

Convergence in Measure and τ -Compactness of τ -Measurable Operators, Affiliated with a Semifinite von Neumann Algebra

A. M. Bikchentaev^{1*}

¹Kazan Federal University,
18 Kremlyovskaya str., Kazan, 420008 Russia

Received November 15, 2019; revised November 15, 2019; accepted December 18, 2019

Abstract—Let τ be a faithful normal semifinite trace on a von Neumann algebra. We establish the Leibniz criterion for sign-alternating series of τ -measurable operators and present an analogue of the criterion of series “sandwich” series for τ -measurable operators. We prove a refinement of this criterion for the τ -compact case. In terms of measure convergence topology, the criterion of τ -compactness of an arbitrary τ -measurable operator is established. We also give a sufficient condition of 1) τ -compactness of the commutator of a τ -measurable operator and a projection; 2) convergence of τ -measurable operator and projection commutator sequences to the zero operator in the measure τ .

DOI: 10.3103/S1066369X20050096

Key words: *Hilbert space, von Neumann algebra, normal trace, measurable operator, topology of convergence in measure, series of operators, τ -compact operator.*

Introduction. Let τ be a faithful normal semifinite trace on a von Neumann algebra \mathcal{M} . Measure topology t_τ on the $*$ -algebra $S(\mathcal{M}, \tau)$ of all τ -measurable operators plays an important part in the I. Segal’s noncommutative integration theory [1], [2], [3]. We give characterizations of various classes of von Neumann algebras in terms of the topologies t_τ and $t_{\tau l}$ [4]; and describe operator “intervals” $I_B = \{A : -B \leq A \leq B\}$, where $A \in S(\mathcal{M}, \tau)^{\text{sa}}$ and $B \in S(\mathcal{M}, \tau)^+$ ([5]). In [6], [7] in connection with the topology t_τ , convex sets $K_B = \{A \in S(\mathcal{M}, \tau) : A^*A \leq B\}$ were investigated.

An operator $A \in S(\mathcal{M}, \tau)$ is said to be τ -essentially left invertible if there exists an operator $B \in S(\mathcal{M}, \tau)$ such that the operator $I - AB$ is τ -compact.

A sufficient condition for an operator $A \in S(\mathcal{M}, \tau)$ not to be τ -essentially left invertible is existence of a t_τ -bounded sequence $\{X_n\}_{n=1}^\infty \subset S(\mathcal{M}, \tau)$ such that

$$X_n^* \xrightarrow{\tau l} 0, \quad X_n \not\xrightarrow{\tau} 0, \quad AX_n \xrightarrow{\tau} 0 \quad (n \rightarrow \infty),$$

([8], Theorem 3.4). On τ -compactness of τ -measurable operators see [9], [10].

1. Notation and definitions. Let \mathcal{M} be a von Neumann algebra of operators in a Hilbert space \mathcal{H} , let \mathcal{M}^{pr} be the lattice of projections in \mathcal{M} . Let I be the unit of the algebra \mathcal{M} , let $P^\perp = I - P$ for $P \in \mathcal{M}^{\text{pr}}$, and let \mathcal{M}^+ be the cone of positive elements from \mathcal{M} . A mapping $\varphi : \mathcal{M}^+ \rightarrow [0, +\infty]$ is called a *trace* if $\varphi(X + Y) = \varphi(X) + \varphi(Y)$, $\varphi(\lambda X) = \lambda \varphi(X)$ for all $X, Y \in \mathcal{M}^+$, $\lambda \geq 0$ (here $0 \cdot (+\infty) \equiv 0$) and $\varphi(Z^*Z) = \varphi(ZZ^*)$ for all $Z \in \mathcal{M}$. A trace φ is said to be *faithful* if $\varphi(X) > 0$ for all $X \in \mathcal{M}^+$, $X \neq 0$; *normal* if $X_i \nearrow X$ ($X_i, X \in \mathcal{M}^+$) $\Rightarrow \varphi(X) = \sup \varphi(X_i)$; *semifinite* if $\varphi(X) = \sup\{\varphi(Y) : Y \in \mathcal{M}^+, Y \leq X, \varphi(Y) < +\infty\}$ for each $X \in \mathcal{M}^+$.

An operator on \mathcal{H} (not necessarily bounded or densely defined) is said to be *affiliated to the von Neumann algebra \mathcal{M}* if it commutes with any unitary operator from the commutant \mathcal{M}' of the algebra \mathcal{M} . Let τ be a faithful normal semifinite trace on \mathcal{M} . A closed operator X , affiliated to \mathcal{M} and possessing a domain $\mathcal{D}(X)$ everywhere dense in \mathcal{H} is said to be τ -measurable, if, for any $\varepsilon > 0$, there exists an operator $P \in \mathcal{M}^{\text{pr}}$ such that $P\mathcal{H} \subset \mathcal{D}(X)$ and $\tau(P^\perp) < \varepsilon$. The set $S(\mathcal{M}, \tau)$ of all τ -measurable operators is a $*$ -algebra under passage to the adjoint operator, multiplication

*E-mail: Airat.Bikchentaev@kpfu.ru

by a scalar, and operations of strong addition and multiplication resulting from the closure of the ordinary operations [1], [3]. For a family $\mathcal{L} \subset S(\mathcal{M}, \tau)$, let \mathcal{L}^+ and \mathcal{L}^{sa} denote its positive and Hermitian parts, respectively. The partial order in $S(\mathcal{M}, \tau)^{\text{sa}}$ generated by the cone $S(\mathcal{M}, \tau)^+$ will be denoted by \leq . If $X \in S(\mathcal{M}, \tau)$ then $|X| = \sqrt{X^* X} \in S(\mathcal{M}, \tau)^+$.

Let $\mu(X)$ stand for the *rearrangement* of the operator $X \in S(\mathcal{M}, \tau)$, i.e., nonincreasing right-continuous function $\mu(X): (0, \infty) \rightarrow [0, \infty)$, given by the formula

$$\mu_t(X) = \inf\{\|XP\| : P \in \mathcal{M}^{\text{pr}}, \tau(P^\perp) \leq t\}, \quad t > 0.$$

The set of τ -compact operators $S_0(\mathcal{M}, \tau) = \{X \in S(\mathcal{M}, \tau) : \lim_{t \rightarrow \infty} \mu_t(X) = 0\}$ is an ideal in $S(\mathcal{M}, \tau)$.

The sets $U(\varepsilon, \delta) = \{X \in S(\mathcal{M}, \tau) : (\|XP\| \leq \varepsilon \text{ and } \tau(P^\perp) \leq \delta \text{ for some } P \in \mathcal{M}^{\text{pr}})\}$, where $\varepsilon > 0$, $\delta > 0$, form a base at 0 for metrizable vector topology t_τ on $S(\mathcal{M}, \tau)$, called *the measure topology* [3].

It is well known that $\langle S(\mathcal{M}, \tau), t_\tau \rangle$ is a complete topological $*$ -algebra in which \mathcal{M} is dense. For $X_n, X \in S(\mathcal{M}, \tau)$ we write $X_n \xrightarrow{\tau} X$ if a sequence $\{X_n\}_{n=1}^\infty$ is t_τ -converges to X . By definition, a sequence $\{X_n\}_{n=1}^\infty$ converges τ -locally to $X \in S(\mathcal{M}, \tau)$ (notation: $X_n \xrightarrow{\tau l} X$) if $X_n P \xrightarrow{\tau} XP$ for all $P \in \mathcal{M}^{\text{pr}}$ with $\tau(P) < +\infty$ ([7], p. 114). For properties of such convergence, see [4], [11]–[13].

Let m be the linear Lebesgue measure on \mathbb{R} . The noncommutative Lebesgue L_1 -space associated with (\mathcal{M}, τ) can be defined as $L_1(\mathcal{M}, \tau) = \{X \in S(\mathcal{M}, \tau) : \mu(X) \in L_1(\mathbb{R}^+, m)\}$ with norm $\|X\|_1 = \|\mu(X)\|_1$, $X \in L_1(\mathcal{M}, \tau)$.

Lemma 1 ([14]). *Let $X, Y \in S(\mathcal{M}, \tau)$. Then*

- 1) $\mu_t(X) = \mu_t(|X|) = \mu_t(X^*)$ for all $t > 0$;
- 2) if $|X| \leq |Y|$ then $\mu_t(X) \leq \mu_t(Y)$ for all $t > 0$;
- 3) $\mu_{s+t}(X+Y) \leq \mu_s(X) + \mu_t(Y)$ for all $s, t > 0$;
- 4) $\mu_{s+t}(XY) \leq \mu_s(X)\mu_t(Y)$ for all $s, t > 0$;
- 5) $\mu_t(AXB) \leq \|A\|\|B\|\mu_t(X)$ for all $A, B \in \mathcal{M}$ and $t > 0$;
- 6) $\mu_t(f(|X|)) = f(\mu_t(X))$ for all continuous increasing functions $f: \mathbb{R}^+ \rightarrow \mathbb{R}^+$ and $t > 0$.

Lemma 2. *Let $A_j, A \in S(\mathcal{M}, \tau)$, $j \in J$. Then*

- 1) $A_j \xrightarrow{\tau} A \Leftrightarrow \mu_t(A_j - A) \xrightarrow{j} 0$ for every $t > 0$;
- 2) a net $\{A_j\}_{j \in J}$ is t_τ -bounded $\Leftrightarrow \sup_{j \in J} \mu_t(A_j) < +\infty$ for every $t > 0$.

If $\mathcal{M} = \mathcal{B}(\mathcal{H})$ is the $*$ -algebra of all bounded linear operators on \mathcal{H} and $\tau = \text{tr}$ is the canonical trace, then $S(\mathcal{M}, \tau)$ coincides with $\mathcal{B}(\mathcal{H})$, and $S_0(\mathcal{M}, \tau)$ coincides with the ideal $\mathfrak{S}(\mathcal{H})$ of compact operators on \mathcal{H} , τ -local convergence coincides with strong-operator (*so*-topology) convergence. We have

$$\mu_t(X) = \sum_{n=1}^{+\infty} s_n(X) \chi_{[n-1, n)}(t), \quad t > 0,$$

where $\{s_n(X)\}_{n=1}^\infty$ is the sequence of s -numbers of the operator X ([15], p. 46), χ_A is the indicator of the set $A \subset \mathbb{R}$. Then the space $L_1(\mathcal{M}, \tau)$ is a trace-class ideal $\mathfrak{S}_1(\mathcal{H})$.

2. Main results. We present operator analogs of the classical statements for functional series.

Theorem 1 (the Leibniz criterion for $S(\mathcal{M}, \tau)$). *Let $A_n \in S(\mathcal{M}, \tau)^+$ and $A_1 \geq A_2 \geq \dots \geq \geq A_n \geq \dots$, $A_n \xrightarrow{\tau l} 0$ as $n \rightarrow \infty$. Then the sign-alternating series $\sum_{n=1}^\infty (-1)^{n+1} A_n$ $t_{\tau l}$ -converges (t_τ -converges for $A_1 \in S_0(\mathcal{M}, \tau)$) and its sum does not exceed A_1 .*

Theorem 2. *Let $A_n \in S(\mathcal{M}, \tau)^+$ be such that the series $\sum_{n=1}^\infty A_n$ $t_{\tau l}$ -converges. Let $B_n \in S(\mathcal{M}, \tau)^{\text{sa}}$ be such that $-A_n \leq B_n \leq A_n$ for all $n \in \mathbb{N}$. Then the series $\sum_{n=1}^\infty B_n$ also $t_{\tau l}$ -converges.*

Theorem 3. *Let $A_n \in S_0(\mathcal{M}, \tau)^+$ be such that the series $\sum_{n=1}^\infty A_n$ t_τ -converges. Let $B_n \in S(\mathcal{M}, \tau)^{\text{sa}}$ be such that $-A_n \leq B_n \leq A_n$ for all $n \in \mathbb{N}$. Then the series $\sum_{n=1}^\infty B_n$ also t_τ -converges in $S_0(\mathcal{M}, \tau)^+$.*

Lemma 3. Consider $A_j, B_j \in S(\mathcal{M}, \tau)$, $j \in J$, and let a net $\{A_j\}_{j \in J}$ be t_τ -bounded, $B_j \xrightarrow{\tau^l} 0$. Then $A_j B_j \xrightarrow{\tau^l} 0$.

It is shown in Lemma 3.3 of [12] that if $\{A_j\}_{j \in J} \subset S(\mathcal{M}, \tau)^+$ and $A_j \xrightarrow{\tau^l} 0$ then $A_j^q \xrightarrow{\tau^l} 0$ for every $0 < q < 1$.

Proposition 1. For a t_τ -bounded net $\{A_j\}_{j \in J} \subset S(\mathcal{M}, \tau)^+$ the following conditions are equivalent:

- (i) $A_j \xrightarrow{\tau^l} 0$,
- (ii) $A_j^q \xrightarrow{\tau^l} 0$ for every $q > 0$.

Theorem 4. Let $A_n \in \mathcal{M}^+$ and $A = \sum_{n=1}^{\infty} A_n \in \mathcal{M}^+$, the series so-converges. Then for every $q > 0$ we have $A_n^q \xrightarrow{\tau^l} 0$ as $n \rightarrow \infty$.

Sketch of proof. By positive homogeneity and normality of the trace τ for $P \in \mathcal{M}^{\text{pr}}$ with $\tau(P) < +\infty$ we have

$$+\infty > \|A\|\tau(P) \geq \tau(PAP) = \sum_{n=1}^{\infty} \tau(PA_nP).$$

Since a number series converges, its common term tends to zero:

$$\tau(PA_nP) = \|PA_nP\|_1 \rightarrow 0 \text{ as } n \rightarrow \infty.$$

Since the space $\langle L_1(\mathcal{M}, \tau), \|\cdot\|_1 \rangle$ is continuously embedded to the topological algebra $\langle S(\mathcal{M}, \tau), t_\tau \rangle$, we have $PA_nP \xrightarrow{\tau} 0$ as $n \rightarrow \infty$. For every $t > 0$ by item 1) of Lemma 2 and items 1), 6) of Lemma 1 we obtain

$$\mu_t(A_n^{1/2}P)^2 = \mu_t(PA_n^{1/2} \cdot A_n^{1/2}P) = \mu_t(PA_nP) \rightarrow 0 \text{ as } n \rightarrow \infty.$$

Therefore, $A_n^{1/2}P \xrightarrow{\tau} 0$ as $n \rightarrow \infty$ via item 1) of Lemma 2. Thus, $A_n^{1/2} \xrightarrow{\tau^l} 0$ as $n \rightarrow \infty$ and we apply Lemma 3.

Corollary 1. Let $\{P_n\}_{n=1}^{\infty} \subset \mathcal{M}^{\text{pr}}$ and $P_n P_m = 0$ for $n \neq m$, $n, m \in \mathbb{N}$. Then $P_n \xrightarrow{\tau^l} 0$ as $n \rightarrow \infty$.

Theorem 5. For an operator $A \in S(\mathcal{M}, \tau)$ the following conditions are equivalent:

- (i) $A \in S_0(\mathcal{M}, \tau)$,
- (ii) $X_n A \xrightarrow{\tau} 0$ ($n \rightarrow \infty$) for all t_τ -bounded sequences $\{X_n\}_{n=1}^{\infty} \subset S(\mathcal{M}, \tau)$ such that $X_n \xrightarrow{\tau^l} 0$ ($n \rightarrow \infty$).

Sketch of proof. (ii) \Rightarrow (i) If an operator A is not τ -compact then $a := \lim_{t \rightarrow \infty} \mu_t(A) > 0$. Since the trace τ is semifinite, there exists a sequence $\{P_n\}_{n=1}^{\infty}$ of pairwise orthogonal projections in \mathcal{M} and a number $b > 0$ such that $0 < b \leq \tau(P_n) < +\infty$ and $aP_n \leq A$ for all $n \in \mathbb{N}$ (see [5], Proposition 4.1). We multiply both sides of the relation $aP_n \leq A$ by the projection P_n from the left and the right and obtain $aP_n \leq P_nAP_n$ for all $n \in \mathbb{N}$. Then

$$\mu_t(P_nA) \geq \mu_t(P_nAP_n) \geq \mu_t(aP_n) = a\mu_t(P_n) \geq a\chi_{(0,b)}(t) \text{ for all } t > 0$$

by items 2), 5) of Lemma 1. Thus $P_n \xrightarrow{\tau^l} 0$ ($n \rightarrow \infty$) by Corollary 1, but the sequence $\{P_nA\}_{n=1}^{\infty}$ is not t_τ -convergent by item 1) of Lemma 2.

Let $T, P \in S(\mathcal{M}, \tau)$ and $P = P^2$. If the commutator $[T, P]$ belongs to $S_0(\mathcal{M}, \tau)$ then $TP - PTP = [T, P]P \in S_0(\mathcal{M}, \tau)$.

Theorem 6. Let $T \in S(\mathcal{M}, \tau)$ and $P \in \mathcal{M}^{\text{pr}}$ be such that $PTT^*P \leq TPT^*$.

- (i) If $TP - PTP \in S_0(\mathcal{M}, \tau)$ then $[T, P] \in S_0(\mathcal{M}, \tau)$.
- (ii) If $TP = PTP$ then $[T, P] = 0$.

Sketch of proof. (i) Since $X = TP - PTP \in S_0(\mathcal{M}, \tau)$, we have $X^* = PT^* - PT^*P \in S_0(\mathcal{M}, \tau)$ and

$$|[T, P]^*|^2 = (TP - PT)(PT^* - T^*P) = TPT^* - T \cdot PT^*P - PTP \cdot T^* + PTT^*P \leq$$

$$\leq TPT^* - T(PT^* - X^*) - (TP - X)T^* + TPT^* = TX^* + XT^* \in S_0(\mathcal{M}, \tau)^+.$$

Then by items 1), 2), 6) of Lemma 1 we obtain

$$0 \leq \mu_t([T, P]) = \mu_t(|[T, P]^*|^2)^{1/2} \leq \mu_t(TX^* + XT^*)^{1/2} \rightarrow 0 \text{ as } t \rightarrow \infty.$$

Thus, $[T, P] \in S_0(\mathcal{M}, \tau)$.

Note that if a hyponormal operator $T \in S(\mathcal{M}, \tau)$ and $P \in \mathcal{M}^{\text{pr}}$ are such that the operator TP is cohyponormal then $PTT^*P \leq TPT^*$.

Proposition 2. *Let $P, T_n \in S(\mathcal{M}, \tau)$ and $P^2 = P$.*

- (i) *If $[T_n, P] \xrightarrow{\tau} 0$ as $n \rightarrow \infty$ then $T_nP - PT_nP \xrightarrow{\tau} 0$ as $n \rightarrow \infty$.*
- (ii) *If $[T_n, P] \xrightarrow{\tau^l} 0$ as $n \rightarrow \infty$ then $T_nP - PT_nP \xrightarrow{\tau^l} 0$ as $n \rightarrow \infty$.*

Theorem 7. *Let a τ -bounded sequence $\{T_n\}_{n=1}^{\infty} \subset S(\mathcal{M}, \tau)$ and $P \in \mathcal{M}^{\text{pr}}$ be such that $PT_nT_n^*P \leq T_nPT_n^*$ for all $n \in \mathbb{N}$. If $T_nP - PT_nP \xrightarrow{\tau} 0$ as $n \rightarrow \infty$ then $[T_n, P] \xrightarrow{\tau} 0$ as $n \rightarrow \infty$.*

Theorem 8. *If an operator $A \in L_1(\mathcal{M}, \tau)$ anticommutes with some invertible operator $T \in \mathcal{M}$ then $\tau(A) = 0$.*

Corollary 2. *If $\tau(I) = 1$ then in conditions of Theorem 8 we have $\|I + zA\|_1 \geq 1$ for all $z \in \mathbb{C}$.*

FUNDING

The research was funded by the subsidy allocated to Kazan Federal University for the state assignment in the sphere of scientific activities, project 1.13556.2019/13.1.

REFERENCES

1. Segal, I.E. "A non-commutative extension of abstract integration", *Ann. Math.* **57** (3), 401–457 (1953).
2. Takesaki, M. *Theory of operator algebras. V. II*. Encyclopaedia of mathematical sciences, 125 (Springer, Berlin, 2003).
3. Nelson, E. "Notes on non-commutative integration", *J. Funct. Anal.* **15** (2), 103–116 (1974).
4. Bikchentaev, A.M. "Local convergence in measure on semifinite von Neumann algebras. II", *Math. Notes* **82** (5-6), 703–707 (2007).
5. Bikchentaev, A.M., Sukochev, F.A. "When weak and local measure convergence implies norm convergence", *J. Math. Anal. Appl.* **473** (2), 1414–1431 (2019).
6. Stinespring, W.F. "Integration theorems for gages and duality for unimodular groups", *Trans. Amer. Math. Soc.* **90** (1), 15–56 (1959).
7. Ciach, L.J. "Some remarks on the convergence in measure and on a dominated sequence of operators measurable with respect to a semifinite von Neumann algebra", *Colloq. Math.* **55** (1), 109–121 (1988).
8. Bikchentaev, A.M. "On τ -essentially invertibility of τ -measurable operators", *Internat. J. Theor. Phys.* DOI: 0.1007/s10773-019-04111-w.
9. Sonis, M.G. "A certain class of operators in von Neumann algebras with Segal's measure on the projectors", (Russian) *Mat. Sb. (N.S.)* **84** (3), 353–368 (1971).
10. Stroh, A., West, P.G. " τ -compact operators affiliated to a semifinite von Neumann algebra", *Proc. Roy. Irish Acad. Sect. A* **93** (1), 73–86 (1993).
11. Bikchentaev, A.M. "The continuity of multiplication for two topologies associated with a semifinite trace on von Neumann algebra", *Lobachevskii J. Math.* **14**, 17–24 (2004).
12. Bikchentaev, A.M. "Local convergence in measure on semifinite von Neumann algebras", *Proc. Steklov Inst. Math.* **255**, 35–48 (2006).
13. Chilin, V.I., Muratov, M.A. "Comparison of topologies on $*$ -algebras of locally measurable operators", *Positivity* **17** (1), 111–132 (2013).
14. Fack, T., Kosaki, H. "Generalized s -numbers of τ -measurable operators", *Pacific J. Math.* **123** (2), 269–300 (1986).
15. Gohberg, I.C., Krein, M.G. *Introduction to the theory of linear non-selfadjoint operators in Hilbert space* (Nauka, Moscow, 1965) [in Russian].