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Аннотация

Subsurface emitters (SEs) are modeled as line sources with descending Darcian seepage
impeded by either a natural impervious horizont or by designed and constructed barrier,
which makes a wedge beneath SE. An analytical model assumes a tension-saturated steady-
state 2D flow (Laplace’s governing PDE) near an emitter, with a capping phreatic line,
along which the stream function linearly depends on the horizontal coordinate that allows
to use the Polubarinova-Kochina technique, videlicet a conformal mapping of a circular
trigon in the hodograph domain on a reference half-plane. In the finite element model
(HYDRUD2D, the Richards-Richardson PDE), a transient initial value problem (giving an
asymptotic steady-state limit is solved in a fixed domain (an isosceles curvilinear tetragon
or trapeziumIsobars, isohumes, streamlines,isotachs and the Christiansen uniformity
coefficient are computed.

Keywords: conformal mapping of circular polygons, Riemann-Hilbert’s problem, HYDRUS2D
modeling, seepage flow topology, field experiments.

For saturated flows (Strack, 1989), the Darcian velocity,
−→
V (x, y) obeys the relation

−→
V (x, y) = −k∇h. The hydraulic (piezometric) head h(x, y) = p(x, y) + y in homogeneous
incompressible soils, k is a constant saturated hydraulic conductivity and involves the pressure
head, p(x, y), is positive everywhere. For incompressible pore water in Welsh’s seepage domain,
Gz (see Fig.1a), a free boundary, BMC, caps Gz. In the Vedernikov-Bouwer model for steady-
state seepage h(x, y) is a harmonic function. A complex potential w = φ + iψ is introduced,
where φ = −kh is the velocity potential, and ψ is a stream function.

Fig 1: Vertical cross-section of the physical flow domain (a), complex potential domain (b).

A complex Darcian velocity (an antiholomorphic function) is V = u + iv, where u(x, y)
and v(x, y) are the horizontal and vertical components of

−→
V (x, y, t). The complex potential

domain Gw is shown in Fig.1b (point M is fiducial). The shape of BMC in Gw is not known.
The hodograph domain, corresponding to Gz and Gw, is a circular triangle GV = {V : πµ <
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arg V <: π(1 − µ), |2V + i(k − ε)| > (k + ε)}. The boundary-value problem (BVP) in Gz is
formulated as:

OB : ψ = Q/2, y = tanπµx;OC : ψ = −Q/2, y =− tanπµx;BMC :φ+ky =−pc, ψ = εx. (1)

where ε and k are constants such that 0 < ε < ∞, 0 < k < ∞, ε is the intensity of
evapotranspiration from BMC, and pc is a the height of capillary rise in a vertical soil column.

To solve BVP (1) the upper half of a reference (auxiliary) ζ-plane Gζ is conformally mapped
onto the circular triangle GΩ = {Ω : πµ < arg Ω < π(1− µ), ), |2kεΩ + i(k − ε)| < (k + ε)} in
the plane Ω = ∂z/∂w. Here GΩ is a circular triangle onto which the function 1/V maps a
triangle symmetrical with GV relative to the real axis. An analytical function mapping the
upper half of the reference plane onto the triangle GΩ is

Ω(ζ) = eiπµRζ1−2µf(ζ; 1− µ)/f(ζ;µ), (2)

where f(ζ;µ),= F((µ − ν)/2 − 1/4, (µ − ν)/2 + 1/4; 1/2 + µ; ζ2) (F is the hypergeometric

function), and parameters ν, R are determined as πν = arccos
√

1−
(
k−ε
k+ε

)2
(cosπµ)2, R =

k − ε

22−2µkε

[
sinπµ+

√(
k+ε
k−ε

)2 − (cos πµ)2
]
Γ(3/2− µ+ ν)Γ(1/2 + µ)

Γ(1/2− µ)Γ(1/2 + µ+ ν)
.

We introduce the following functions:

W (ζ) = dw/dζ, Z(ζ = dz/dζ, (3)

such that Z(ζ) = Ω(ζ)W (ζ). Next, we show that the BWP (1) is reduced to the following
simpler one:

ImW (ξ) = 0, −1 < ξ < 1; Im[(kΩ(ξ) + i)W (ξ)] = 0, ξ < −1, ξ > 1. (4)

The Riemann BVP (4) has an unique (up to real multiplier d) solution. This solution W (ζ)
and the corresponding function Z(ζ) could be written down in the following form:

W (ζ)=dζ−1(1−ζ2)−3/4+µ/2−ν/2f(ζ, µ), Z(ζ)=deiπµRζ−2µ(1−ζ2)−3/4+µ/2−ν/2f(ζ, 1− µ). (5)

In accordance with (3), (5)

w(ζ)=d

∫ ζ

−∞
(1−τ 2)−3/4+µ/2−ν/2f(τ ;µ)

dτ

τ
, z(ζ)=deiπµR

∫ ζ

0

τ−2µ(1−τ 2)−3/4+µ/2−ν/2f(τ ; 1−µ)dτ.

A real constant d is found from the condition Imw(−1) = Q/2, which gives d = Q/π. Eventually,
the free boundary and flow net are plotted.

In the unsaturated-saturated flow model for transient seepage, p and the volumetric moisture
content θ are interrelated via the Van Genuchten relationship, k(p) is another characteristic
function of the soil, such that a nonlinear parabolic Richards-Richardson equation holds in a
fixed flow domain. Initial boundary value problems are solved by the finite element method with
the help of HYDRUS2D package (Radcliffe and Simunek, 2018). Three seepage problems are
modeled. First, for comparisons with the analytical solution, a curvilinear tetragon is considered
as a flow tube, with a circular arc serving as a “feeding” positive-pressure isobar and horizontal
segment of the soil surface as an evaporating isobar such that a 2-D ascending flow crosses
an aposteriori determined phreatic line and makes a vadose zone above it. Second, we model
infiltration in a lysimeter of Moscow State University station (Umarova et al., 2021). The flow
domain is a trapezium with a tilted bottom and a blanket drain on its part. A “perched”
phreatic line emerges above such drain with a vadose zone making a mini-bubble (Fig.2).
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Fig 2: Results of HYDRUS2D computations (steady-state limit). Volumetric moisture content
and streamlines (left and right panels, correspondingly).

Third, we model infiltration in a two-component composite, which consists of a bulk sandy soil
and a cylindrical lens of peat (Smagin, 2005) or fine-textured loam such that an essentially
axisymmetric seepage is transformed from a purely unsaturated to saturated-unsaturated one,
involving nontrivial phreatic surfacessimilar to one in Fig.2. For all three cases we reconstruct
the vector fields of Darcian velocity, and scalar field of isobars, isotachs and isohumes.

This work was funded by Russian Scientific Foundation, interdisciplinary project no. 23-64-
10002 and Sultan Qaboos University, grant IG/AGR/SWAE/24/2.
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Насыщенная и ненасыщенная фильтрация из оросителя-дрены
Корнева: сравнение аналитических и численных решений

А.Р. Касимов, Ю.В. Обносов, А.Б. Умарова, Н.Б. Садовникова, А.
Аль-Шукейли, А.В. Смагин

Аннотация

Подземные оросители моделируются линейными источниками, с фильтрацией, ко-
торая блоикруется либо естественным непроницаемым горизонтом либо искуствен-
ным барьером, который образуют клин под оросителем. Аналитическая модель пред-
полагает насыщенный стационарный двумерный поток (описываемый уравнением
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Лапласа) в облестаи со свободной границей, вдоль которой функция потока ли-
нейно зависит от горизонтальной координаты, что позволяет использовать техни-
ку Полубариновой-Кочиной, использующей конформное отображение кругового тре-
угольника в области годографа на вспомогательную полуплоскость. Методом конеч-
ных элементов (пакет HYDRUD2D, уравнение Ричардса-Ричардсона) нестационарная
начальная задача (дающая асимптотический предел стационарного состояния) реша-
ется в фиксированной области (равнобедренный криволинейный четырехугольник
или трапеция). Вычисляются изобары, изохьюмы, линии тока, изотахи и коэффици-
ент однородности Кристиансена.

Ключевые слова: конформное отображение круговых многоугольников, задача Римана-
Гильберта, моделирование на HYDRUS2D, топология фильтрационного течения, полевые
эксперименты
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