibrin clots driven by activated platelets,
with each individual platelet exerting contractile forces on the order
of tens of nano-Newtons on adjacent fibrin fibers (Kim et al., 2017;
Lam et al., 2011; Pathare et al., 2021; Sun et al., 2022). However,
there is strong evidence that fibrin clots generate inherent (internal
or intrinsic) tension unrelated to platelet contractility or any other ex-
ternal mechanical perturbations. For example, the individual hydrated
fibrin fibers observed in a light microscope are straight, not sinuous,
suggesting that each fiber is under inherent tension (Britton et al.,
2019). Tension of individual fibrin fibers was introduced in Weisel
et al. (1987), and their elasticity has been shown and quantified in
AFM pulling experiments (Liu et al., 2010) and by active flexing or
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stretching a separate fibrin fiber using optical tweezers (Collet et al.,
2005). Finally, the inherent fibrin fiber tension has been established
directly by severing these fibers and watching them retract (Cone et al.,
2020). If a great number of such taut individual fibers form a three-
dimensional network, then the entire network must also be under
tension. From the general theory of polymer mechanics, tension is self-
generated in the polymers that possess some degree of non-uniformity
and thermodynamic instability of the major structural elements (Zhang
et al., 1991; Li et al., 2014). The complex spatial axial and lateral
packing of the fibrin monomers and oligomers dictates their deviation
(stretching) from the relaxed and stable conformational state that
provides a fundamental structural and thermodynamic basis for the
existence of inherent tension of fibrin networks (Torbet et al., 1981;
Caracciolo et al., 2003; Yeromonahos et al., 2010; Portale and Torbet,
2018; Jansen et al., 2020; Weisel et al., 1983; Weisel, 1986).

The inherent tension of fibrin clots has a number of conceivable
biological implications. First, it may comprise a thermodynamic mech-
anism to control the diameter of fibrin fibers, as the lateral aggregation
of protofibrils stops when the protofibril stretching energy surpasses
the energy of bonding (Weisel et al., 1987). Since fiber diameter is
related to network porosity, fiber length, branch point density, etc.,
the inherent tension of fibrin clots may modulate the overall network
structure. Second, the inherent tension in fibrin fibers can affect the rate
of fibrinolysis both at the individual fiber level (Hudson, 2017; Li et al.,
2017a; Cone et al., 2020) and in whole clot (Varjú et al., 2011) because
susceptibility of fibrin to fibrinolytic enzymes depends strongly on the
mechanical tension of the proteinaceous fibrous substrate. In aggregate,
modulation of the structure of a fibrin network along with the tension
of fibers can affect the mechanical and enzymatic stability of entire
blood clots and thrombi that determine the course and outcomes of
various hemostatic disorders (Litvinov and Weisel, 2017; Feller et al.,
2022). Notably, the magnitude of inherent tension in fibrin networks
should be quite variable since it must depend on multiple local and
systemic influences that determine fibrin polymerization, including
physiological and pathological variations in blood composition.

Here, our goal is to construct a mathematical model for the evo-
lution of tension in isotropic fibrin networks by accounting for the
kinetics of the fibrin polymerization reaction that regulates the size and
structure of the fibrin fibers in a network model, accounting for the idea
in Weisel et al. (1987) that monomers make a twisted protofibril, and
the aggregation in register with a 22.5 nm repeat introduces tension.
In the following we first describe experiments for the measurement
of tension in fibrin networks during polymerization and a model for
capturing the evolution of tension in a fibrin gel. We show how tension
develops in a polymerizing fibrin fiber as its diameter increases, then
use this information in a continuum model to predict the evolution of
tension in a constrained fibrin clot.

2. Materials and methods

2.1. Sample preparation

Citrated apheresis platelet poor plasma (PPP) was obtained from
25 de-identified donors from discarded blood bank donations. Donors
were consented in accordance with the University of Pennsylvania
and State University of New York Stony Brook Blood Blank guide-
lines. Individual PPP samples were frozen at −65 ◦C, thawed (only
once), pooled, filtered, and then aliquoted and refrozen at −80 ◦C. The
fibrinogen concentration in the final PPP was 2.7 ± 0.2 mg/mL. For
each testing method, a PPP aliquote was warmed to 37 ◦C and clots
were formed, through the addition of 20 mM calcium chloride and 0.2
U∕mL or 1 U∕mL human thrombin (final concentration, Sigma Aldrich).
Immediately after initiation of clotting, the plasma was used in dynamic
mechanical rheometer testing or optical turbidity testing to follow clot
formation.
2

Fig. 1. Cartoon depicting the experimental setup using a rheometer. Testing apparatus,
including rheometer plates, force sensor, and humidity chamber, are shown in black.
The light purple shape represents the fibrin network material, the purple lines in the
fibrin network represent the isotropic fiber network, and the off-white ovals next to the
clot represent the mineral oil added to prevent sample drying during testing. Platelet
poor plasma (PPP) was activated with 20 mM CaCl2 and 0.2 U∕mL or 1 U∕mL thrombin
and placed between rheometer plates, which leads to a polymerization reaction that
forms a fibrin network. The rheometer plates are held fixed such that a tension in the
network results in pulling on the upper plate. The tensile force on the rheometer plates
generated by the polymerizing fibrin clot is measured as a function of time.

2.2. Mechanical rheometer testing

A Malvern Kinexus Ultra rheometer was used to analyze the in-
herent tensile force generated during fibrin polymerization in clotting
plasma. Plasma samples were activated, mixed, and 960 μL of the
sample was quickly transferred to the surface of the lower horizontal
plate of the rheometer. After the upper plate came into contact with the
activated plasma sample, the sample was surrounded with 300 μL of
mineral oil to prevent drying during the test (see Fig. 1). An oscillation
shear strain test was performed on each plasma clot sample, at 0.001 Hz
and 0.001% shear strain using a 40-mm parallel plate, a 0.70 mm gap
and 2 s sampling rate for 1 h. The rheometer was equipped with
a normal force sensor with a minimum detectable force of 0.001 N
and a resolution of 0.5 mN. The normal/perpendicular force generated
during formation of a plasma clot was measured as the force pushing
(positive) or pulling (negative or tensile force) on the upper plate of
the rheometer as a function of time. Normal force was converted to
normal pressure using the area of the 40-mm diameter upper plate, then
data was shifted to start at zero pascals at the start of the experiment.
Pressure leveled off at ∼1000 s, and was then normalized to zero or to
the unclotted control plasma sample at this point to examine differences
in the tensile pressure generated by each sample after this time point.
At least four replicates were run for each sample.

2.3. Data analysis

To ascertain the inherent tensile force generated during the clot
formation process, the normal pressure measured by the rheometer
must be corrected for some artifacts and adjusted to 0 at time = 0. To
make these corrections, we used unclotted plasma (without thrombin)
as a control, since there will be no force generated. In order to isolate
the changes in normal pressure due to the inherent tension and remove
effects related to surface tension of the liquid phase of the sample, the
average normal pressure values for unclotted plasma were subtracted
from the individual clotted samples. Normal pressure was shifted to 0
for time = 0 and the relative changes in normal pressure we assessed
over the course of time. The normalized pressure was relatively un-
changed until ∼ 1000 s. At this time point, a change in magnitude in
the negative direction was observed, representing the inherent tension
developed as the clot forms. First order differential for each sample
was calculated with GraphPad prism. The point at which the first order
differential first crossed the 𝑥-axis indicated the beginning of decreasing
normal pressure (tension generation) in each sample. The green shaded
region in Fig. 2(a) includes the time points where each sample crossed
the 𝑥-axis first (between 0–1000 s). The second point at which they
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Fig. 2. (a) Average normal pressure for 0.2 U∕mL thrombin (pink, triangles) and 1 U∕mL thrombin samples (teal, circles) profile in plasma samples after activation of clotting.
Green shaded regions on the left indicate the range of time where first order derivatives were negative, indicating decreasing normal pressure. Red shaded regions on the right
indicate where the first order derivative crosses the 𝑥 axis indicating a plateau of normal pressure across each sample. (b) Average optical density measurements of 0.2 U∕mL
thrombin (black, triangles) and 1 U∕mL thrombin (purple, circles) samples. Green and red ranges indicate the same as in (a). (c) Comparison of the slope of normal pressure
in clotting plasma after normalization to unclotted plasma, as negative normal pressure is generated in samples activated with 0.2 U∕mL (pink, left) and 1 U∕mL (teal, right)
thrombin. (d) Comparison of the change in normal pressure in clotting plasma after normalization to unclotted plasma, as negative normal pressure is generated in the samples.
All data are represented as mean ± standard error of the mean unless otherwise noted. Subfigures (c) and (d) show comparison to the unclotted plasma slope and pressure at 0 Pa∕s and
0 Pa respectively. *𝑝 ≤ 0.05, ***𝑝 < 0.001, and lack of significant differences between samples is indicated by no bar above the samples graphed. Analysis was completed using a one sample
𝑡-test relative to a theoretical 0 value, as the samples were normalized to the unclotted control.
crossed the 𝑥-axis indicates when the slope became 0 and normal
pressure plateaued for the samples and no more tension was generated.
The red shaded region in Fig. 2(a) includes the time points where each
sample crossed the 𝑥-axis the second time (between 1800–2700 s). Each
sample was individually analyzed to determine the change in pressure
across this time period as well as the rate of pressure generation during
the period. The absolute pressure generated was calculated by taking
the difference between the beginning pressure values within the initial
no-tension region and the final pressure values in the plateau region.
A linear regression analysis was performed in this region to determine
the rate of force generation.

2.4. Dynamic optical turbidity testing

A Molecular Devices Spectramax Plus plate reader was used to ana-
lyze the dynamic optical density of clotting plasma. Following initiation
of clotting 100 μL plasma samples were transferred to a clear bottom
96-well plate, where surrounding wells were filled with distilled water
to prevent drying of the clots. Turbidity measurements were taken at
405 nm and 37 ◦C every 15 s to track clot formation over the course of
90 min. Four replicates were run for each sample.

2.5. Statistical analyses

All statistical analyses were performed using GraphPad Prism 9.0.
One sample 𝑡-test was used to determine the significance of the slope
of force generation and amount of normal force produced by clotted
3

blood plasma compared to an unclotted control at zero force. All data
are represented as mean ± standard error of the mean unless otherwise
noted. *𝑝 < 0.05, ***𝑝 ≤ 0.01, and lack of significant differences
between samples is indicated by no bar above the samples graphed.

3. Experimental results

The generation of normal (tensile) stress was measured in acti-
vated plasma to determine the inherent tension that is produced by
the fibrin network during the clotting process. The clot formation
kinetics, measured with turbidity, showed that clotting began at near
0 s with thrombin added at 1.0 U∕mL and 600 s with 0.2 U∕mL
thrombin with both clots fully formed near 1000 s (Fig. 2(b)). The
rate of tensile stress generation was higher in 1 U∕mL thrombin sam-
ples (−0.001804 Pa∕s, 𝑝 < 0.001) than 0.2 U∕mL thrombin samples
(−0.001667 Pa∕s) (Fig. 2(c)). The directionality of these slopes indicates
the generation of a negative normal pressure, which corresponds to
the inherent tension of the polymerizing fibrin network. The inherent
tension was determined as the absolute magnitude of this force for
samples normalized to the unclotted plasma. Our results reveal that
clots formed at a higher thrombin concentration (1 U∕mL) generated a
higher inherent tensile force (−5.45 Pa relative to the unclotted plasma
sample, 𝑝 < 0.05) compared to the clots formed with 0.2 U∕mL thrombin
(−2.72 Pa) (Fig. 2(d)).
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Fig. 3. Schematic representations of fibrin fibers. (a) A protofibril constructed from fibrin monomers (Zhmurov et al., 2018), having two-fold axis of symmetry and off-axis binding
sites (Weisel, 1987), depicting the 22.5 nm half-staggered periodicity. Brace indicates one full monomer. (b) A protofibril modeled as a pair of helical rods. Each rod of the
protofibril is comprised of fibrin monomers stacked end to end, twisting around the other rod in a helical fashion. (c) Three helically twisted protofibrils, each formed of the
same structure as (b) but depicted and modeled here as a single rod instead, twisted around each other. Dashed lines emphasize the 22.5 nm vertical striation necessitated to
maintain longitudinal periodicity. (d) The outer shell of a helical fiber modeled as a collection of protofibrils helically twisted around the fiber core (not shown). Each protofibril
is depicted and modeled here as a single rod. All scale bars are 22.5 nm. All black areas of protein densification (Yermolenko et al., 2011) correspond to the DED structures in
the half-staggered packing. All red angular measures represent the pitch angle 𝛼.
4. Theoretical model

Here we give a brief overview of the mathematical model that will
be developed in the following sections, as well as some of the under-
lying motivation. The basis of this mathematical model is that each
fiber making up the fibrin network is under tension, and the tension
increases as the fiber diameter increases due to polymerization. The
existence of tension in fibrin fibers has been demonstrated by cutting
individual fibers and observing their retraction (Cone et al., 2020). The
origin of tension in fibrin fibers may have to do with the spatial geome-
try of monomeric fibrin and oligomeric protofibrils (Weisel et al., 1987;
Weisel, 1987). The protofibrils making up a fibrin fiber are twisted into
a helical shape in their stress-free state due to the spatial arrangement
of the symmetrical rod-like fibrin monomers that polymerize axially
and laterally (see Figs. 3(a) and 3(b)). When the protofibrils come
together to form a fiber, the molecules making up a protofibril must
be in register (Weisel et al., 1987; Medved et al., 1990), or properly
aligned perpendicularly, in order for the linkages between them to form
properly (see Figs. 3(c) and 3(d)). However, as the diameter of the fiber
increases, the stress-free helix must deform in order for the molecules
to be in register (see Fig. 3(d)), leading to some geometric frustration
from the opposing forces (Grason, 2013; Atkinson et al., 2021). This
causes strain in the helical protofibrils and induces stress. This stress is
ultimately responsible for the tension in a fibrin fiber.

No models exist for quantifying the tension in a fibrin fiber, let alone
as a function of its diameter. Here we build such a model by analyzing
the deformation of helical protofibrils and considering the change in
radius and pitch of a helical rod. The evolution of the diameter of
a fiber is given by a system of ordinary differential equations, based
on Weisel and Nagaswami (1992), which track the concentrations of
various species as the polymerization reaction proceeds. The helical
rod model for a fibrin fiber then outputs the tension in an individual
constrained fiber as a function of its (evolving) diameter. We show how
4

a single fiber under tension relaxes when the constraint is removed;
this mimics recent experiments in which individual fibers are cut and
allowed to relax to determine their pre-strain (Cone et al., 2020). Next,
we connect the mechanics of a single fiber to the constitutive response
of a network using the 8-chain model of polymer elasticity (Arruda and
Boyce, 1993; Qi et al., 2006; Brown et al., 2009; Purohit et al., 2011).
We then use a continuum mechanical model of swellable elastomers
(Chester and Anand, 2010) to predict the network tension as a function
of time in a constrained fibrin gel. Initially we let the network solid
volume fraction increase while holding constant the number of fibers
per unit reference volume, and then we hold constant the network solid
volume fraction to better mimic experiments.

4.1. Fibrin network polymerization model

Based on the paper of Weisel and Nagaswami (1992), the set of
differential equations modeling the polymerization of a fibrin network,
beginning with a concentration of fibrinogen, is
𝑑[𝑓𝐴]
𝑑𝑡

= −𝑘𝐴[𝑓𝐴] (1)
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⎛
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𝑑[𝑐𝑓𝑟 ]
𝑑𝑡

= 2𝑘𝑓𝑖[𝑓𝑛][𝑐𝑓𝑛 ] + 𝑘𝑓𝑔[𝑓𝑟][𝑐𝑓𝑛 ] + 𝑘𝑓𝐴[𝑓𝑟][𝑓𝑟] (8)

𝑚 =
[𝑓 𝑡𝑜𝑡

𝑛 ]
[𝑓𝑟]

, (9)

here 𝑓𝐴 represents fibrinogen, 𝑓1 represents fibrin monomers, 𝑓𝑖 rep-
resent fibrin oligomers comprised of 𝑖 monomers, 𝑓𝑛 represent protofib-
rils, 𝑓𝑟 represent fibrin fibers, [𝑓 𝑡𝑜𝑡

𝑛 ] represents total protofibrils in
fibers, [𝑐𝑓𝑛 ] represents total fibrin (monomers) in protofibrils, [𝑐𝑓𝑟 ] rep-
resents total fibrin in fibers, and, 𝑚 is the average number of protofibrils
per fiber cross-sectional area (see Appendix A).

The parameters in this system are as follows:

• 𝑙𝑎𝑔𝑔 + 1, the minimum length for protofibrils to be capable
of lateral aggregation: Since the length of protofibrils is about
500 nm (Weisel and Litvinov, 2017; Chernysh et al., 2011) and
the half-staggered length of monomers is about 22.5 nm (Weisel
et al., 1987; Weisel and Litvinov, 2017; Chernysh et al., 2011;
Erickson and Fowler, 1983; Yermolenko et al., 2011), and thus the
number of fibrin monomers in protofibrils are about 20 (Weisel
and Litvinov, 2017), 𝑙𝑎𝑔𝑔 = 20 is chosen.

• 𝑓𝐴0
, the initial concentration of fibrin(ogen): 𝑓𝐴0

= 2.8229 mg∕mL
is chosen to match the initial fibrin(ogen) concentration value
of 5 × 1018 molecules/L of Weisel and Nagaswami (1992) (the
experimental concentration used in Section 2.1 was 2.7 mg∕mL,
but as can be seen from Fig. 5(a), this difference does not have a
large effect on the results).

• 𝑘𝐴, the rate of fibrinopeptide A cleavage to convert fibrinogen to
fibrin monomers: 𝑘𝐴 = 1 s−1.

• 𝑘𝑝𝑖, the rate of association of fibrin monomers to yield small
oligomers and initiate protofibril formation: 𝑘𝑝𝑖 = 6.0 × 10−20

L/molecule s.
• 𝑘𝑝𝑔 , the rate of protofibril growth in length by longitudinal as-

sociation with monomers or shorter oligomers: 𝑘𝑝𝑔 = 1.4 ×
10−17 L/molecule s.

• 𝑘𝑓𝑖, the rate of protofibril lateral aggregation to initiate a fiber:
𝑘𝑓𝑖 = 1.0 × 10−20 L/molecule s.

• 𝑘𝑓𝑔 , the rate of fiber growth by association with additional
protofibrils: 𝑘𝑓𝑔 = 2.0 × 10−16 L/molecule s.

• 𝑘𝑓𝐴, the rate of lateral aggregation of fibers: the value 𝑘𝑓𝐴 =
1.0 × 10−19 L/molecule s is chosen to be in a similar range as the
other rate constants.

The rate constants were selected to be similarly valued to those used
by Weisel and Nagaswami (1992), and the conditions 𝑘𝑝𝑖 < 𝑘𝑝𝑔 and
𝑓𝑖 < 𝑘𝑓𝑔 in Weisel and Nagaswami (1992) were ensured.

The output parameter that is most important for this context is 𝑚,
he average number of protofibrils per fiber cross-sectional area, since
hat is the one from which the radius of the fiber is estimated (see
ection 4.2). For the parameter choice given above, the evolution of
over time can be seen in Fig. 4.
To study the effect of each parameter on the evolution of 𝑚 over

ime, we ran the calculations for a 20% change in each parameter and
lotted the results together (see Fig. 5). As can be seen in Fig. 5(a),
5

20% change in the initial concentration of fibrin(ogen) affects the
Fig. 4. The average number of protofibrils per fiber cross-section 𝑚 over time 𝑡,
given the input parameters 𝑓𝐴0

= 2.8229 mg∕mL, 𝑙𝑎𝑔𝑔 = 20, 𝑘𝐴 = 1 s−1, 𝑘𝑝𝑖 =
6.0 × 10−20 L/molecule s, 𝑘𝑝𝑔 = 1.4 × 10−17 L/molecule s, 𝑘𝑓𝑖 = 1.0 × 10−20 L/molecule s,
𝑘𝑓𝑔 = 2.0 × 10−16 L/molecule s, and 𝑘𝑓𝐴 = 1.0 × 10−19 L/molecule s.

lope of the increase in thickness: a larger 𝑓𝐴0
causes a greater slope.

imilarly, as can be seen in Fig. 5(b), 𝑙𝑎𝑔𝑔 also affects the slope of the
ncrease in thickness, but in the opposite way: a larger 𝑙𝑎𝑔𝑔 results in

smaller slope. In Fig. 5(c), it can be seen that small changes in 𝑘𝐴
ave only a very small effect similar to 𝑙𝑎𝑔𝑔 . Fig. 5(d) shows that small
hanges in 𝑘𝑝𝑖 have a similar effect as 𝑓𝐴0

, whereas Fig. 5(e) depicts that
mall changes in 𝑘𝑝𝑔 have a similar effect as 𝑙𝑎𝑔𝑔 . Fig. 5(f) demonstrates
hat small changes in 𝑘𝑓𝑖 result in changes in the value of the asymp-

totic limit plateau region of the average number of protofibrils per fiber
𝑚: smaller values of 𝑘𝑓𝑖 yield larger values of the limit. In contrast,
Fig. 5(g) shows that 𝑘𝑓𝑔 has the opposite effect: smaller values of 𝑘𝑓𝑔
yield smaller values of the limit. Finally, Fig. 5(h) depicts that 𝑘𝑓𝐴 has
a small affect on the slope of the asymptotic limit plateau region of
𝑚: larger values of 𝑘𝑓𝐴 result in larger slopes in the asymptotic limit
plateau region of 𝑚.

As noted above, the rate constants 𝑘𝑓𝑖 and 𝑘𝑓𝑔 control the value
of the asymptotic limit plateau region. These rate constants are likely
related to the energy barrier that must be surmounted by protofibrils
laterally attaching to each other and to existing fibers. Protofibrils
must deform in order for their bonding sites to align with those on
the perimeter of a fiber, and the protofibrils must deform more as
the fiber radius increases (as shown later). Once the energy required
to deform the protofibril to align its binding sites exceeds the energy
binding the protofibril to the fiber, protofibrils will no longer laterally
aggregate onto the fiber. As these binding energies are likely related to
the rate constant 𝑘𝑓𝑔 for growing fibers through lateral aggregation of
protofibrils, the rate of lateral aggregation of protofibrils onto a fiber
will decrease as the fiber radius increases, and the rate of increase of
the number of protofibrils per fiber cross-section will also be reduced.
Thus, in theory, the rate constant 𝑘𝑓𝑔 should decrease as the fiber radius
increases, but we leave it as a constant here because our main focus is
on the development of tension in a polymerizing fibrin gel.

4.2. Fiber radius as a function of fibrin polymerization time

If the radius of the region occupied by a single protofibril is given
as 𝑟𝑚, then the cross-sectional area occupied by a single protofibril is

𝑎0 = 𝜋𝑟2𝑚. (10)

Similarly, if the radius of a fiber is 𝑅, then the cross-sectional area of
a fiber is given by

𝐴 = 𝜋𝑅2. (11)
𝑓𝑖𝑏𝑒𝑟
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Fig. 5. Parameter study of the input parameters in the fiber formation model. Each parameter was both increased and decreased by 20%. (a) Variation of initial concentration
f fibrinogen 𝑓𝐴0

( 𝑚𝑔
𝑚𝐿

). (b) Variation of the minimum length for protofibrils to be capable of lateral aggregation 𝑙𝑎𝑔𝑔 + 1 (number of monomers). (c) Variation of the rate of
fibrinopeptide A cleavage to convert fibrinogen to fibrin monomers 𝑘𝐴 ( 1

s
). (d) Variation of the rate of association of fibrin monomers to yield small oligomers and initiate

rotofibril formation 𝑘𝑝𝑖 ( L
molecule s ). (e) Variation of the rate of protofibril growth in length by association with oligomers 𝑘𝑝𝑔 ( L

molecule s ). (f) Variation of the rate of protofibril
lateral aggregation to initiate a fiber 𝑘𝑓𝑖 ( L

molecule s ). (g) Variation of the rate of fiber growth in diameter by association with additional protofibrils 𝑘𝑓𝑔 ( L
molecule s ). (h) Variation

of the rate of lateral aggregation of fibers 𝑘𝑓𝐴 ( L
molecule s ).
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ince the average number of protofibrils per fiber is given above as 𝑚,

𝑓𝑖𝑏𝑒𝑟 = 𝑎0 𝑚, (12)

hich gives us

𝑅2 = 𝜋𝑟2𝑚 𝑚, (13)

r

(𝑡) = 𝑟𝑚
√

𝑚(𝑡). (14)

This is similar to the expression derived in Palmer and Boyce (2008).
This derivation assumes a uniform density of protofibrils per fiber
cross-sectional area. The simplicity of this assumption enables concrete
calculations, but there is evidence of non-uniform protofibril density
(Yeromonahos et al., 2010; Yermolenko et al., 2011; Yang et al., 2000;
Guthold et al., 2004; Li et al., 2016, 2017b) in the fiber cross-section.
See Appendix B for a quantitative discussion of the ramifications of
non-uniform protofibril density. The polymerization parameters (see
Section 4.1) which most directly control the plateau value of 𝑅(𝑡) are
𝑓𝑖 and 𝑘𝑓𝑔 .

.3. Tensile force in a fiber

It has been observed (Weisel et al., 1987; Medved et al., 1990;
hmurov et al., 2016, 2018) that protofibrils and fibrin fibers are
6

omprised of smaller longitudinal units helically twisted around a
entral stem. Thus, the theory developed in Appendix C is applicable
o the components of both fibrin fibers and protofibrils. For a helix of
adius 𝑟 and pitch 𝑝, the pitch angle is given by

tan 𝛼 =
|

|

|

|

𝜏
𝜅
|

|

|

|

=
𝑝

2𝜋𝑟
(15)

here 𝜏 is the torsion of and 𝜅 is the curvature of the helical curve.
dditionally, since the adjacent helical protofibrils must maintain reg-

ster required for the 22.5 nm half-staggered longitudinal band pattern
(Weisel et al., 1987; Weisel and Litvinov, 2017; Chernysh et al., 2011),
the pitch angle must remain constant through the cross-section of the
fiber at different values of the radius 𝑟. As 𝑟 evolves in time the pitch
angle also evolves. For example, the pitch angle 𝛼 = 80.8◦ calculated
from the measured quantities 𝑟 = 50 nm and 𝑝 = 1930 nm for fibrin
fibers (Weisel et al., 1987). The pitch angle 𝛼 = 85.5◦ calculated from
he extracted quantities 𝑟 = 5 nm and 𝑝 = 400 nm from simulations
f equilibrated molecular structures (Zhmurov et al., 2018). Assuming
lso that there is no twisting moment, so that 𝜅3 = 𝜅03, the magnitude

of the force in a protofibril can be written as (see Appendix C)

𝑛(𝑟) =
|

|

|

|

|

−𝐾𝑏 sin 𝛼
1
𝑟

(

cos2 𝛼
𝑟

− 𝜅0

)

|

|

|

|

|

, (16)

where 𝐾𝑏 is a bending modulus and 𝜅0 is a spontaneous curvature, both

material properties of the helical protofibrils. In a tension-free state



Journal of the Mechanical Behavior of Biomedical Materials 133 (2022) 105328R. Spiewak et al.

b
r
n
t
o
c
c

∫

w

𝑎

i
t

∫

w

c

T

𝐹

I

𝜆

a
s
a
f
𝑅
e
o
2
v
o
c

c
f
b
t
c
s
2
o
t
𝐾
c
b
t
e
2
r

f
e
e
i
p

w
H
a
l
b
o
o

⟨

with pitch angle 𝛼𝑠 (for example, in a hypothetical free-floating twisted
ut unstretched fiber) the total force on the fiber is 𝐹 = 0. Since the
adial distribution of protofibrils is disordered (Weisel et al., 1987), the
umber density of protofibrils per unit cross-sectional area is assumed
o be constant (see Appendix B for a discussion of the ramifications
f a non-uniform density) and the fiber cross-section is taken as being
ircular of radius 𝑅. Then, the force balance in the tension-free fiber
ross-section is
𝑅

𝑟𝑚

2𝜋𝑟
𝑎0

𝑛(𝑟)𝑑𝑟 = 0, (17)

here again

0 = 𝜋𝑟2𝑚 (18)

s the area occupied by one protofibril. Since 𝐾𝑏, 𝑎0, and 𝛼𝑠 are constant,
he integral simplifies to

𝑅

𝑟𝑚

cos2 𝛼𝑠
𝑟

𝑑𝑟 = ∫

𝑅

𝑟𝑚
𝜅0𝑑𝑟, (19)

hich gives

os2 𝛼𝑠 =
𝜅0(𝑅 − 𝑟𝑚)

ln
(

𝑅
𝑟𝑚

) . (20)

This sets the pitch angle of the fiber as a function of the radius 𝑅 in a
stress-free state.

For a fiber of pitch angle 𝛼𝑒 ≠ 𝛼𝑠 both twisted and stretched to
connect to a network, the total force on the fiber is 𝐹 ≠ 0. In this case,
the force balance for the cross-section of a fiber under tension is

∫

𝑅

𝑟𝑚

2𝜋𝑟
𝑎0

𝑛(𝑟)𝑑𝑟 = 𝐹 . (21)

his time, the solution of the integral for the force on the fiber is

= 2𝜋
𝑎0

𝐾𝑏 sin 𝛼𝑒

(

𝜅0(𝑅 − 𝑟𝑚) − cos2 𝛼𝑒 ln
(

𝑅
𝑟𝑚

))

. (22)

f we define

𝑒 =
tan 𝛼𝑒
tan 𝛼𝑠

(23)

s the elastic stretch of the fiber between the twisted but unstretched
tate with pitch angle 𝛼𝑠 and the twisted and stretched state with pitch
ngle 𝛼𝑒, then the force on the fiber Eq. (22) can be considered as a
unction of 𝜆𝑒 and 𝛼𝑠(𝑅), where 𝛼𝑠(𝑅) is known from Eq. (20), and
(𝑡) from Eq. (14) can be calculated from the fiber polymerization
quations in Section 4.1. The result from Eq. (22) for different values
f 𝑅, in line with previously reported range of fibrin fiber radii of
5 − 115 nm (Tutwiler et al., 2020), are shown in Fig. 6 for parameter
alues discussed below. Note that 𝐹 = 0 at 𝜆𝑒 = 1 for all values
f 𝑅. This will be useful when we define a stress-free intermediate
onfiguration in the continuum model (see Section 4.5).

The parameters in Eq. (22) are as follows: 𝑎0 = 𝜋𝑟2𝑚, the area of a cir-
ular region of radius 𝑟𝑚 occupied by one protofibril (plus surrounding
luid); 𝐾𝑏, the bending modulus of the fiber; 𝜆𝑒, the stretch of the fiber
etween the twisted but unstretched state with pitch angle 𝛼𝑠 and the
wisted and stretched state with pitch angle 𝛼𝑒; and 𝜅0, the spontaneous
urvature in the stress-free state. The radius of the area occupied by a
ingle protofibril is known to be 𝑟𝑚 = 6.5 nm (Zhmurov et al., 2016,
018; Jansen et al., 2020). With an estimate of the persistence length
f protofibrils of 𝐿𝑝 = 400 nm (Zhmurov et al., 2018) and a room
emperature of 𝑇 = 290 K, the bending modulus can be estimated as
𝑏 = 𝑘𝐵𝑇𝐿𝑝 ≈ 1600 pN nm2, where 𝑘𝐵 is the Boltzmann constant. 𝜅0

an be estimated in two ways: the first way utilizes the relationship
etween curvature and the radius and pitch of a helix Eq. (C.52), and
he extracted quantities 𝑟0 = 5 nm and 𝑝0 = 400 nm from simulations of
quilibrated molecular structures of free protofibrils (Zhmurov et al.,
018), which gives a value 𝜅0 ≈ 1.226 × 10−3 nm−1; the second way

𝑝 , and takes the average value of 𝜅
7

earranges Eq. (20), uses tan 𝛼𝑠 = 2𝜋𝑅 0 𝐸
Fig. 6. Tensile force 𝐹 vs. stretch 𝜆𝑒 in an individual fiber for different fiber radii.
Thicker fibers develop higher tensile forces.

Fig. 7. Tensile force 𝐹 in individual fibers vs. time 𝑡 in polymerization for the values
𝑟𝑚 = 6.5 nm, 𝐾𝑏 = 1600 pN nm2, 𝜆𝑒 = 1.501, and 𝜅0 = 1.23 × 10−3 nm−1.

or the values of 𝑅 = 50 nm and the range 𝑝 = 1930±280 nm from Weisel
t al. (1987), which gives a value ⟨𝜅0⟩ ≈ 1.235 × 10−3 nm−1. These two
stimates are in excellent agreement, so the value 𝜅0 = 1.23×10−3 nm−1

s chosen. Using these values, the tensile force 𝐹 in a fiber vs. time 𝑡 in
olymerization can be seen in Fig. 7 with 𝜆𝑒 = 1.501 held fixed.

Fig. 7 shows that the force in a fiber is on the order of a few pN
hile the scale of thermal energy 𝑘𝐵𝑇 at 𝑇 = 300 K is 4.1 pN nm.
owever, thermal fluctuations of the fibers turn out to be negligible,
s can be seen from the following calculation. Thermal fluctuations are
argest at the center of a fiber fixed at both ends. With hinged–hinged
oundary conditions and taking the origin of coordinates as the center
f the fiber, the thermal fluctuations can be calculated from eqn. (20)
f Purohit et al. (2008):

𝑑2
⟩

=
2𝑘𝐵𝑇
𝐹𝐿

⎡

⎢

⎢

⎢

⎣

𝐿2

4
− 𝐿

√

𝐾𝑏
𝐹

sinh2
(

𝐿
2

√

𝐹
𝐾𝑏

)

sinh
(

𝐿
√

𝐹
𝐾𝑏

)

⎤

⎥

⎥

⎥

⎦

. (24)

Suppose the length of the fiber is taken as 𝐿 = 1 μm and the radius
is 𝑅 = 75 nm. The Young’s modulus of a fiber can be approximated as

= 15 MPa (Collet et al., 2005) (note that this is different from the
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Young’s modulus estimated in Section 5 where important factors in the
modulus, such as fiber cross-linking, the packing density of protofibrils
in fibers, all lateral forces, and the long and largely unstructured 𝛼𝐶
regions, are neglected). Then, the bending modulus of the fiber is
𝐾𝑏 = 𝐸𝐼 , with 𝐼 = 𝜋

4 𝑟
4 for a cylindrical cross-section. There will be

more fluctuations if the fiber is not as taut, so it is logical to use a
force on the lower end, 𝐹 = 1 pN. Doing so, the thermal fluctuations
are

√

⟨

𝑑2
⟩

≈ 0.672 nm. Therefore, thermal fluctuations here are not so
ignificant. This is consistent with the relatively straight fibers seen in
onfocal images of clots (Litvinov and Weisel, 2017).

.4. Kinematics of fiber relaxation after transverse cutting

According to the theory presented in Section 4.3, a fiber of length
in a network will relax to an equilibrium length 𝑙∕𝜆𝑒 when cut

ransversely. This assertion can be confirmed by solving for the length
f a fiber over time as it relaxes. Here, the fiber will be modeled as
rod relaxing through a fluid. Similar to Raj and Purohit (2011), the

inematics over time t are developed for a rod-like structure of length
in one spatial dimension characterized by the reference configuration
ariable 𝜍. All relevant vectors have the same direction along the length
f the fiber from 𝜍 = 0 to 𝑙, so they will be treated as scalars with unit
ector direction along the length of the fiber. The fiber is assumed to be
oving in a fluid, which itself is flowing with velocity 𝑣, which causes
drag force. Thus, the spatial position of a material point 𝜍 at time t

s 𝑧(t, 𝜍), the velocity of the spatial point is 𝜕𝑧
𝜕t

, and the stretch

=
|

|

|

|

𝜕𝑧
𝜕𝜍

|

|

|

|

= tan 𝛼
tan 𝛼𝑒

(25)

depends on both position and time. Here 𝛼(𝜍, t) is the current pitch
angle and we have chosen the reference state to be the one with
uniform stretch 𝜆𝑒 everywhere. The balance of linear momentum for

segment of the fiber in this reference configuration can be written

𝑑
𝑑t ∫

𝜍2

𝜍1
𝜌 𝜕𝑧
𝜕t

𝑑𝜍 = 𝐹 (t, 𝜍2) − 𝐹 (t, 𝜍1) + ∫

𝜍2

𝜍1
𝑏(t, 𝜍)𝑑𝜍, (26)

where the linear density 𝜌 is mass per unit length of the fiber, 𝐹 =
(t, 𝜍) is the force at time t acting on material point 𝜍, and 𝑏 = 𝑏(t, 𝜍) is a

distributed load per unit length at 𝜍. Here, the inertia force is negligible,
so 𝜌 = 0. The distributed body force

𝑏(t, 𝜍) = −𝑑𝑤

(

𝜕𝑧(t, 𝜍)
𝜕t

− 𝑣
)

(27)

here 𝑑𝑤 is the effective drag coefficient caused by the drag force
xerted on the fiber by the surrounding fluid. The effective drag co-
fficient 𝑑𝑤 is estimated using results proposed by Brennen and Winet
1977) for thin bodies in flow with low Reynolds’ number. These results
ake advantage of thinness to make simplifications to approximate
olutions for the flow around these bodies, and superimpose funda-
ental singularities around the body to solve for complex flows. Exact

olutions can be obtained for mathematically simple bodies in mathe-
atically simple flows. Their expression for the axial drag coefficient

s

𝑤 =
2𝜋𝜇

ln
(

𝑙
𝑅

)

+ 𝑐
, (28)

where 𝜇 is the fluid viscosity, 𝑙 is the length of the body, 𝑅 is the radius
of gyration of the body, and 𝑐 depends on the shape of the body. For a
uniform cylinder,

𝑐 = ln 2 − 3
2
. (29)

s such, the linear momentum equation becomes

(t, 𝜍2) − 𝐹 (t, 𝜍1) −
𝜍2
𝑑𝑤

(

𝜕𝑧(t, 𝜍)
− 𝑣

)

𝑑𝜍, (30)
8

∫𝜍1 𝜕t
which can be localized to
𝜕𝐹 (t, 𝜍)

𝜕𝜍
= 𝑑𝑤

(

𝜕𝑧(t, 𝜍)
𝜕t

− 𝑣
)

(31)

ince there are no discontinuities. In this case, the fluid is not flowing,
o 𝑣 = 0. Therefore, the localized balance of linear momentum becomes

𝜕𝐹 (t, 𝜍)
𝜕𝜍

= 𝑑𝑤

(

𝜕𝑧(t, 𝜍)
𝜕t

)

. (32)

e take the constitutive law for the force 𝐹 to be the same as in
q. (22),

(t, 𝜍) = 2𝜋
𝑎0

𝐾𝑏 sin 𝛼
(

𝜅0(𝑅 − 𝑟𝑚) − ln
(

𝑅
𝑟𝑚

)

cos2 𝛼
)

, (33)

with

tan 𝛼 = 𝜕𝑧
𝜕𝜍

tan 𝛼𝑒. (34)

For the fiber in question, one end is assumed fixed and the free end
has no force. Therefore, the boundary conditions are

𝑧(t, 𝜍 = 0) = 0, (35)

𝐹 (t, 𝜍 = 𝑙) = 0. (36)

The initial condition at time t = 0+ is that 𝑧(𝜍) = 𝜍 everywhere
xcept very close to the end which is severed. At the severed end the
ension instantaneously goes to zero. Since we integrate the PDE for the
elaxation numerically by a finite difference method we give the initial
ondition in discrete form as:

(t = 0, 𝜍) =

{

𝜍, 0 ≤ 𝜍 ≤ 0.99𝑙,
tan 𝛼𝑠
tan 𝛼𝑒

(𝜍 − 0.99𝑙) + 0.99𝑙, 0.99𝑙 < 𝜍 ≤ 𝑙,
(37)

where the last (100th) element is assumed to be at zero force.
Eq. (32) can be solved using a finite difference method. Eq. (32) is

discretized for numerical calculation as
𝐹𝑖,𝑗+ 1

2
− 𝐹𝑖,𝑗− 1

2

𝛥𝜍
= 𝑑𝑤

𝑧𝑖+1,𝑗 − 𝑧𝑖,𝑗
𝛥t

, (38)

where 𝑗 denotes the 𝑗th node and 𝑖 denotes the 𝑖th time step, 𝛥𝜍 is the
element length, and 𝛥t is the time step. From this, the position of the
fiber at the next time increment can be calculated by

𝑧𝑖+1,𝑗 =
𝐹𝑖,𝑗+ 1

2
− 𝐹𝑖,𝑗− 1

2

𝛥𝜍
𝛥t
𝑑𝑤

+ 𝑧𝑖,𝑗 . (39)

he condition

t ≤
𝑑𝑤
2𝑘𝑎

(𝛥𝜍)2, (40)

with the largest slope of the force-stretch relation curve

𝑘𝑎 =
2𝜋
𝑎0

𝐾𝑏 tan 𝛼𝑒 cos3 𝛼𝑠

(

𝜅0(𝑅 − 𝑟𝑚) + (1 + sin2 𝛼𝑠) ln
(

𝑅
𝑟𝑚

))

, (41)

must be satisfied to ensure stability of the method.
The inputs to this partial differential equation are as follows: the

fiber radius, 𝑅; the pitch angle of the fiber in the stress-free state, 𝛼𝑠; the
pitch angle of the fiber in the state in which it is twisted, stretched, and
connected to the network, 𝛼𝑒; the fluid viscosity, 𝜇; and the length of the
fiber 𝑙 when it is connected to the network. The fiber radius 𝑅 is chosen
from the final value calculated from the polymerization over time 𝑡,
Eq. (14), which is in line with our previously reported range of fibrin
fiber radii of 25−115 nm (Tutwiler et al., 2020). The pitch angle in the
stress-free state 𝛼𝑠 is calculated as in Eq. (20), and the pitch angle of the
fiber 𝛼𝑒 in its connected state is computed from Eq. (23) with the fixed
value 𝜆𝑒 = 1.501 used above in Section 4.3. Since the fluid in which the
rod resides predominantly behaves like water, 𝜇 = 1.002 × 10−3 Pa s,
the fluid viscosity of water. The probability density function of the
fiber lengths 𝑃 (𝑙) in a network is a log-normal distribution function
of 𝑙 with parameters 𝜇 = 0.53 and 𝜎 = 0.78, as found in Kim et al.
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Fig. 8. Length 𝑧(t, 𝜍 = 𝑙) of the fiber relaxing over time t for different initial lengths 𝑙 and different stretch 𝜆𝑒 values. (a) Length 𝑧(t, 𝜍 = 𝑙) of the fiber relaxing over time t, with
𝑅 = 78 nm, tan 𝛼𝑠 = 5.22, tan 𝛼𝑒 = 7.84, 𝜆𝑒 = 1.501, and the initial length values 𝑙 = 0.5 μm, 𝑙 = 0.75 μm, and 𝑙 = 1.0 μm. Inset: the same curves with 𝑦-axis normalized by the initial
engths of the fibers 𝑧(t = 0, 𝜍 = 𝑙). For 𝜆𝑒 = 1.501, the fibers relax to the lengths 0.34 μm, 0.50 μm, and 0.67 μm, respectively, from Eq. (32), in excellent agreement with the lengths
∕𝜆𝑒 = 0.33 μm, 𝑙∕𝜆𝑒 = 0.50 μm, and 𝑙∕𝜆𝑒 = 0.67 μm from the theory proposed in Section 4.3. (b) Length 𝑧(t, 𝜍 = 𝑙) of the fiber relaxing over time t for different stretch 𝜆𝑒 values,
ith 𝑅 = 78 nm, tan 𝛼𝑠 = 5.22, 𝑙 = 1.0 μm, and the stretch and pitch angle values 𝜆𝑒 = 1.2 and tan 𝛼𝑒 = 6.27, 𝜆𝑒 = 1.501 and tan 𝛼𝑒 = 7.84, and 𝜆𝑒 = 1.8 and tan 𝛼𝑒 = 9.40..
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Table 1
Relaxation times t𝑓 and lengths, both calculated from Eq. (32) and from 𝑙∕𝜆𝑒 from the
theory proposed in Section 4.3, for different initial lengths 𝑧(t = 0, 𝜍 = 𝑙) = 𝑙. Relaxation
time t𝑓 was taken as the amount of time required to reach the expected length 𝑙∕𝜆𝑒±1%
from the theory proposed in Section 4.3.
𝑧(t = 0, 𝜍 = 𝑙) = 𝑙 t𝑓 𝑧(t = t𝑓 , 𝜍 = 𝑙) 𝑙

𝜆𝑒
𝐿 = 𝑙

𝜆𝑒𝜆𝑠

0.5 μm 0.12 ms 0.34 μm 0.33 μm 0.81 μm
0.75 μm 0.23 ms 0.50 μm 0.50 μm 1.22 μm
1.0 μm 0.34 ms 0.67 μm 0.67 μm 1.62 μm
1.5 μm 0.62 ms 1.01 μm 1.00 μm 2.44 μm
2.0 μm 0.98 ms 1.35 μm 1.33 μm 3.25 μm

(2014). The most probable value is 𝑙 = 0.9 μm, with a likely range of
about 0.5 μm ≤ 𝑙 ≤ 2 μm (see also Appendix D). Fig. 8 depicts the length
(t, 𝜍 = 𝑙) of the fiber relaxing over time t, with 𝑅 = 78 nm, tan 𝛼𝑠 = 5.22,
tan 𝛼𝑒 = 7.84, 𝜆𝑒 = 1.501, and 𝑙 = 0.5 μm. For 𝜆𝑒 = 1.501, the fiber
elaxes to the length 0.34 μm in time t𝑓 = 0.12 ms from Eq. (32), in
xcellent agreement with the length 𝑙∕𝜆𝑒 = 0.33 μm from the theory
roposed in Section 4.3. Relaxation time t𝑓 was taken as the amount
f time required to reach the expected length 𝑙∕𝜆𝑒±1% from the theory
roposed in Section 4.3. Relaxation times and lengths, both calculated
rom Eq. (32) and from 𝑙∕𝜆𝑒 from the theory proposed in Section 4.3,
or different initial lengths 𝑙 are presented in table Table 1.

Studies such as Hudson et al. (2013) (specifically as interpreted
y Cone et al. (2020)) demonstrate that fibrin fibers recoil in a
imescale on the order of milliseconds or even submilliseconds. The
elaxation times t𝑓 given by the theory developed here agree with
he millisecond and submillisecond recoil times presented by Hudson
t al. (2013). Additionally, recent works of Cone et al. (2020) have
lso measured lengths of individual fibers from fibrin networks prior
o cleavage and the subsequent fragments, and calculated the average
restrain value as ⟨𝜀⟩ = 23 ± 11%. The prestrain from the model
resented here can be calculated as

= 1 − 1
𝜆𝑒

. (42)

ith the value of 𝜆𝑒 = 1.501 calculated from the mechanisms in Sec-
ion 4.5, the prestrain is 𝜀 = 33%. This value is in excellent agreement
ith the prestrain measured by Cone et al. (2020). This suggests that
ur assumption that 𝜆 ≈ 1.5 is reasonable.
9

𝑒

.5. Continuum model of fibrin gel

Consider a hypothetical free fibrin fiber polymerizing in space,
eginning as a string of length 𝐿 of protofibrils in this initial config-
ration. As it is not attached to any other fibers, such an imaginary
iber would not be constrained by outside agents (note that an actual
ibrin fiber would polymerize attached to other fibers in a network
nd would thus be under tension). As polymerization of this imagi-
ary fiber proceeds, protofibrils aggregate laterally around the initial
rotofibril. If the fiber is not constrained in any way, the length of the
iber will decrease as the radius increases, as outer protofibrils stretch
nd protofibrils near the center contract in order for the protofibrils
o maintain register required for the 22.5 nm half-staggered pattern
Weisel et al., 1987; Weisel and Litvinov, 2017; Chernysh et al., 2011;
eisel, 1986). Let us assume that the stretch of this fiber (with respect

o the initial configuration of length 𝐿) is

𝑠(𝑡) ≤ 1, (43)

here 𝑡 is the elapsed time since the start of polymerization (see
ection 4.1). If there was an unconstrained isotropic network of such
ibers which we describe as a continuum then this network will shrink
ompared to its configuration at 𝑡 = 0 and the deformation gradient
ill be given by:

𝑠(𝑡) = 𝜆𝑠(𝑡)𝐈. (44)

ollowing the framework developed in Chester and Anand (2010) we
ill call this state of the continuum as an intermediate stress-free

onfiguration. In this state, the length of the fibers is 𝜆𝑠𝐿, and the
ibers are twisted helically but are not under tension. Imagine next
hat the network was actually formed between two rheometer plates
hose normals are in the 𝑧-direction. If the distance between the plates

s not allowed to change then the network is constrained and it will
ull on the plates as the fiber diameter increases. Accordingly, there
s a force along the 𝐞𝑧 direction, and there are zero forces in the 𝐞𝑥
nd 𝐞𝑦 directions. Thus, due to this constraint, the fibers will be in a
wisted and stretched state and the continuum representing the network
as stretches 𝜆𝑒𝑥(𝑡), 𝜆𝑒𝑦(𝑡), and 𝜆𝑒𝑧(𝑡) measured with respect to the
ntermediate state, giving a deformation gradient

𝑒(𝑡) =
𝜕𝐱𝑒 , (45)

𝜕𝐱𝑠
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where 𝐱𝑒 is the position in the fully deformed configuration of a particle
whose position in the intermediate configuration is 𝐱𝑠, and the elastic
right Cauchy–Green tensor is

𝐂𝑒 = 𝐅𝑇
𝑒 𝐅𝑒 =

⎡

⎢

⎢

⎣

𝜆2𝑒𝑥 0 0
0 𝜆2𝑒𝑦 0
0 0 𝜆2𝑒𝑧

⎤

⎥

⎥

⎦

. (46)

he total deformation gradient is then

(𝑡) = 𝐅𝑒(𝑡)𝐅𝑠(𝑡). (47)

Next, we need to give an expression for the stored energy density
n the continuum as a function of 𝐅. To this end, we will use the 8-
hain model proposed in Arruda and Boyce (1993), Qi et al. (2006)
nd Bischoff et al. (2001). This model was shown to describe fibrin
etworks (Brown et al., 2009; Purohit et al., 2011), rubbers and elas-
omers (Arruda and Boyce, 1993; Bischoff et al., 2001), actin filament
etworks (Palmer and Boyce, 2008), and other random networks.
n Brown et al. (2009) the stored energy density had two parts —
a) due to the deformation of the fibrin fibers, for which we use the
rruda–Boyce 8-chain model (Arruda and Boyce, 1993), and (b) due

o volumetric deformation that the 8-chain model cannot capture for
hich we use a bulk-modulus. In the 8-chain model, the network

s represented by a cube of length 𝑎 in the reference (undeformed)
onfiguration with eight fibers (or chains) of length

=

√

3
2

𝑎 (48)

onnecting each of the vertices to the center of the cube.
If the sides of the cube are parallel to the principal coordinates of

he deformation, then after the deformation the length of each fiber is
𝑒(𝑡)𝜆𝑠(𝑡)𝐿, where

𝑒 =

√

𝜆2𝑒𝑥 + 𝜆2𝑒𝑦 + 𝜆2𝑒𝑧
3

. (49)

f the strain energy per unit reference length of the fiber in the inter-
ediate configuration due to the elastic deformation is 𝐺(𝜆𝑒), then the

tored energy in each fiber is 𝐺(𝜆𝑒)𝜆𝑠𝐿, and the force–extension relation
of a fiber is

𝐹 (𝜆𝑒) =
𝑑𝐺(𝜆𝑒)
𝑑𝜆𝑒

. (50)

The contribution of fiber deformation to the total strain energy per unit
volume is 𝜈

𝜆3𝑠
𝜆𝑠𝐿𝐺(𝜆𝑒), where

= 𝜈𝑛𝑑 =
3
√

3
𝐿3

(51)

is the density of fibers in the reference configuration. Next, we need to
account for the energy of volumetric deformation that is not captured
by the 8-chain model. If the volume of the cube in the intermediate
configuration is 𝑉𝑠 and the volume change of the cube to the final
configuration is 𝛥𝑉 , then
𝛥𝑉
𝑉𝑠

= 𝜆𝑒𝑥𝜆𝑒𝑦𝜆𝑒𝑧 − 1. (52)

he strain energy per unit intermediate volume due to this volumetric
eformation is denoted as 𝑔(𝜆𝑒𝑥𝜆𝑒𝑦𝜆𝑒𝑧). Thus, the strain energy density

per unit volume of the cube in the intermediate configuration is given
by

𝑈𝑒(𝜆𝑒𝑥, 𝜆𝑒𝑦, 𝜆𝑒𝑧) =
𝜈
𝜆3𝑠

𝜆𝑠𝐿𝐺(𝜆𝑒) + 𝑔(𝜆𝑒𝑥𝜆𝑒𝑦𝜆𝑒𝑧). (53)

By observing that the strain energy density in the reference config-
uration 𝑈 is related to the strain energy density in the intermediate
configuration by

𝑈 = 𝜆3𝑈 , (54)
10

𝑠 𝑒
the strain energy density in the intermediate configuration can be
converted into the strain energy density in the reference configuration
as

𝑈 (𝜆𝑒𝑥, 𝜆𝑒𝑦, 𝜆𝑒𝑧, 𝜆𝑠) = 𝜈𝜆𝑠𝐿𝐺(𝜆𝑒) + 𝜆3𝑠𝑔(𝜆𝑒𝑥𝜆𝑒𝑦𝜆𝑒𝑧). (55)

Having described the kinematics and energetics of the continuum
n this way we now want to enforce equilibrium. A comprehensive
ontinuum mechanical theory to do this exercise for gels is given
n Chester and Anand (2010). We refer the reader to Chester and Anand
2010) for detailed derivations of the equations used below. Similar to
he analyses in Chester and Anand (2010), the second Piola–Kirchhoff
tress can be written

𝐓𝑒 = 2𝐅𝑒
𝜕𝑈
𝜕𝐂𝑒

(56)

𝑅 = 2𝐅𝑒
𝜕𝑈
𝜕𝐂𝑒

𝐅−𝑇
𝑠 , (57)

here 𝐓𝑅 is the reference Piola–Kirchhoff stress that satisfies the
quilibrium equation

iv𝐓𝑅 = 0 (58)

in the reference configuration. Using our expression for the stored
energy function we get,

𝐓𝑒 =
𝜈𝜆𝑠𝐿
3𝜆𝑒

⎡

⎢

⎢

⎣

𝜆𝑒𝑥 0 0
0 𝜆𝑒𝑦 0
0 0 𝜆𝑒𝑧

⎤

⎥

⎥

⎦

𝐹 (𝜆𝑒) + 𝜆3𝑠𝑓 (𝜆𝑒𝑥𝜆𝑒𝑦𝜆𝑒𝑧)

×

⎡

⎢

⎢

⎢

⎣

1
𝜆𝑒𝑥

0 0

0 1
𝜆𝑒𝑦

0

0 0 1
𝜆𝑒𝑧

⎤

⎥

⎥

⎥

⎦

𝜆𝑒𝑥𝜆𝑒𝑦𝜆𝑒𝑧 (59)

𝐓𝑅 = 𝜈𝐿
3𝜆𝑒

⎡

⎢

⎢

⎣

𝜆𝑒𝑥 0 0
0 𝜆𝑒𝑦 0
0 0 𝜆𝑒𝑧

⎤

⎥

⎥

⎦

𝐹 (𝜆𝑒) + 𝜆2𝑠𝑓 (𝜆𝑒𝑥𝜆𝑒𝑦𝜆𝑒𝑧)

×

⎡

⎢

⎢

⎢

⎣

1
𝜆𝑒𝑥

0 0

0 1
𝜆𝑒𝑦

0

0 0 1
𝜆𝑒𝑧

⎤

⎥

⎥

⎥

⎦

𝜆𝑒𝑥𝜆𝑒𝑦𝜆𝑒𝑧. (60)

where 𝑓 ( 𝛥𝑉𝑉𝑠
) = 𝑔′( 𝛥𝑉𝑉𝑠

). It should be noted that the shear components of
𝐓𝑒 and 𝐓𝑅 are all 0 in principal coordinates. Since there are no forces
or constraints applied on the fibers in the intermediate configuration,
it is reasonable to assume 𝐹 (1) = 𝑓 (1) = 0.

In the present case with a network polymerizing in between fixed
rheometer plates with surfaces perpendicular to the axial 𝐞𝑧 direction,
forces are applied only in the axial 𝐞𝑧 direction, and

𝑇𝑅𝑥𝑥 = 𝑇𝑅𝑦𝑦 = 0. (61)

Due to isotropy,

𝜆𝑒𝑥 = 𝜆𝑒𝑦 = 𝜆∗ (62)

are also expected, and so

𝜆𝑥 = 𝜆𝑦 = 𝜆∗𝜆𝑠 (63)

𝜆𝑧 = 𝜆𝑒𝑧𝜆𝑠. (64)

Since during polymerization the rheometer plates are fixed,

𝜆𝑧 = 1. (65)

Hence,

𝜆𝑒𝑧 =
1
𝜆𝑠

. (66)

As such, equilibrium in terms of the Piola–Kirchhoff stresses reduce to
the following two equations:

0 = 𝜈𝐿 𝜆∗𝐹 (𝜆𝑒) + 𝜆𝑠𝜆∗𝑓

(

𝜆2∗
)

(67)

3𝜆𝑒 𝜆𝑠
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r
t

𝑇𝑅𝑧𝑧 =
𝜈𝐿

3𝜆𝑒𝜆𝑠
𝐹 (𝜆𝑒) + 𝜆2𝑠𝜆

2
∗𝑓

(

𝜆2∗
𝜆𝑠

)

, (68)

for the two unknowns 𝜆∗ and 𝑇𝑅𝑧𝑧, where now

𝑒 =

√

2𝜆2∗𝜆2𝑠 + 1
3𝜆2𝑠

. (69)

he network stress 𝑇𝑅𝑧𝑧 can be multiplied by the area of the rheometer
late to get the force exerted on the network due to polymerization.

The unknowns in this model are as follows: 𝐿, the length of the
iber in the imaginary reference configuration; 𝐹 (𝜆𝑒), the force-stretch
elation of a fiber; 𝑓 , the relationship between volumetric strain and
ressure; 𝜆𝑠, the stretch between the imaginary reference configuration
nd the intermediate configuration; 𝜆∗, the stretches between the in-
ermediate configuration and the final configuration in the directions
ther than that in the axial 𝐞𝑍 direction; and, in the fixed solid volume
raction formulation, the solid volume fraction 𝜙𝑠. The length of the
iber 𝐿 in the imaginary reference configuration can be found by
alculating

= 𝑙
𝜆𝑒𝜆𝑠

, (70)

from the distribution found in Kim et al. (2014), as discussed in
Section 4.4. The force-stretch relation of a fiber 𝐹 (𝜆𝑒) is the same as
the force in a fiber Eq. (22) derived in Section 4.3. The relationship
between volumetric strain and pressure is taken to be

𝑓

(

𝜆2∗
𝜆𝑠

)

= 𝐾

(

𝜆2∗
𝜆𝑠

− 1

)

, (71)

where 𝐾 = 1314.67 Pa is a bulk modulus as found in Punter et al.
2020). We have verified that a higher bulk modulus value of 𝐾 =
100 kPa has little effect on the results. The stretch between the imag-
inary reference configuration and the intermediate configuration is
taken to be

𝜆𝑠(𝑅(𝑡)) =
tan 𝛼𝑠(𝑅(𝑡))

tan 𝛼0
, (72)

where tan 𝛼𝑠(𝑅(𝑡)) is given by Eq. (20), and tan 𝛼0 = 400
2𝜋×5 for a single

protofibril based on Zhmurov et al. (2018). The stretches 𝜆∗ between
the intermediate configuration and the final configuration in the direc-
tions other than that in the axial 𝐞𝑧 direction can be solved for each
elapsed polymerization time 𝑡 from Eq. (67). This calculated value of
∗, along with the 𝜆𝑠 value, can be used to calculate 𝜆𝑒 in Eq. (69).
n solving these equations, we use 𝜆𝑒 = 1.501. Finally, the network

Piola–Kirchhoff stress 𝑇𝑅𝑧𝑧 can be computed from Eq. (68).
Using the above values and choosing 𝑙 = 0.5 μm, the Piola–Kirchhoff

stress 𝑇𝑅𝑧𝑧 as a function of polymerization time 𝑡 can be seen in Fig. 9.
As the clot polymerizes the tension increases, as expected. Steady state
is reached by about 1000 s, in qualitative agreement with experiments.

To study the effect of the estimated parameter length 𝑙 and final
fiber radius 𝑅 on the network Piola stress 𝑇𝑅𝑧𝑧, we ran simulations with
different values for each and compared the results. Fig. 10(a) depicts
the change in Piola stress 𝑇𝑅𝑧𝑧 for fiber length 𝑙 values in the range
0.5 μm ≤ 𝑙 ≤ 2.0 μm. As can be seen in Fig. 10(a), larger fiber lengths
produce smaller network Piola stresses 𝑇𝑅𝑧𝑧. Additionally, as can be
seen in Fig. 10(b), thicker fibers of the same length produce larger
network Piola stresses 𝑇𝑅𝑧𝑧.

The above discussion held the number of fibers per unit reference
volume constant, giving a density 𝜈𝑛𝑑 . If, instead, as in our experiments
(see Section 3) and in other experiments (Tutwiler et al., 2020), the
solid volume fraction 𝜙𝑠 is held constant at 𝜙𝑠 = 0.01 or 1%, a value
previously estimated for plasma clot fibrin networks (see Figures S3 and
S4 in the supplement of Tutwiler et al. (2020)), the density becomes

𝜈 = 𝜈𝑣𝑓 =
𝜙𝑠 . (73)
11

𝜋𝑅2𝜆𝑒𝜆𝑠𝐿
Fig. 9. Piola–Kirchhoff stress 𝑇𝑅𝑧𝑧 in the network in the fixed number density
ormulation as a function of polymerization time 𝑡, using the length of the fiber
onnected in a network 𝑙 = 0.5 μm.

n this formulation, the number density of fibers varies as the solid
olume fraction is held fixed, such that in a given volume there will
e fewer but thicker fibers or more but thinner fibers to yield the same
rotein concentration. When using this density in the calculations of
etwork stress, results for varying different input parameters are more
onsistent. As can be seen in Fig. 11(a), fibers of different lengths
roduced the same network stress 𝑇𝑅𝑧𝑧; this is not the same effect as
n Fig. 10(a) which held the number density of fibers fixed, where
arger fiber lengths produce smaller network Piola stresses 𝑇𝑅𝑧𝑧. Also,
he estimated final values of the tensile stress are in agreement with
xperimental results in Fig. 2. Additionally, as can be observed in
ig. 11(b), thinner fibers of the same length produce larger network
iola stresses 𝑇𝑅𝑧𝑧, which is also different from the trend observed
n Fig. 10(b) which held the number density fixed. Recall from our
xperiments that increased thrombin concentration causes decrease in
urbidity, which is related to the average protofibrils per fiber 𝑚 (Weisel
nd Nagaswami, 1992), leading to a decrease in 𝑅. Thus, these results
or 𝜈 = 𝜈𝑣𝑓 are in agreement with the trend expected from Weisel
nd Nagaswami (1992) and the results from our experiments where in-
reased thrombin concentration yields increased magnitude of network
tress (see Section 3). In a real network there is a distribution of fiber
engths, so we accounted for this in rudimentary way in Appendix D
nd showed that the resulting values of final tensile stress are not very
ifferent from those reported in Fig. 11.

.6. Summary of full mathematical model

The model can be summarized as follows: The system of ODEs,
esulting from the chemical rate equations governing fiber polymeriza-
ion, are as follows:
𝑑[𝑓𝐴]
𝑑𝑡

= −𝑘𝐴[𝑓𝐴] (74)

𝑑[𝑓1]
𝑑𝑡

= −𝑘𝑝𝑖
⎛

⎜

⎜

⎝

[𝑓1][𝑓1] + [𝑓1]
𝑙𝑎𝑔𝑔
∑

𝑖=1
[𝑓𝑖]

⎞

⎟

⎟

⎠

− 𝑘𝑝𝑔[𝑓 ][𝑓𝑛] + 𝑘𝐴[𝑓𝐴] (75)

𝑑[𝑓𝑗 ]
𝑑𝑡

= 𝑘𝑝𝑖

⎛

⎜

⎜

⎜

⎝

⌊

𝑗
2

⌋

∑

𝑖=1
[𝑓𝑖][𝑓𝑗−𝑖] − [𝑓𝑗 ][𝑓𝑗 ] − [𝑓𝑗 ]

𝑙𝑎𝑔𝑔
∑

𝑖=1
[𝑓𝑖]

⎞

⎟

⎟

⎟

⎠

− 𝑘𝑝𝑔[𝑓𝑛][𝑓𝑗 ]

∀𝑗 ∈ [2, 𝑙 ] (76)
𝑎𝑔𝑔
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Fig. 10. (a) Effect of estimated fiber length 𝑙 on the network Piola stress 𝑇𝑅𝑧𝑧 using five values of 𝑙 from the most likely range of 𝑙 from the experimental probability distribution
found in Kim et al. (2014), as discussed in Section 4.4. These plots assume that 𝑙 remains fixed as solid volume fraction 𝜙𝑠 evolves with time. (b) Network Piola stress 𝑇𝑅𝑧𝑧 vs.
olymerization time 𝑡 for constant fiber length 𝑙 = 0.5 μm, for different final values of fiber radius 𝑅𝑓 . Thicker fibers contribute more network Piola stress 𝑇𝑅𝑧𝑧.
Fig. 11. Results for network Piola stress using the fixed solid volume fraction formulation. In this formulation, the number density of fibers varies as the solid volume concentration
is held fixed, such that in a given volume there will be fewer but thicker fibers or more but thinner fibers to yield the same protein concentration. (a) Effect of estimated fiber
length 𝑙 on the final network Piola stress 𝑇𝑅𝑧𝑧 using five values of 𝑙 from the most likely range of 𝑙 from the probability distribution found in Kim et al. (2014), as discussed in
ection 4.4. (b) Effect of final fiber radius 𝑅 on final network Piola stress 𝑇𝑅𝑧𝑧, for constant fiber length 𝑙 = 0.5 μm. Thinner fibers contribute more network Piola stress 𝑇𝑅𝑧𝑧. Since
he solid volume fraction during polymerization is not constant, only the values calculated from the final time in the polymerization have been included. The final solid volume
raction for each of these points is 𝜙𝑠 = 0.01..
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𝜆

𝑑[𝑓𝑛]
𝑑𝑡

= 𝑘𝑝𝑖

⎛

⎜

⎜

⎜

⎜

⎝

⌊

𝑙𝑎𝑔𝑔+1
2

⌋

∑

𝑗=1

⎛

⎜

⎜

⎝

(

[𝑓𝑗 ] + [𝑓𝑙𝑎𝑔𝑔+1−𝑗 ]
)

𝑙𝑎𝑔𝑔
∑

𝑖=𝑙𝑎𝑔𝑔+1−𝑗
[𝑓𝑖]

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎠

− 2𝑘𝑓𝑖[𝑓𝑛][𝑓𝑛] − 𝑘𝑓𝑔[𝑓𝑟][𝑓𝑛] (77)
𝑑[𝑓𝑟]
𝑑𝑡

= 𝑘𝑓𝑖[𝑓𝑛][𝑓𝑛] − 𝑘𝑓𝐴[𝑓𝑟][𝑓𝑟] (78)

𝑑[𝑓 𝑡𝑜𝑡
𝑛 ]

𝑑𝑡
= 2𝑘𝑓𝑖[𝑓𝑛][𝑓𝑛] + 𝑘𝑓𝑔[𝑓𝑟][𝑓𝑛] + 𝑘𝑓𝐴[𝑓𝑟][𝑓𝑟] (79)

𝑑[𝑐𝑓𝑛 ]
𝑑𝑡

= 𝑘𝑝𝑖

𝑙𝑎𝑔𝑔
∑

𝑖=1

⎛

⎜

⎜

⎜

⎝

(𝑙𝑎𝑔𝑔 + 𝑖)

⌊ 𝑙𝑎𝑔𝑔+𝑖
2

⌋

∑

𝑗=𝑖
[𝑓𝑗 ][𝑓𝑙𝑎𝑔𝑔+𝑖−𝑗 ]

⎞

⎟

⎟

⎟

⎠

+ 𝑘𝑝𝑔[𝑓𝑛]
𝑙𝑎𝑔𝑔
∑

𝑖=1
[𝑓𝑖] − 𝑘𝑓𝑖[𝑓𝑛][𝑐𝑓𝑛 ] − 𝑘𝑓𝑔[𝑓𝑟][𝑐𝑓𝑛 ] (80)

𝑑[𝑐𝑓𝑟 ]
𝑑𝑡

= 2𝑘𝑓𝑖[𝑓𝑛][𝑐𝑓𝑛 ] + 𝑘𝑓𝑔[𝑓𝑟][𝑐𝑓𝑛 ] + 𝑘𝑓𝐴[𝑓𝑟][𝑓𝑟]. (81)
12
with

𝑚 =
[𝑓 𝑡𝑜𝑡

𝑛 ]
[𝑓𝑟]

. (82)

The fiber radius 𝑅 as a function of the average number of protofibrils
per fiber cross-section 𝑚 is

𝑅(𝑡) = 𝑟𝑚
√

𝑚(𝑡). (83)

he stretch connecting the imaginary reference configuration and the
ntermediate configuration of a fiber, as a function of fiber radius 𝑅, is
iven by

𝑠(𝑅(𝑡)) =
tan 𝛼𝑠(𝑅(𝑡))

tan 𝛼0
=

√

ln
(

𝑅(𝑡)
𝑟𝑚

)

𝜅0(𝑅(𝑡)−𝑟𝑚)
− 1

400
2𝜋×5

. (84)

The stretch between the intermediate configuration and the final con-
figuration of the whole network in the directions other than that in the
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axial 𝐞𝑧 direction 𝜆∗ is calculated by solving

= 𝜈𝐿
3𝜆𝑒

𝜆∗𝐹 (𝜆𝑒) + 𝜆𝑠𝜆∗𝑓

(

𝜆2∗
𝜆𝑠

)

(85)

sing the force in a fiber

= 2𝜋
𝑎0

𝐾𝑏 sin 𝛼
(

𝜅0(𝑅 − 𝑟𝑚) − cos2 𝛼 ln
(

𝑅
𝑟𝑚

))

(86)

ith

an 𝛼 = 𝜆𝑒 tan 𝛼𝑠 = 𝜆𝑒

√

√

√

√

√

ln
(

𝑅(𝑡)
𝑟𝑚

)

𝜅0(𝑅(𝑡) − 𝑟𝑚)
− 1, (87)

the stretch between the intermediate configuration and the final con-
figuration

𝜆𝑒 =

√

2𝜆2∗𝜆2𝑠 + 1
3𝜆2𝑠

, (88)

nd the relationship between volumetric strain and pressure
(

𝜆2∗
𝜆𝑠

)

= 𝐾

(

𝜆2∗
𝜆𝑠

− 1

)

. (89)

Then, the network Piola stress can be computed from

𝑇𝑅𝑧𝑧 =
𝜈𝐿

3𝜆𝑒𝜆𝑠
𝐹 (𝜆𝑒) + 𝜆2𝑠𝜆∗𝑓

2

(

𝜆2∗
𝜆𝑠

)

. (90)

The model takes the unknown input parameters initial concentration of
fibrinogen 𝑓𝐴0

, rate of fibrinopeptide A cleavage to convert fibrinogen
to fibrin monomers 𝑘𝐴, the rate of association of fibrin monomers to
yield small oligomers and initiate protofibril formation 𝑘𝑝𝑖, the rate of
protofibril growth in length by association with oligomers 𝑘𝑝𝑔 , the rate
of protofibril aggregation to initiate a fiber 𝑘𝑓𝑖, the rate of fiber growth
by association with additional protofibrils 𝑘𝑓𝑔 , the rate of interactions
between fibers 𝑘𝑓𝐴, and initial length of a fiber connected in a network
𝑙. The model outputs the radius of a polymerizing fiber 𝑅(𝑡), force on a
fiber 𝐹 , the stretches 𝜆𝑠 and 𝜆𝑒, the relaxed length of a fiber 𝑙∕𝜆𝑒, and
the network Piola stress 𝑇𝑅𝑧𝑧.

5. Discussion

In this paper we have followed Weisel et al. (1987) and Weisel and
Nagaswami (1992) and modeled fibrin clot formation – from fibrinogen
to fibrin monomers and oligomers to protofibrils to fiber formation –
by a set of ODEs for the chemical rate of change in concentration of the
reacting structures of each individual stage. The solution of that system
of ODEs gives the average number of protofibrils per fiber cross-section
as a function of polymerization time. Variation of the rate constants
involved in the intermediary biochemical reactions demonstrates that
the two most important stages determining final fiber radius are fiber
initiation by lateral aggregation of protofibrils and fiber growth by
transverse association with additional protofibrils. The resulting (final
value of) average number of protofibrils per fiber cross-sectional area
is directly related to the radius of a fiber. Therefore, we can calculate
how the radius of a fiber evolves in time. This radius is used as an
input to calculate the evolving tensile force in a fiber, which ultimately
determines the tensile force in a network constrained between two
rheometer plates.

We assumed that since the radial distribution of protofibrils is
disordered (Weisel et al., 1987; Weisel, 1986), the number density of
protofibrils per unit fiber cross-sectional area is constant. In particular,
we assumed that a single protofibril occupies a circle of radius 6.5 nm
in the fiber cross-section. Thus, if the number of protofibrils in a fiber
is known (from the solution of the ODEs), the radius of the fiber as
a function of time can be calculated. The resulting values of the fiber
radius are in line with the previously reported range of fibrin fiber radii
13

of 25–115 nm (Tutwiler et al., 2020). However, we note that other works
suggest that the density of protofibrils per fiber cross-sectional area is
not constant (Yang et al., 2000; Guthold et al., 2004; Yeromonahos
et al., 2010; Yermolenko et al., 2011; Li et al., 2016, 2017b); the
number of protofibrils per fiber cross sectional area is proportional to
𝐷1.3 (Guthold et al., 2004) or 𝐷1.4±0.2 (Li et al., 2017b), and not 𝐷2

s we have used. It has also been suggested that the fiber core is more
ense than the periphery layers (Li et al., 2017b). We used the constant
umber density assumption in our calculations due to its simplicity and
lso because a specific numerical value (6.5 nm) for the inter-protofibril
istance was available (Jansen et al., 2020; Zhmurov et al., 2016,
018). On the other hand, other works (Guthold et al., 2004; Li et al.,
017b) provide scaling laws which do not furnish enough information
o compute actual numerical values of the fiber radius. Additionally,
ven if a more accurate relationship between the number of protofibrils
er fiber cross sectional area is specified, it will only change the
omputation of the radius from the average number of protofibrils in a
iber and some details of the force in a fiber computation (see additional
etails discussed in Appendix B). Our overall approach of computing
he fiber tension and the network tension will still remain the same.
urthermore, our simple assumption of constant number density of
rotofibrils per fiber cross-sectional area is able to capture a crucial
xperimental observation that the Young’s modulus of a fibrin fiber
ecreases with increasing radius, as demonstrated below.

Our equation (see Eq. (22)) for the force-stretch relation of a single
iber is derived by mathematically describing ideas in Weisel et al.
1987), which trace the origin of tension in fibrin fibers to the two-
old axis of symmetry and off-axis binding sites of individual fibrin
onomers. This causes protofibrils to be helical as clearly seen in the

imulations of Zhmurov et al. (2018) and images of Medved et al.
1990). If a number of such helical protofibrils are to form a fibrin
iber by lateral aggregation then it is necessary that the individual
onomers be properly aligned. This causes some protofibrils to stretch

nd others to shorten so that there is overall force balance in the cross-
ection (Weisel et al., 1987). We have enforced this force balance in
fiber cross-section by considering the equilibrium of each individual
elical protofibril, which may have stretched or shortened depending
n its location in the fiber cross-section. This force balance is expressed
s Eq. (22) and the radius 𝑅 of a fiber enters as a parameter in this
quation. Starting with the force 𝐹 in Eq. (22) and dividing by the
ssumed cross sectional area 𝜋𝑅2, we get the stress 𝜎 in a fiber due
o external force 𝐹 . Then, since this stress and the stretch in Eq. (23)
re both functions of the variable tan 𝛼𝑒, the Young’s modulus 𝐸 of a
iber may be calculated as

=
𝑑𝜎∕𝑑𝛼𝑒
𝑑𝜆𝑒∕𝑑𝛼𝑒

|

|

|

|𝜆𝑒=1
= 4

𝑎0𝑅2
𝐾𝑏𝜅0(𝑅 − 𝑟𝑚) sin

3 𝛼𝑠. (91)

The results of this equation can be found in Fig. 12, and the trend
of decreasing Young’s modulus with increasing radius is similar to
the trend in Li et al. (2016). There are additional contributions to
individual fiber modulus, for example fiber cross-linking, the packing
density of protofibrils in fibers, all lateral forces, and the long and
largely unstructured 𝛼𝐶 regions may have significant contribution as
well (Li et al., 2016), but we have captured the general trend in Fig. 12.
While the model is not yet entirely quantitative, incorporating ne-
glected factors mentioned above and the dependence of rate constants
on the mechanical deformations of protofibrils is likely to improve the
predictive ability of the model.

The force-stretch relation given by Eqs. (22) and (23) can be com-
bined with the equation of motion of a fiber subject to fluid drag to
predict the relaxation to equilibrium of a severed fibrin fiber. Here we
have shown that the relaxation time depends on the fiber length and
radius and the resulting time scales as well as fiber pre-strains are in
excellent agreement with the cutting experiments of Cone et al. (2020).
Importantly, we made no attempt to compare the forces (or stresses) in
our calculations with those documented in Cone et al. (2020) because
the experimental values of the forces are obtained from the strains using
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Fig. 12. Calculated Young’s modulus of an individual fiber in a fibrin network vs. fiber
adius. Note the trend that the Young’s modulus decreases with increasing radius.

Young’s modulus that is different from those calculated in Fig. 12.
lso, a simple linear relation between stress and strain in a single fibrin

iber may not be appropriate at large strains. Finally, we acknowledge
hat the process of enzymatic cleavage of a fibrin fiber (as in Lynch
t al. (2022)) is quite complex since one would have to also model
he diffusion and binding/unbinding of the enzyme together with me-
hanics of cleavage of individual protofibrils. As a fiber is digested,
t at least partially maintains its inherent tension (Lynch et al., 2022)
ikely because some of the protofibrils break, but others remain intact.
his can be accounted for in the balance of forces by having fewer
rotofibrils in the fiber. However, the coupling of fiber mechanics,
leavage kinetics, and enzyme diffusion is a complex problem that is
eyond the scope of this work.

Finally, we connect the mechanical behavior of a fibrin network
o that of individual fibers by using the 8-chain model (Arruda and
oyce, 1993; Qi et al., 2006) together with the continuum mechanics
f swellable gels (Chester and Anand, 2010). We show that the inherent
ensile stress in polymerizing fibrin networks depends on fiber length,
adius, solid volume fractions, etc. Our results from the continuum
odel in Section 4.5 are in agreement with the results from experi-
ents in Section 3. The order of magnitude of the inherent tension is

he same in both experiments and continuum model and steady state
s reached by around 1000 s in both the model and the experiments.

Additionally, our continuum model can recover the trend that thinner
fibers produce larger network stress for fixed solid volume fraction as
observed in our experiments coupled with the study of the effect of
thrombin concentration on turbidity in Weisel and Nagaswami (1992),
although the predicted trends from the model are weaker than those
from experiments.

This trend in Fig. 11(b) that thinner fibers produce larger network
stress is not obvious. One hypothesis to explain this phenomenon
involves the following simplified scenario: imagine that two fixed hor-
izontal plates are connected by a ‘‘network’’ consisting of only vertical
fibers of uniform thickness. Since the fibrin volume fraction is constant
irrespective of the fiber radius, the total sum of the cross-sectional area
of all those fibers will be the same whether the fibers are thinner or
thicker, but there will be more thinner fibers in such a scenario than
if the fibers were thicker. Now, from Eq. (22), the force in a fiber can
be calculated as a function of the fiber radius, from which the inherent
stress in the fiber can be computed by dividing by the cross-sectional
area of a fiber 𝜋𝑅2. If the cross-sectional area of a fiber increases faster
as the radius increases than does the force in the fiber, the inherent
stress in the fiber will decrease with radius, and the total ‘‘network’’
stress will decrease with fiber radius as well.

This can be better illustrated by the use of concrete examples, such
14

as the three radii in Fig. 11(b), namely, 𝑅 = 74 nm, 𝑅 = 78 nm, and
Table 2
Computed values for fiber (and network) stresses, given a fixed and uniform fiber radius
for a ‘‘network’’ of fibers vertically connected between two horizontal plates with a
fixed separation distance 0.5 μm. The fiber stretches 𝜆𝑒 are calculated using Eq. (73)
in Eq. (67). Inherent forces in fibers 𝐹 are computed from Eq. (22), using pitch angles
calculated from Eq. (23). The cross-sectional area of each fiber 𝐴𝑓𝑖𝑏𝑒𝑟 = 𝜋𝑅2. Inherent
fiber stresses 𝜎 are computed by dividing the force 𝐹 by the fiber cross-sectional area
𝐴𝑓𝑖𝑏𝑒𝑟.

𝑅 (nm) 𝜆𝑒 𝐹 (pN) 𝐴𝑓𝑖𝑏𝑒𝑟 (nm2) 𝜎 (Pa)

74 1.48 0.78 17,200 45.4
78 1.50 0.83 19,100 43.5
82 1.52 0.88 21,100 41.7

𝑅 = 82 nm. For these radii and choosing the same fiber length 𝑙 =
0.5 μm, the resulting fiber stretches 𝜆𝑒 from using Eq. (73) in Eq. (67)
are 𝜆𝑒 = 1.48, 𝜆𝑒 = 1.50, and 𝜆𝑒 = 1.52, respectively. With these values
and computing the pitch angle 𝛼𝑒 from Eq. (23), the inherent forces in
each fiber are, 𝐹 = 0.78 pN, 𝐹 = 0.83 pN, and 𝐹 = 0.88 pN, respectively.
The cross-sectional area of each fiber is, 𝐴𝑓𝑖𝑏𝑒𝑟 = 17200 nm2, 𝐴𝑓𝑖𝑏𝑒𝑟 =
19100 nm2, and 𝐴𝑓𝑖𝑏𝑒𝑟 = 21100 nm2, respectively, which, combined
with the inherent forces in the fibers, yields the fiber inherent stresses,
𝜎 = 45.4 Pa, 𝜎 = 43.5 Pa, and 41.7 Pa, respectively (see Table 2). It
should be noted that these calculations were performed in a simplified
scenario to illustrate one possible hypothesis, and they do not take into
account confounding factors such as the isotropic nature of fibrin gels
or branch points, although they give some physical intuition for the
phenomenon.

Our calculation based on the 8-chain model assumes a given con-
stant length of all fibers, but this is not the case for real fibrin networks.
The constant length we use to compute pre-tension should really be
interpreted as the average fiber length in a network. We may be able to
do slightly better by using the probability density function for the fiber
lengths and computing a probability density for the pre-tension values
obtained (see Appendix D). However, this still does not account exactly
for the different values of pre-tension in each fiber of a real fibrin gel,
although it does utilize known information about the structure of a true
fibrin network. A proper accounting of the variation of fiber lengths to
predict pre-tension in a network will likely require computations that
are beyond the scope of the research presented in this paper.

Pre-tension in fibrin networks specifically is important because it
contributes to the stability of the material. Fibrin fiber networks, as well
as many other biological networks, have connectivity (average number
of fibers connected at a junction) below the Maxwell isostatic threshold,
which, for networks with a large number of elements, is twice the
dimensionality (Maxwell and Clerk, 1864; Vahabi et al., 2016; Arzash
et al., 2019). Thus, if the fiber interactions were limited to tension and
compression central forces, the network materials would be unstable
for small deformations and would be floppy rather than rigid (Vahabi
et al., 2016; Arzash et al., 2019). The presence of pre-tension in fibrin
networks, similar to the presence of fiber bending in F-actin networks in
cytoskeletons (Head et al., 2003), active stresses generated by myosin
motors in cytoskeletal networks (Koenderink et al., 2009) and in fibrin
networks in blood clots (Jansen et al., 2013), thermal fluctuations (Qi
et al., 2006; Su and Purohit, 2012), and osmotic pressure in actin net-
works (Palmer and Boyce, 2008), stabilizes and rigidifies the network
material (Vahabi et al., 2016; Arzash et al., 2019).

Estimations of inherent stress in a fibrin fiber network, as well
as of other network material properties, will be useful in interpret-
ing experiments performed on blood clots and thrombi, in the use
of fibrin as a biomaterial – for example, the inherent tension may
comprise a thermodynamic mechanism to control fiber diameter, and
thus modulate the overall network structure – and in the application
and development of novel methods of treatment of thrombotic states
such as in mechanical thrombectomy since the susceptibility of fibrin
to fibrinolytic enzymes depends strongly on the mechanical tension of
the proteinaceous fibrous substrate (Hudson, 2017; Li et al., 2017a;
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Cone et al., 2020; Varjú et al., 2011). Thus, variation of the tension in
fibers and the structure of the fibrin network can affect mechanical and
enzymatic stability of entire blood clots and thrombi, which determines
the course and outcome of hemostatic disorders (Litvinov and Weisel,
2017; Feller et al., 2022).
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Appendix A. Expanded fibrin network polymerization model

Weisel and Nagaswami (1992) propose a system of ordinary differ-
ential equations (ODEs), to describe the polymerization of fibrin fibers,
comprising fibrin network, from a fibrinogen solution. The polymeriza-
tion process they describe consists of the following steps — beginning
with a concentration of fibrinogen and thrombin (which cleaves the
A fibrinopeptides from the fibrinogen to create fibrin monomers),
association of fibrin monomers to form double-stranded half-staggered
protofibrils, and then aggregation of protofibrils into fibrin fibers,
which branch and grow to create the fibrin network gel. Their poly-
merization process includes a minimum length requirement (which we
will call 𝑙𝑎𝑔𝑔 + 1) for protofibrils to be capable of aggregation, which
produces the observed lag period in the number of protofibrils per fiber.
Their model, including the polymerization chemical reaction equations
and the resulting system of ODEs, for the example of 𝑙𝑎𝑔𝑔 = 10, is given
as follows (with some modification of the explanatory text only, to
better reflect our current understanding of fibrin polymerization):

𝑓𝐴
𝑘𝐴
→ 𝑓 fibrinopeptide A cleavage to convert fibrinogen to

monomeric fibrin (A.1)

𝑓 + 𝑓
𝑘𝑝𝑖
→ 𝑓2 fibrin monomers associate to yield small

longitudinal oligomers,
15
protofibril precursors (A.2)

𝑓2 + 𝑓
𝑘𝑝𝑖
→ 𝑓3 (A.3)

𝑓3 + 𝑓
𝑘𝑝𝑖
→ 𝑓4 (A.4)
⋮

𝑓9 + 𝑓
𝑘𝑝𝑖
→ 𝑓10 (A.5)

10 + 𝑓
𝑘𝑝𝑖
→ 𝑓𝑛 longer oligomers are formed until they reach the

length of protofibrils

capable of lateral association (A.6)

𝑓𝑛 + 𝑓
𝑘𝑝𝑔
→ 𝑓𝑛 protofibrils grow in length (A.7)

𝑓𝑛 + 𝑓𝑛
𝑘𝑓𝑖
→ 𝑓𝑟 two protofibrils aggregate laterally to initiate a fiber

(A.8)

𝑓𝑟 + 𝑓𝑛
𝑘𝑓𝑔
→ 𝑓𝑟 additional protofibrils add to a transversely

growing fiber (A.9)

𝑑[𝑓𝐴]
𝑑𝑡

= −𝑘𝐴[𝑓𝐴] (A.10)
𝑑[𝑓 ]
𝑑𝑡

= 𝑘𝐴[𝑓𝐴] − 𝑘𝑝𝑖[𝑓 ]
(

2[𝑓 ] + [𝑓2] + [𝑓3] +⋯ + [𝑓10]
)

− 𝑘𝑝𝑔[𝑓 ][𝑓𝑛]

(A.11)
𝑑[𝑓2]
𝑑𝑡

= 𝑘𝑝𝑖[𝑓 ]
(

[𝑓 ] − [𝑓2]
)

(A.12)
𝑑[𝑓3]
𝑑𝑡

= 𝑘𝑝𝑖[𝑓 ]
(

[𝑓2] − [𝑓3]
)

(A.13)

⋮
𝑑[𝑓10]
𝑑𝑡

= 𝑘𝑝𝑖[𝑓 ]
(

[𝑓9] − [𝑓10]
)

(A.14)
𝑑[𝑓𝑛]
𝑑𝑡

= 𝑘𝑝𝑖[𝑓 ][𝑓10] − 2𝑘𝑓𝑖[𝑓𝑛][𝑓𝑛] − 𝑘𝑓𝑔[𝑓𝑟][𝑓𝑛] (A.15)
𝑑[𝑓𝑟]
𝑑𝑡

= 𝑘𝑓𝑖[𝑓𝑛][𝑓𝑛] (A.16)

𝑑[𝑓 𝑡𝑜𝑡
𝑛 ]

𝑑𝑡
= 2𝑘𝑓𝑖[𝑓𝑛][𝑓𝑛] + 𝑘𝑓𝑔[𝑓𝑟][𝑓𝑛] (A.17)

𝑑[𝑐𝑓𝑛 ]
𝑑𝑡

= 11𝑘𝑝𝑖[𝑓 ][𝑓10] + 𝑘𝑝𝑔[𝑓𝑛][𝑓 ] − 2𝑘𝑓𝑖[𝑓𝑛][𝑐𝑓𝑛 ] − 𝑘𝑓𝑔[𝑓𝑟][𝑐𝑓𝑛 ] (A.18)
𝑑[𝑐𝑓𝑟 ]
𝑑𝑡

= 2𝑘𝑓𝑖[𝑓𝑛][𝑐𝑓𝑛 ] + 𝑘𝑓𝑔[𝑓𝑟][𝑐𝑓𝑛 ] (A.19)

𝑛 =
[𝑐𝑓𝑛 ]
[𝑓𝑛]

(A.20)

𝑚 =
[𝑓 𝑡𝑜𝑡

𝑛 ]
[𝑓𝑟]

(A.21)

𝑙 =
[𝑐𝑓𝑟 ]
[𝑓 𝑡𝑜𝑡

𝑛 ]
, (A.22)

here 𝑓𝐴 represents fibrinogen, 𝑓 represents fibrin monomers, 𝑓2
through 𝑓10 represent fibrin oligomers comprised of 2 through 10

onomers, 𝑓𝑛 represent protofibrils, 𝑓𝑟 represent fibrin fibers, [𝑓 𝑡𝑜𝑡
𝑛 ]

represents total protofibrils in fibers, [𝑐𝑓𝑛 ] represents total fibrin
[monomers] in protofibrils, [𝑐𝑓𝑟 ] represents total fibrin in fibers, 𝑛 is
the average number of fibrin per protofibril, 𝑚 is the average number
of protofibrils per fiber, and 𝑙 is the average length of fibers.

Weisel and Nagaswami (1992) also mention that the model should
also account for longitudinal oligomer–monomer and
oligomer–oligomer interactions in the intermediate stages of protofibril
formation, which are not explicitly accounted for in the above model.
A logical extension to this, which is also mentioned by Weisel and
Nagaswami (1992), would be to include protofibril growth due to
interactions with oligomers, which is also not included in the above
model. They additionally describe that a reaction can be included
to account for fiber–fiber interactions. Taking these additions into
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account, we can write the following chemical polymerization reactions:

𝑓𝐴
𝑘𝐴
→ 𝑓1 (A.23)

𝑓𝑖 + 𝑓𝑗
𝑘𝑝𝑖
→

{

𝑓𝑖+𝑗 𝑖 + 𝑗 < 𝑙𝑎𝑔𝑔 + 1
𝑓𝑛 𝑖 + 𝑗 ≥ 𝑙𝑎𝑔𝑔 + 1,

∀𝑗 ∈ [𝑖, 𝑙𝑎𝑔𝑔] ∀𝑖 ∈ [1, 𝑙𝑎𝑔𝑔] (A.24)

𝑓𝑛 + 𝑓𝑖
𝑘𝑝𝑔
→ 𝑓𝑛 ∀𝑖 ∈ [1, 𝑙𝑎𝑔𝑔] (A.25)

𝑓𝑛 + 𝑓𝑛
𝑘𝑓𝑖
→ 𝑓𝑟 (A.26)

𝑓𝑟 + 𝑓𝑛
𝑘𝑓𝑔
→ 𝑓𝑟 (A.27)

𝑓𝑟 + 𝑓𝑟
𝑘𝑓𝐴
→ 𝑓𝑟 (A.28)

These polymerization reactions result in the following system of ODEs:
𝑑[𝑓𝐴]
𝑑𝑡

= −𝑘𝐴[𝑓𝐴] (A.29)

𝑑[𝑓1]
𝑑𝑡

= −𝑘𝑝𝑖
⎛

⎜

⎜

⎝

[𝑓1][𝑓1] + [𝑓1]
𝑙𝑎𝑔𝑔
∑

𝑖=1
[𝑓𝑖]

⎞

⎟

⎟

⎠

− 𝑘𝑝𝑔[𝑓 ][𝑓𝑛] + 𝑘𝐴[𝑓𝐴] (A.30)

𝑑[𝑓𝑗 ]
𝑑𝑡

= 𝑘𝑝𝑖

⎛

⎜

⎜

⎜

⎝

⌊

𝑗
2

⌋

∑

𝑖=1
[𝑓𝑖][𝑓𝑗−𝑖] − [𝑓𝑗 ][𝑓𝑗 ] − [𝑓𝑗 ]

𝑙𝑎𝑔𝑔
∑

𝑖=1
[𝑓𝑖]

⎞

⎟

⎟

⎟

⎠

− 𝑘𝑝𝑔[𝑓𝑛][𝑓𝑗 ]

∀𝑗 ∈ [2, 𝑙𝑎𝑔𝑔] (A.31)

𝑑[𝑓𝑛]
𝑑𝑡

= 𝑘𝑝𝑖

⎛

⎜

⎜

⎜

⎜

⎝

⌊

𝑙𝑎𝑔𝑔+1
2

⌋

∑

𝑗=1

⎛

⎜

⎜

⎝

(

[𝑓𝑗 ] + [𝑓𝑙𝑎𝑔𝑔+1−𝑗 ]
)

𝑙𝑎𝑔𝑔
∑

𝑖=𝑙𝑎𝑔𝑔+1−𝑗
[𝑓𝑖]

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎠

− 2𝑘𝑓𝑖[𝑓𝑛][𝑓𝑛] − 𝑘𝑓𝑔[𝑓𝑟][𝑓𝑛] (A.32)
𝑑[𝑓𝑟]
𝑑𝑡

= 𝑘𝑓𝑖[𝑓𝑛][𝑓𝑛] − 𝑘𝑓𝐴[𝑓𝑟][𝑓𝑟] (A.33)

𝑑[𝑓 𝑡𝑜𝑡
𝑛 ]

𝑑𝑡
= 2𝑘𝑓𝑖[𝑓𝑛][𝑓𝑛] + 𝑘𝑓𝑔[𝑓𝑟][𝑓𝑛] + 𝑘𝑓𝐴[𝑓𝑟][𝑓𝑟] (A.34)

𝑑[𝑐𝑓𝑛 ]
𝑑𝑡

= 𝑘𝑝𝑖

𝑙𝑎𝑔𝑔
∑

𝑖=1

⎛

⎜

⎜

⎜

⎝

(𝑙𝑎𝑔𝑔 + 𝑖)

⌊ 𝑙𝑎𝑔𝑔+𝑖
2

⌋

∑

𝑗=𝑖
[𝑓𝑗 ][𝑓𝑙𝑎𝑔𝑔+𝑖−𝑗 ]

⎞

⎟

⎟

⎟

⎠

+ 𝑘𝑝𝑔[𝑓𝑛]
𝑙𝑎𝑔𝑔
∑

𝑖=1
[𝑓𝑖] − 𝑘𝑓𝑖[𝑓𝑛][𝑐𝑓𝑛 ] − 𝑘𝑓𝑔[𝑓𝑟][𝑐𝑓𝑛 ] (A.35)

𝑑[𝑐𝑓𝑟 ]
𝑑𝑡

= 2𝑘𝑓𝑖[𝑓𝑛][𝑐𝑓𝑛 ] + 𝑘𝑓𝑔[𝑓𝑟][𝑐𝑓𝑛 ] + 𝑘𝑓𝐴[𝑓𝑟][𝑓𝑟]. (A.36)

We retain the same definitions

𝑛 =
[𝑐𝑓𝑛 ]
[𝑓𝑛]

(A.37)

𝑚 =
[𝑓 𝑡𝑜𝑡

𝑛 ]
[𝑓𝑟]

(A.38)

𝑙 =
[𝑐𝑓𝑟 ]
[𝑓 𝑡𝑜𝑡

𝑛 ]
. (A.39)

The parameters in this system are as follows: 𝑙𝑎𝑔𝑔 +1, the minimum
ength for protofibrils to be capable of aggregation; 𝑓𝐴0

, the initial
oncentration of fibrinogen; 𝑘𝐴, the rate of fibrinopeptide A cleavage
o convert fibrinogen to fibrin monomers; 𝑘𝑝𝑖, the rate of association

of fibrin monomers to yield small oligomers and initiate protofibril
formation; 𝑘𝑝𝑔 , the rate of protofibril growth in length by association
with oligomers; 𝑘𝑓𝑖, the rate of protofibril aggregation to initiate a fiber;
𝑓𝑔 , the rate of fiber growth by association with additional protofibrils;
nd 𝑘𝑓𝐴, the rate of lateral interactions between fibers.

ppendix B. Non-uniform protofibril density

The results presented earlier assumed a uniform density of protofib-
16

ils in the fiber cross-section, which is known to be inaccurate
(Yeromonahos et al., 2010; Yermolenko et al., 2011; Yang et al., 2000;
Guthold et al., 2004; Li et al., 2016, 2017b). Here, the modifications to
the above theory to include a non-uniform density, and the changes
in the results caused by these modifications, will be discussed. The
necessary modifications appear in two primary locations: first, the
relationship Eq. (14) between fiber radius 𝑅 and average number of
protofibrils per fiber cross-section 𝑚, will be different; and second,
a density function must be included in the force balance equations
Eqs. (17) and (21), which would also change the results from those
equations. Since it is known that the density of protofibrils decreases
closer to the perimeter of a fiber (Yeromonahos et al., 2010; Yer-
molenko et al., 2011; Yang et al., 2000; Guthold et al., 2004; Li et al.,
2016, 2017b), this fact must be incorporated into the theory.

To generalize the theory to include non-uniform densities of
protofibrils per fiber cross-section, the density can be described as
having a power law relationship:

𝜚(𝑟) = 1
𝑎0

(

𝑟
𝑟𝑝𝑐

)−ℎ
, (B.1)

where 𝑟𝑝𝑐 is a proportionality constant with the same units as 𝑟, which,
for the purposes of this derivation, will be taken as 𝑟𝑝𝑐 = 20 nm in
order for the calculated fiber radii to be in the correct range, but must
be determined from experiment (and may also depend on ℎ). ℎ = 0
represents uniform density. Recall that 𝑎0 = 𝜋𝑟2𝑚 is the area occupied
by one protofibril under the assumption of constant density. Since it is
known that the density of protofibrils decreases closer to the perimeter
of a fiber (Yeromonahos et al., 2010; Yermolenko et al., 2011; Yang
et al., 2000; Guthold et al., 2004; Li et al., 2016, 2017b), ℎ ≥ 0.

Next, the relationship Eq. (14) between the fiber radius 𝑅 and
the average number of protofibrils per fiber cross-section 𝑚 can be
rewritten as

𝑚(𝑡) = 1
𝜋𝑟2𝑚 ∫

𝑅(𝑡)

0
𝜚(𝑟)2𝜋𝑟𝑑𝑟. (B.2)

This yields

𝑚(𝑡) =
2𝑟ℎ𝑝𝑐
𝑟2𝑚 ∫

𝑅(𝑡)

0
𝑟1−ℎ𝑑𝑟, (B.3)

which reduces to

𝑚(𝑡) =
2𝑟ℎ𝑝𝑐
𝑟2𝑚

𝑅2−ℎ

2 − ℎ
. (B.4)

Since we want 𝑚 > 0, we will take 0 ≤ ℎ < 2, then

(𝑡) =

(

1 − ℎ
2

𝑟ℎ𝑝𝑐

)

1
2−ℎ

𝑟
2

2−ℎ
𝑚 (𝑚(𝑡))

1
2−ℎ . (B.5)

When ℎ = 0 the result Eq. (14) is recovered. As an example, some
experimental results showed 𝑚 ∝ 𝑅0.4 as a minimum exponent (Li
et al., 2016) which corresponds to ℎ = 1.6. Results for selected values
of 0 ≤ ℎ < 2 are depicted in Fig. B.13. Note that, as discussed in
Section 4.1, the polymerization reaction rate constants 𝑘𝑓𝑖 and 𝑘𝑓𝑔 can
be adjusted to account for this change in fiber radius.

Next, the new density function Eq. (B.1) must be included in
Eq. (17):

∫

𝑅

𝑟𝑚

2𝜋𝑟
𝑎0

𝜚(𝑟)𝑛(𝑟)𝑑𝑟 = 0. (B.6)

Then, the equation becomes

cos2 𝛼 ∫

𝑅

𝑟𝑚
𝑟−1−ℎ𝑑𝑟 = 𝜅0 ∫

𝑅

𝑟𝑚
𝑟−ℎ𝑑𝑟. (B.7)

Now, the solution to this integral equation also will depend on the value
of ℎ > 0. If ℎ = 0, then the integral on the left would become

𝑅
𝑟−1𝑑𝑟 = ln

(

𝑅
)

; (B.8)
∫𝑟𝑚 𝑟𝑚
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Fig. B.13. Effect of modifying the assumption of uniform density of protofibrils per
iber cross-section to be non-uniform. Effect on the fiber radius 𝑅. Recall that ℎ = 0 is

the uniform density assumed in the main text.

if ℎ = 1, the above would be the solution for the integral on the right;
and if ℎ is anything else, then the integral would become

∫

𝑅

𝑟𝑚
𝑟−ℎ𝑑𝑟 = 𝑅1−ℎ − 𝑟1−ℎ𝑚 . (B.9)

Thus, the solution is

cos2 𝛼𝑠 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜅0
𝑅−𝑟𝑚
ln
(

𝑅
𝑟𝑚

) , ℎ = 0

𝜅0
ln
(

𝑅
𝑟𝑚

)

𝑅−1−𝑟−1𝑚
, ℎ = 1

𝜅0
𝑅1−ℎ−𝑟1−ℎ𝑚
𝑅−ℎ−𝑟−ℎ𝑚

, otherwise.

(B.10)

For the value of ℎ = 0, the uniform density assumed previously, this
educes to Eq. (20).

Similarly, Eq. (21) would become

= ∫

𝑅

𝑟𝑚

2𝜋𝑟
𝑎0

𝜚(𝑟)𝑛(𝑟)𝑑𝑟, (B.11)

or which the solution is
(

𝜆𝑒, 𝑅(𝑡)
)

= 2𝜋
𝑎0

𝐾𝑏 sin 𝛼𝑒

×

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑟ℎ𝑝𝑐
(

𝜅0
(

𝑅 − 𝑟𝑚
)

− cos2 𝛼𝑒 ln
(

𝑅
𝑟𝑚

))

, ℎ = 0

𝑟ℎ𝑝𝑐
(

𝜅0 ln
(

𝑅
𝑟𝑚

)

− cos2 𝛼𝑒
(

𝑅−1 − 𝑟−1𝑚
)

)

, ℎ = 1

𝑟ℎ𝑝𝑐
(

𝜅0
(

𝑅1−ℎ − 𝑟1−ℎ𝑚

)

− cos2 𝛼𝑒
(

𝑅−ℎ − 𝑟−ℎ𝑚
))

, otherwise.

(B.12)

gain, for ℎ = 0, the uniform density assumed previously, this reduces
o Eq. (22).

ppendix C. Force in helical rods

Since it has been observed (Weisel et al., 1987; Zhmurov et al.,
018) that both protofibrils and fibrin fibers are comprised of smaller
nits helically twisted around a central stem, the derivation for the
orce in a helical fiber is presented here.

A circular helix of radius 𝑟 and pitch 𝑝 with right-handed chirality
an be described in lab-frame Cartesian coordinates as

(𝜁 ) = 𝑟 cos(𝜁 )𝐞1 + 𝑟 sin(𝜁 )𝐞2 +
( 𝑝
2𝜋

)

𝜁𝐞3, (C.1)

nd we denote

1 =
|

|

𝑑𝐫(𝜁 ) |
| =

√

𝑟2 +
( 𝑝 )2

(C.2)
17

𝜂 |

|
𝑑𝜁 |

|
2𝜋 𝐟
for simplicity. If 𝑠(𝜁 ) is an arc-length coordinate along the contour of
he helix, then

(𝜁 ) = ∫

𝜁

0

|

|

|

|

𝑑𝐫(𝜎)
𝑑𝜎

|

|

|

|

𝑑𝜎 =
𝜁
𝜂
, (C.3)

and the helix can be rewritten as

𝐫(𝑠) = 𝑟 cos(𝜂𝑠)𝐞1 + 𝑟 sin(𝜂𝑠)𝐞2 +
( 𝑝
2𝜋

)

𝜂𝑠𝐞3. (C.4)

The tangent to the helix is given as

𝐭̂(𝑠) = 𝑑𝐫(𝑠)
𝑑𝑠

= −𝑟𝜂 sin(𝜂𝑠)𝐞1 + 𝑟𝜂 cos(𝜂𝑠)𝐞2 +
( 𝑝
2𝜋

)

𝜂𝐞3, (C.5)

hich is clearly a unit vector since

𝐭̂(𝑠)|2 = 𝜂2
(

𝑟2 +
( 𝑝
2𝜋

)2
)

= 1. (C.6)

e can define the curvature

=
|

|

|

|

|

𝑑 𝐭̂(𝑠)
𝑑𝑠

|

|

|

|

|

= 𝑟𝜂2 (C.7)

nd unit normal vector

̂ (𝑠) = 1
𝜅

(

𝑑 𝐭̂(𝑠)
𝑑𝑠

)

= −cos(𝜂𝑠)𝐞1 − sin(𝜂𝑠)𝐞2 + 0𝐞3, (C.8)

rom which we can also define the unit binormal vector
̂ (𝑠) = 𝐭̂(𝑠) × 𝝂̂(𝑠) =

( 𝑝
2𝜋

)

𝜂 sin(𝜂𝑠)𝐞1 −
( 𝑝
2𝜋

)

𝜂 cos(𝜂𝑠)𝐞2 + 𝑟𝜂𝐞3 (C.9)

nd right-handed torsion

= (𝐭̂ × 𝝂̂) ⋅ 𝑑𝝂̂
𝑑𝑠

=
( 𝑝
2𝜋

)

𝜂2. (C.10)

Note that for a helix with left chirality, for example 𝐫(𝑠) = 𝑟 sin(𝜂𝑠)𝐞1 +
cos(𝜂𝑠)𝐞2 +

(

𝑝
2𝜋

)

𝜂𝑠𝐞3, the right-handed torsion is 𝜏 = −
(

𝑝
2𝜋

)

𝜂2, but
with the given definitions the difference has no other effect.) From here
it is clear that

𝜅2 + 𝜏2 = 𝜂2 (C.11)

and thus

𝑟 = 𝜅
𝜅2 + 𝜏2

(C.12)
( 𝑝
2𝜋

)

= 𝜏
𝜅2 + 𝜏2

. (C.13)

It can be verified that the three vectors 𝐭̂(𝑠), 𝝂̂(𝑠), and 𝜷̂(𝑠) are orthonor-
al, and that the Frenet–Serret theorem

𝑑
𝑑𝑠

⎡

⎢

⎢

⎣

𝐭̂(𝑠)
𝝂̂(𝑠)
𝜷̂(𝑠)

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

0 𝜅 0
−𝜅 0 𝜏
0 −𝜏 0

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝐭̂(𝑠)
𝝂̂(𝑠)
𝜷̂(𝑠)

⎤

⎥

⎥

⎦

(C.14)

olds. As such, it is logical to express the lab-frame in the Frenet frame,
sing the transformations

𝐭̂(𝑠)
𝝂̂(𝑠)
𝜷̂(𝑠)

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

−𝑟𝜂 sin(𝜂𝑠) 𝑟𝜂 cos(𝜂𝑠)
(

𝑝
2𝜋

)

𝜂
−cos(𝜂𝑠) − sin(𝜂𝑠) 0

(

𝑝
2𝜋

)

𝜂 sin(𝜂𝑠) −
(

𝑝
2𝜋

)

𝜂 cos(𝜂𝑠) 𝑟𝜂

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝐞1
𝐞2
𝐞3

⎤

⎥

⎥

⎦

(C.15)

⎡

⎢

⎢

⎣

𝐞1
𝐞2
𝐞3

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

−𝑟𝜂 sin(𝜂𝑠) − cos(𝜂𝑠)
(

𝑝
2𝜋

)

𝜂 sin(𝜂𝑠)

𝑟𝜂 cos(𝜂𝑠) − sin(𝜂𝑠) −
(

𝑝
2𝜋

)

𝜂 cos(𝜂𝑠)
(

𝑝
2𝜋

)

𝜂 0 𝑟𝜂

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝐭̂(𝑠)
𝝂̂(𝑠)
𝜷̂(𝑠)

⎤

⎥

⎥

⎦

. (C.16)

aving described the kinematics of a helical rod we now want to
xamine equilibria with curvature 𝜅 and torsion 𝜏, both independent
f 𝑠. It is assumed that the helical rod can carry forces and moments
nd that it is acted upon by body forces and body moments. The goal
s to find the force and moment in the helical rod, given 𝜅, 𝜏, and the
ody forces and body moments. In the Frenet frame, the body force per
nit length on the helix, assumed independent of position on the helix
, can be written

̂ ̂ ̂
= 𝑓𝑡𝐭 + 𝑓𝜈𝝂 + 𝑓𝛽𝜷, (C.17)
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⎢

⎢

⎣
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𝜏
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and the force vector at any point 𝑠 in the helix can be written

𝐧(𝑠) = 𝑛𝑡 𝐭̂ + 𝑛𝜈 𝝂̂ + 𝑛𝛽 𝜷̂. (C.18)

he balance of forces requires
𝑑𝐧(𝑠)
𝑑𝑠

+ 𝐟 = 0, (C.19)

hich, using the Frenet–Serret theorem Eq. (C.14), reduces to
𝑑𝑛𝑡
𝑑𝑠

− 𝑛𝜈𝜅 + 𝑓𝑡 = 0 (C.20)
𝑑𝑛𝜈
𝑑𝑠

− 𝑛𝛽𝜏 + 𝑛𝑡𝜅 + 𝑓𝜈 = 0 (C.21)
𝑑𝑛𝛽
𝑑𝑠

+ 𝑛𝜈𝜏 + 𝑓𝛽 = 0. (C.22)

ifferentiating Eq. (C.21) with respect to 𝑠, and substituting in for 𝑑𝑛𝑡
𝑑𝑠

from Eq. (C.20) and 𝑑𝑛𝛽
𝑑𝑠 from Eq. (C.22), results in

𝑑2𝑛𝜈
𝑑𝑠2

+ 𝜂2𝑛𝜈 + (𝜏𝑓𝛽 − 𝜅𝑓𝑡) = 0, (C.23)

hich has solution

𝜈(𝑠) = 𝐴 cos(𝜂𝑠) + 𝐵 sin(𝜂𝑠) − 1
𝜂2

(𝜏𝑓𝛽 − 𝜅𝑓𝑡), (C.24)

where 𝐴 and 𝐵 are two constants. Putting Eq. (C.24) into Eqs. (C.20)
and (C.22), we have
𝑑𝑛𝑡
𝑑𝑠

= 𝐴𝜅 cos(𝜂𝑠) + 𝐵𝜅 sin(𝜂𝑠) − 𝜅
𝜂2

(𝜏𝑓𝛽 − 𝜅𝑓𝑡) − 𝑓𝑡 (C.25)

𝑑𝑛𝛽
𝑑𝑠

= −𝐴𝜏 cos(𝜂𝑠) − 𝐵𝜏 sin(𝜂𝑠) + 𝜏
𝜂2

(𝜏𝑓𝛽 − 𝜅𝑓𝑡) − 𝑓𝛽 , (C.26)

which can be integrated with respect to 𝑠 to get

𝑛𝑡 =
𝐴𝜅
𝜂

sin(𝜂𝑠) − 𝐵𝜅
𝜂

cos(𝜂𝑠) − 𝜅𝑠
𝜂2

(𝜏𝑓𝛽 − 𝜅𝑓𝑡) − 𝑓𝑡𝑠 +𝐷𝑡 (C.27)

𝛽 = −𝐴𝜏
𝜂

sin(𝜂𝑠) + 𝐵𝜏
𝜂

cos(𝜂𝑠) + 𝜏𝑠
𝜂2

(𝜏𝑓𝛽 − 𝜅𝑓𝑡) − 𝑓𝛽𝑠 +𝐷𝛽 , (C.28)

where 𝐷𝑡 and 𝐷𝛽 are arbitrary constants. Substituting Eqs. (C.27),
(C.24), and (C.28) into Eq. (C.21) yields

𝑓𝜈 = 𝜏𝐷𝛽 − 𝜅𝐷𝑡. (C.29)

It is useful to recast the force balance in the directors 𝐝𝑖, 𝑖 = 1, 2, 3
of a material frame in the reference configuration of the circular cross-
section of the rod comprising the helix. This frame is a rotation by an
angle

𝜙(𝑠) =
(

𝜅3 − 𝜏
)

𝑠 (C.30)

bout the normal vector 𝐭̂, where 𝜅3 is a constant. In this frame,

𝐝1(𝑠)
𝐝2(𝑠)
𝐝3(𝑠)

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

0 cos𝜙 sin𝜙
0 − sin𝜙 cos𝜙
1 0 0

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝐭̂(𝑠)
𝝂̂(𝑠)
𝜷̂(𝑠)

⎤

⎥

⎥

⎦

, (C.31)

nd
𝐭̂(𝑠)
𝝂̂(𝑠)
𝜷̂(𝑠)

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

0 0 1
cos𝜙 − sin𝜙 0
sin𝜙 cos𝜙 0

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝐝1(𝑠)
𝐝2(𝑠)
𝐝3(𝑠)

⎤

⎥

⎥

⎦

. (C.32)

The material frame also has the property
𝑑𝐝𝑖
𝑑𝑠

= 𝜿 × 𝐝𝑖, 𝑖 = 1, 2, 3, (C.33)

here the curvature vector can be represented

= 𝜅1𝐝1 + 𝜅2𝐝2 + 𝜅3𝐝3, (C.34)

r, in the Frenet frame, as

=
(

𝜅1 cos𝜙 − 𝜅2 sin𝜙
)

𝝂̂ +
(

𝜅1 sin𝜙 + 𝜅2 cos𝜙
)

𝜷̂ + 𝜅3 𝐭̂ (C.35)

= 𝜅3 𝐭̂ + 𝜅𝜷̂, (C.36)
18
with

𝜅1 = 𝜅 sin
((

𝜅3 − 𝜏
)

𝑠
)

(C.37)

𝜅2 = 𝜅 cos
((

𝜅3 − 𝜏
)

𝑠
)

(C.38)

𝜅3 = constant. (C.39)

We next analyze the moments. The balance of moments can be
expressed as
𝑑𝐦
𝑑𝑠

+ 𝐭̂ × 𝐧 + 𝓵 = 𝟎, (C.40)

where 𝐦 is the moment at any point on the helix and 𝓵 is a body
moment per unit arc length. Following the example of Nizette and
Goriely (1999), to relate the moment 𝐦 and the curvature vector 𝜿, we
use the constitutive relation from linear elasticity for a rod of circular
cross section

𝐦 = 𝐾𝑏
(

𝜅1 − 𝜅01
)

𝐝1 +𝐾𝑏
(

𝜅2 − 𝜅02
)

𝐝2 +𝐾𝑡
(

𝜅3 − 𝜅03
)

𝐝3, (C.41)

where

𝐾𝑏 = 𝐸 𝜋𝑟4

4
(C.42)

is the bending modulus with 𝐸 the Young’s modulus of the rod,

𝐾𝑡 = 𝐺𝜋𝑟4

2
(C.43)

is the twisting modulus with 𝐺 the shear modulus of the rod, and

𝜅01 = 𝜅0 sin
(

(𝜅3 − 𝜏)𝑠
)

, (C.44)

𝜅02 = 𝜅0 cos
(

(𝜅3 − 𝜏)𝑠
)

, (C.45)

𝜅03, and 𝜅0 are the spontaneous curvatures of the helix in the stress-free
state. In the Frenet frame, the constitutive relation giving the moment
𝐦 can be written

𝐦 = 𝐾𝑏
(

𝜅 − 𝜅0
)

𝜷̂ +𝐾𝑡
(

𝜅3 − 𝜅03
)

𝐭̂. (C.46)

As in Nizette and Goriely (1999), we also take the body moment

𝓵 = 𝟎. (C.47)

Now, the balance of moments reduces to the following three equations:

𝐾𝑡
𝑑𝜅3
𝑑𝑠

= 0 (C.48)

𝐾𝑡
(

𝜅3 − 𝜅03
)

𝜅 −𝐾𝑏
(

𝜅 − 𝜅0
)

𝜏 − 𝑛𝛽 = 0 (C.49)

𝑛𝜈 = 0, (C.50)

recalling that

𝜅 = 𝑟

𝑟2 +
(

𝑝
2𝜋

)2
, (C.51)

𝜅0 =
𝑟0

𝑟20 +
(

𝑝0
2𝜋

)2
, (C.52)

and 𝜅03 are constants. Eq. (C.48) shows that 𝜅3 is constant, and
Eq. (C.49) shows that

𝑛𝛽 = 𝐾𝑡
(

𝜅3 − 𝜅03
)

𝜅 −𝐾𝑏
(

𝜅 − 𝜅0
)

𝜏, (C.53)

which is therefore also a constant. Combining Eq. (C.50) with Eq.
(C.24), we have

0 = 𝐴 cos(𝜂𝑠) + 𝐵 sin(𝜂𝑠) − 1
𝜂2

(𝜏𝑓𝛽 − 𝜅𝑓𝑡) ∀𝑠. (C.54)

n order for this equation to be true for all 𝑠, we must conclude that

𝐴 = 𝐵 = 0, (C.55)

𝑓𝛽 = 𝜅𝑓𝑡. (C.56)

sing these conclusions, Eqs. (C.27) and (C.28) become

𝑛 = 𝐷 − 𝑓 𝑠 (C.57)
𝑡 𝑡 𝑡
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𝛽 = 𝐷𝛽 − 𝑓𝛽𝑠. (C.58)

owever, since we have also Eq. (C.53) independent of 𝑠, from the last
quation we must conclude also that

𝑓𝛽 = 0 (C.59)

𝛽 = 𝑛𝛽 = 𝐾𝑡
(

𝜅3 − 𝜅03
)

𝜅 −𝐾𝑏
(

𝜅 − 𝜅0
)

𝜏. (C.60)

ince we also have Eq. (C.56), if 𝑓𝛽 = 0, we must also have

𝑡 = 0, (C.61)

nd therefore

𝑡 = 𝐷𝑡 (C.62)

s also a constant. Thus, we have

= 𝐷𝑡 𝐭̂ +
(

𝐾𝑡
(

𝜅3 − 𝜅03
)

𝜅 −𝐾𝑏
(

𝜅 − 𝜅0
)

𝜏
)

𝜷̂ (C.63)

𝐟 =
(

𝐾𝑡
(

𝜅3 − 𝜅03
)

𝜅𝜏 −𝐾𝑏
(

𝜅 − 𝜅0
)

𝜏2 − 𝜅𝐷𝑡
)

𝝂̂. (C.64)

In the material frame, the body force per unit length on the helix
an be written

= 𝑓1𝐝1 + 𝑓2𝐝2 + 𝑓3𝐝3, (C.65)

nd the force vector at any point 𝑠 in the helix can be written

(𝑠) = 𝑛1𝐝1 + 𝑛2𝐝2 + 𝑛3𝐝3. (C.66)

rom our previous analysis, we have

=
(

𝐾𝑡
(

𝜅3 − 𝜅03
)

−𝐾𝑏
(

𝜅 − 𝜅0
) 𝜏
𝜅

)

(𝜅1𝐝1 + 𝜅2𝐝2) +𝐷𝑡𝐝3 (C.67)

𝐟 =
(

𝐾𝑡
(

𝜅3 − 𝜅03
)

𝜏 −𝐾𝑏
(

𝜅 − 𝜅0
) 𝜏2

𝜅
−𝐷𝑡

)

(𝜅2𝐝1 − 𝜅1𝐝2), (C.68)

which gives us

𝑛1 =
(

𝐾𝑡
(

𝜅3 − 𝜅03
)

−𝐾𝑏
(

𝜅 − 𝜅0
) 𝜏
𝜅

)

𝜅1 (C.69)

𝑛2 =
(

𝐾𝑡
(

𝜅3 − 𝜅03
)

−𝐾𝑏
(

𝜅 − 𝜅0
) 𝜏
𝜅

)

𝜅2 (C.70)

𝑛3 = 𝐷𝑡 (C.71)

1 =
(

𝐾𝑡
(

𝜅3 − 𝜅03
)

𝜏 −𝐾𝑏
(

𝜅 − 𝜅0
) 𝜏2

𝜅
−𝐷𝑡

)

𝜅2 (C.72)

2 = −
(

𝐾𝑡
(

𝜅3 − 𝜅03
)

𝜏 −𝐾𝑏
(

𝜅 − 𝜅0
) 𝜏2

𝜅
−𝐷𝑡

)

𝜅1 (C.73)

3 = 0. (C.74)

Suppose there is a force 𝐅 = 𝐹 𝐞3 applied on the helical filament
along its axis. This applied force in the Frenet frame can be expressed

𝐅 = 𝐹 𝐞 = 𝐹
(( 𝑝 )

𝜂𝐭̂ + 𝑟𝜂𝜷̂
)

. (C.75)
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3 2𝜋
The filament will carry the force as the force vector 𝐧 = 𝐅. Thus, in the
Frenet frame, we have

𝐷𝑡 = 𝐹
( 𝑝
2𝜋

)

𝜂 (C.76)

𝑡
(

𝜅3 − 𝜅03
)

𝜅 −𝐾𝑏
(

𝜅 − 𝜅0
)

𝜏 = 𝐹𝑟𝜂. (C.77)

olving the second of these two equations for 𝐹 and substituting back
nto the first, we arrive at

𝑡 =
(

𝐾𝑡
(

𝜅3 − 𝜅03
)

−𝐾𝑏
(

𝜅 − 𝜅0
) 𝜏
𝜅

)

𝜏. (C.78)

Thus, the body force per unit length on the helix and the force vector
at any point 𝑠 on the helix become

𝐟 = 𝟎 (C.79)

𝐧 =
(

𝐾𝑡
(

𝜅3 − 𝜅03
)

−𝐾𝑏
(

𝜅 − 𝜅0
) 𝜏
𝜅

)

(𝜅1𝐝1 + 𝜅2𝐝2 + 𝜏𝐝3). (C.80)

In the case when 𝜅0 = 𝜅03 = 0, the force vector

𝐧
𝐾𝑏

=
(

𝐾𝑡
𝐾𝑏

𝜅3 − 𝜏
)

[𝜿 − (𝜅3 − 𝜏)𝐝3] (C.81)

rom Nizette and Goriely (1999) is recovered.
The magnitude of the force vector is

=
|

|

|

|

(

𝐾𝑡
(

𝜅3 − 𝜅03
)

−𝐾𝑏
(

𝜅 − 𝜅0
) 𝜏
𝜅

)

|

|

|

|

𝜂. (C.82)

In the main text we assume there is no twisting moment acting on the
helix, so 𝐾𝑡(𝜅3 − 𝜅03) = 0.

Appendix D. Distribution of fibrin fiber lengths

Fig. D.14(a) depicts the probability distribution of fiber lengths in a
fibrin network, as found in Kim et al. (2014). The probability density
function is a log-normal distribution function of 𝑙 with parameters
𝜇 = 0.53 and 𝜎 = 0.78, as found in Kim et al. (2014). Fig. D.14(b)
depicts the probability density of 𝑙 vs. the peak stress 𝑇𝑅𝑧𝑧 from the
simulations utilizing that 𝑙 as an input parameter, with the radius for
that given 𝑙 calculated by

𝑅 =
√

𝜙𝑠
𝜈𝜋𝑙

, (D.1)

where the density 𝜈 = 0.1 μm−3, as measured in Kim et al. (2016),
and 𝑇𝑅𝑧𝑧 is also calculated using 𝜈 = 0.1 μm−3 from Kim et al. (2016).

he mean value of 𝑇𝑅𝑧𝑧 is 1.21 Pa. This mean value is roughly of the
ame order of magnitude as the network Piola stresses 𝑇𝑅𝑧𝑧 calculated

from the simulations in Fig. 9. The stress values resulting from these
computations are also of the same order of magnitude as the values

produced by the experiments in Section 3.
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