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As for the non-stationary initial ‘hot’ stage of the universe evolution, the same gravitating
neutrino-antineutrino conglomerate might be regarded as a seed material for the Pervushin
‘dilaton fabric’ producing intermediate vector bosons [2]. This will be the case if colliding
radial beams of tachyon neutrinos and antineutrinos in the central domain of super-strong
gravitational field could be reprocessed into vector bosons and leptons, ν + ν̄ →W+ +W−,
ν + ν̄ → Z, ν + ν̄ → e+ +e−, with the subsequent evolution close to the standard scenario.
It should be noted that existence of the primary tachyon neutrino DM background
considered here does not imply by itself that the secondary (ordinary) neutrinos (produced
at the cosmilogical temperatures about a few MeV from leptons annihilation) must be of
tachyonic nature as well, and today we cannot exclude the possibility of production of
the rest of neutrinos in bradyonic states (especially in case of presumed thermodynamic
reversibility of reactions).

So far, if secondary bradyonic neutrinos do exist in nature the standard cosmological
scenario (monitoring the local thermodynamic equilibrium) is not altered essentially but
supplemented with the effects of the primordial background of practically (in stationary
regime) sterile tachyon neutrino dark matter.
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Аннотация. Рассмотрен эффект самодействия заряда, являющегося источником массивного неми-
нимально связанного с кривизной скалярного поля в длинной горловине. Показано, что эффект
в рассматриваемом приближении не зависит от геометрии пространства-времени вдали от такой
горловины.

Введение

Хорошо известным фактом классической электродинамики является утверждение о
том, что движение точечного заряда определяется взаимодействием заряда с полем,
которое он создает. Этот эффект (называемый самодействием или радиационной ре-
акцией) связан с нелокальной структурой поля, источником которого является заряд.
Первые исследования в этой области были сфокусированы на самоускорении элек-
трически заряженных точечных частиц в плоском пространстве-времени [1]. В даль-



ТЕЗИСЫ МЕЖДУНАРОДНОЙ КОНФЕРЕНЦИИ GR-XV 189

нейшем ДеВитт, Брем и Хоббс [2, 3, 4] получили формальные выражения для силы
самодействия на электрический заряд в искривленном пространстве-времени. Мино,
Сасаки, Танака [5] и, независимо, Куин и Уолд [6] получили аналогичные выражения
для гравитационной силы самодействия на точечную массу. Сила самодействия на
скалярный заряд, взаимодействующий с собственным безмассовым минимально свя-
занным с кривизной скалярным полем, была рассмотрена Куином в работе [7]. Хотя
формальные аналитические выражения для различных типов силы самодействия
хорошо известны, вычисления явных выражений требуют значительных усилий, ко-
торые были осуществлены, в основном, на фоне пространств-времен черных дыр.
Эти усилия связаны, в основном, с подготовкой гравитационно-волновых детекто-
ров, таких как LISA, способных детектировать гравитационные волны, излучаемые
компактным объектом, падающим на супермассивную черную дыру.

В отличие от случая плоского пространства-времени, сила самодействия может
быть не нулевой даже для статического заряда на искривленном фоне. Было так-
же показано, что эта сила может быть не нулевой для статического заряда в плос-
ких пространствах-временах топологических дефектов [8, 9, 10, 11]. В искривленных
пространствах-временах с нетривиальной топологической структурой исследования
эффекта самодействия имеют дополнительные интересные черты [12, 13, 14, 15, 16].
В этой главе эффект самодействия рассматривается для покоящихся зарядов в ста-
тических пространствах-временах. Это означает, что задача сводится к отысканию
функции Грина трёхмерного искривлённого пространства. Целью этой работы яв-
ляется изучение силы самодействия на статический заряд, являющийся источником
массивного неминимально связанного с кривизной скалярного поля, в пространстве-
времени, называемом длинной горловиной.

На протяжении всей работы мы используем единицы c = G = 1.

Общие принципы

Рассмотрим уравнение для скалярного безмассового поля с источником

ϕ ;µ
;µ − (ξ R+m2)ϕ = −J = −4πq

∫
δ (4)(x− x0(τ))

dτ√
−g(4)

, (1)

где ξ - константа связи скалярного поля массы m с кривизной R, g(4) - детерминант
метрики gµν , q - скалярный заряд и τ - его собственное время. Мировая линия заряда
определяется функциями x̃µ(τ).

Метрика статического пространство-времени может быть представлена в виде:

ds2 = gtt(xi)dt2 +g jk(xi)dx jdxk, (2)

где i, j,k = 1,2,3. Это означает, что можно написать уравнение поля следующим об-
разом:

1
√−gtt

√
g(3)

∂
∂x j

(√−gtt

√
g(3)g jk ∂ϕ(xi; x̃i)

∂xk

)
− (ξ R(x)+m2)ϕ(xi; x̃i)

= −4πqδ (3)(xi, x̃i)√
g(3)

, (3)
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где g(3) = detgi j и мы примем во внимание, что dτ/dt =
√

gtt для покоящейся (ста-
тической) частицы. Процедура оценки силы самодействия требует перенормировки
скалярного потенциала ϕ(x; x̃), который расходится в пределе x → x̃ (см., например,
[17, 18]).

Эта перенормировка может быть достигнута путем вычитания из ϕ(x; x̃) контрчле-
на ДеВитта-Швингера ϕDS(x; x̃) и затем устремляя x → x̃ [19]:

ϕren(x) = lim
x̃→x

[ϕ(x; x̃)−ϕDS(x; x̃)] , (4)

где

ϕDS(xi; x̃i) = q
(

1√
2σ

+
∂gtt(x̃)

∂ x̃i
σ i

4gtt(x̃)
√

2σ
−m

)
, (5)

σ - половина квадрата расстояния между точками x и x̃ вдоль кратчайшей геодези-
ческой, соединяющей их.

σ =
gi j(x̃)

2
σ iσ j (6)

- это половина квадрата расстояния между точками x̃i и xi вдоль кратчайшей геоде-
зической, соединяющей их, и (см., например, [20, 21])

σ i = −
(
xi − x̃i)− 1

2
Γi

jk
(
x j − x̃ j)(xk − x̃k

)

−1
6

(
Γi

jmΓm
kl +

∂Γi
jk

∂ x̃l

)
(
x j − x̃ j)(xk − x̃k

)(
xl − x̃l

)
+O

(
(x− x̃)4

)
, (7)

символы Кристоффеля Γi
jk вычисляются в точке x̃.

Наконец сила самодействия, действующая на статический заряд это

fi(x) = −q
2

∇iϕren(x). (8)

ВКБ аппроксимация для силы самодействия

Метрика статического сферического симметричного пространства-времени рассмат-
ривается ниже

ds2 = − f (ρ)dt2 +dρ2 + r2(ρ)
(
dθ 2 + sin2 θ dφ2) . (9)

В этом пространстве-времени уравнение (3) может быть переписан в виде
[

∂ 2

∂ρ2 +

(
f ′

2 f
+

(r2)′

r2

)
∂

∂ρ
+

∂ 2

∂θ 2 + cotθ
∂

∂θ
+

∂ 2

∂φ2 − (ξ R+m2)
]

ϕ(ρ ,θ ,φ; ρ̃ , θ̃ , φ̃)

= −4πqδ (ρ, ρ̃)δ (θ , θ̃)δ (φ, φ̃)

r2 sinθ
.(10)

Благодаря сферической симметрии рассматриваемой задачи, мы представляем по-
тенциал в виде

ϕ(xα ; x̃α) = q
∞

∑
l=0

(2l +1)Pl(cosγ)gl(ρ , ρ̃), (11)
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где cosγ ≡ cosθ cos θ̃ + sinθ sin θ̃ cos(φ − φ̃) и gl(ρ, ρ̃) удовлетворяют уравнению

g′′
l +

(
f ′

2 f
+

(r2)′

r2

)
g′

l −
[

l(l +1)

r2 +m2 +ξ R
]

gl = −δ (ρ , ρ̃)

r2 . (12)

В этом выражении и ниже штрихом обозначена производная по ρ . Однородные
решения этого уравнения будем обозначать через pl(ρ) и ql(ρ). pl(ρ) это выбранное
решение, которое хорошо ведет себя при ρ = −∞ и расходится при ρ → +∞. ql(ρ) это
выбранное решение, которое расходится при ρ → −∞ и хорошо себя ведет при ρ = ∞.
Таким образом,

{
d

dρ2 +

(
f ′

2 f
+

(r2)′

r2

)
d

dρ
−
[

l(l +1)

r2 +m2 +ξ R
]}{

p l(ρ)

ql(ρ)

}
= 0, (13)

gl(ρ , ρ̃) = Cl p l(ρ<)ql(ρ>) = Cl

[
Θ(ρ̃ −ρ)p l(ρ)ql(ρ̃)

+Θ(ρ − ρ̃)p l(ρ̃)ql(ρ)] , (14)

где Θ(x) - ступенчатая функция Хевисайда, т.е., Θ(x) = 1 при x > 0 и Θ(x) = 0 при
x < 0, Cl - константа нормировки, которая может быть включена в определение p l и
ql. Нормировка gl достигается интегрированием (12) один раз по ρ от ρ̃ −δ до ρ̃ +δ
и стремлением δ → 0. Это приводит к условию на Вронскиан

Cl

(
p l

dql

dρ
−ql

d p l

dρ

)
= − 1

r2 . (15)

ВКБ-приближение для радиальных мод p l и ql получается заменой переменных

p l =
1√

2r2W
exp
(∫ ρ

Wdρ
)

,

ql =
1√

2r2W
exp
(

−
∫ ρ

Wdρ
)

. (16)

Подстановка этих выражений в (15) показывает, что условие на Вронскиан вы-
полняется, если

Cl = 1. (17)

Подстановка в выражение на моду (13) дает следующее уравнение для W :

W 2 =
l(l +1)+m2r2 +2ξ

r2 +

(
W 2)′′

4W 2 − 5
(
W 2)′2

16W 4 +
f ′(W 2)

′

8 fW 2 − f ′W
2 f

+
(r2)

′′

2r2 − (r2)
′2

4r4 +
(r2)

′ f ′

4r2 f
+ξ

(
−2

(r2)
′′

r2 +
(r2)

′2

2r4 − (r2)
′ f ′

r2 f
− f ′′

f
+

f ′2

2 f 2

)
. (18)

Это уравнение может быть решено методом итераций, если метрическая функция
r2(ρ) меняется медленно, то есть,

εWKB = L⋆/L ≪ 1, (19)
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где

L⋆(ρ) =
r(ρ)√

2ξ +m2r2(ρ)
, (20)

и L - характерный масштаб изменения r(ρ):

1
L(ρ)

= max

{∣∣∣∣
r′

r

∣∣∣∣ ,
∣∣∣∣

f ′

f

∣∣∣∣ ,
∣∣∣∣
r′

r

√
|ξ |
∣∣∣∣ ,
∣∣∣∣

f ′

f

√
|ξ |
∣∣∣∣ ,
∣∣∣∣
r′′

r

∣∣∣∣
1/2

,

∣∣∣∣
f ′′

f

∣∣∣∣
1/2

, . . .

}
. (21)

Мы будем называть область пространства-времени, где метрическая функция r(ρ),
медленно меняется, длинной горловиной.

Нулевой порядок ВКБ решения уравнения (18) соответствует пренебрежению чле-
нами с производными в этом уравнении

W 2 = Ω ·
(

1+O(ε2
WKB)

)
, (22)

где

Ω(ρ , l +1/2) =
l(l +1)+m2r2 +2ξ

r2 =
1

r(ρ)2

[(
l +

1
2

)2

+ µ2

]
, (23)

и

µ2 = 2ξ − 1
4

+m2r2. (24)

Ниже предполагается, что

µ2 > 0. (25)

Подчеркнем, что Ω - это точное решение уравнения (18) в пространстве-времени с
метрикой ds2 = − f0dt2 +dρ2 + r2

0(dθ 2 + sin2 θ dφ2), где f0,r0 - константы.
Подставляя решение (22) в (16) и (11), и пренебрегая членами второго порядка и

выше по отношению к εWKB мы можем получить следующее выражение для прибли-
жения нулевого порядка ВКБ аппроксимации для ϕ(xα ; x̃α) при условиях θ = θ̃ ,φ = φ̃
and ρ̃ = ρ +δρ > ρ

ϕ(ρ,θ ,φ ; ρ̃,θ ,φ) =
q

r(ρ)r(ρ̃)

∞

∑
l=0

(
l +

1
2

) exp

(
−

ρ+δρ∫
ρ

√
Ω
(

ρ ′, l +
1
2

)
dρ ′
)

4

√
Ω
(

ρ, l +
1
2

)
Ω
(

ρ̃ , l +
1
2

) . (26)

Сумма по l может быть вычислена с помощью метода суммирования Плана (см.,
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например, [22])

ϕ(ρ,θ ,φ; ρ̃,θ ,φ) =
q

r(ρ)r(ρ̃)
lim
ε→0





∞∫

ε

exp
(
−∫ ρ+δρ

ρ
√

Ω(ρ ′,x)dρ ′
)

4
√

Ω(ρ ,x)Ω(ρ̃ ,x)
xdx

+

ε∫

ε−i∞

exp
(
−∫ ρ+δρ

ρ
√

Ω(ρ ′,z)dρ ′
)

4
√

Ω(ρ ,z)Ω(ρ̃,z)(1+ ei2πz)
zdz

−
ε+i∞∫

ε

exp
(
−∫ ρ+δρ

ρ
√

Ω(ρ ′,z)dρ ′
)

4
√

Ω(ρ ,z)Ω(ρ̃ ,z)(1+ e−i2πz)
zdz



 . (27)

В нулевом ВКБ порядке по εWKB это дает

ϕ(ρ,θ ,φ; ρ̃,θ ,φ) =
q

δρ
+

q
r(ρ)

(
−µ +2

∫ µ

0

xdx√
µ2 − x2 (1+ e2πx)

)

+O
(

δρ
)

. (28)

Перенормировочный контрчлен ϕDS(x; x̃) в нулевом ВКБ порядке по εWKB в пределе
θ = θ̃ ,φ = φ̃ может быть легко вычислен с помощью метрики (9):

2σ = δρ2 +O
(
δρ4) ,

ϕDS(ρ,θ ,φ; ρ̃,θ ,φ) == q
(

1
δρ

−m+O(δρ)

)
. (29)

Таким образом,

ϕren(x) = lim
δρ→0

[ϕ(ρ ,θ ,φ; ρ̃,θ ,φ)−ϕDS(ρ ,θ ,φ; ρ̃,θ ,φ)]

=
q

r(ρ)


mr(ρ)− µ +2

µ∫

0

xdx

(1+ e2πx)
√

µ2 − x2



(

1+O(ε2
WKB)

)
, (30)

а единственная ненулевая компонента силы самодействия есть

fρ(x) = −q
2

∂ϕren

∂ρ
= − q2

2r2

(
dr
dρ

)
µ −2

µ∫

0

xdx

(1+ e2πx)
√

µ2 − x2

−4πm2r2
µ∫

0

e2πxdx

(1+ e2πx)
2√µ2 − x2



(

1+O(ε2
WKB)

)
. (31)

Отметим, что в пространстве-времени

ds2 = −dt2 +dρ2 + r0
2 (dθ 2 + sin2 θ dφ2) , (32)

εWKB = 0 и выражение (30) является точным. Однако сила самодействия, в этом слу-
чае, равна нулю.
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Заключение

Рассматриваемый подход дает возможность вычислить приближенное выражение
для собственного потенциала заряда, являющегося источником массивного немини-
мально связанного с кривизной скалярного поля и силы самодействия в длинной
горловине (9,19-21). Это выражение в рассматриваемом приближении не зависит от
геометрии пространства-времени вдали от такой горловины.
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