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AnHoranus

Subsurface emitters (SEs) are modeled as line sources with descending Darcian seepage
impeded by either a natural impervious horizont or by designed and constructed barrier,
which makes a wedge beneath SE. An analytical model assumes a tension-saturated steady-
state 2D flow (Laplace’s governing PDE) near an emitter, with a capping phreatic line,
along which the stream function linearly depends on the horizontal coordinate that allows
to use the Polubarinova-Kochina technique, wvidelicet a conformal mapping of a circular
trigon in the hodograph domain on a reference half-plane. In the finite element model
(HYDRUDZ2D, the Richards-Richardson PDE), a transient initial value problem (giving an
asymptotic steady-state limit is solved in a fixed domain (an isosceles curvilinear tetragon
or trapeziumlsobars, isohumes, streamlines,isotachs and the Christiansen uniformity
coefficient are computed.

Keywords: conformal mapping of circular polygons, Riemann-Hilbert’s problem, HYDRUS2D
modeling, seepage flow topology, field experiments.

For saturated flows (Strack, 1989), the Darcian velocity, 7(m,y) obeys the relation

7(:10, y) = —kVh. The hydraulic (piezometric) head h(z,y) = p(z,y) + y in homogeneous
incompressible soils, k is a constant saturated hydraulic conductivity and involves the pressure
head, p(z,y), is positive everywhere. For incompressible pore water in Welsh’s seepage domain,
G, (see Fig.1a), a free boundary, BMC, caps G,. In the Vedernikov-Bouwer model for steady-
state seepage h(x,y) is a harmonic function. A complex potential w = ¢ + it is introduced,
where ¢ = —kh is the velocity potential, and v is a stream function.
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Fig 1: Vertical cross-section of the physical flow domain (a), complex potential domain (b).

A complex Darcian velocity (an antiholomorphic function) is V' = w + iv, where u(z,y)

and v(z,y) are the horizontal and vertical components of 7(x,y,t). The complex potential
domain G,, is shown in Fig.1b (point M is fiducial). The shape of BMC' in G, is not known.
The hodograph domain, corresponding to G, and G, is a circular triangle Gy = {V : 7 <



argV <: (1 — ), |2V +i(k —¢)| > (k + €)}. The boundary-value problem (BVP) in G, is
formulated as:

OB: ¢y =Q/2,y =tanmux; OC: ¢ = —Q/2, y = —tantux; BMC:p+ky =—p., ¢ = ex. (1)

where ¢ and k£ are constants such that 0 < ¢ < 00, 0 < k < 00, € is the intensity of
evapotranspiration from BM ', and p. is a the height of capillary rise in a vertical soil column.

To solve BVP (1) the upper half of a reference (auxiliary) ¢-plane G¢ is conformally mapped
onto the circular triangle Go = {Q: mu < argQ < 7(1 —p),), [2keQ +i(k —¢)| < (k+¢€)} in
the plane Q = 0z/0w. Here Gq is a circular triangle onto which the function 1/V maps a
triangle symmetrical with Gy relative to the real axis. An analytical function mapping the
upper half of the reference plane onto the triangle G, is

QC) = ™RCTHF(CGL— )/ F(¢ ), (2)

where f(Cp),= F((p —v)/2 = 1/4,(p — v)/2 + 1/4;1/2 + p;¢?) (F is the hypergeometric
function), and parameters v, R are determined as mv = arccos \/ 1— (’““E)2 (cos 7w)2, R =

k+e
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We introduce the following functions:

W(¢) = dw/d¢,  Z(¢ = dz/dC, (3)

such that Z(¢) = Q(Q)W(¢). Next, we show that the BWP (1) is reduced to the following

simpler one:

ImW(€) =0, -1 < £<1; Im[(kQE) +DW(E)] =0, < —1,€ > 1. (4)

The Riemann BVP (4) has an unique (up to real multiplier d) solution. This solution W (()
and the corresponding function Z(¢) could be written down in the following form:

W(Q)=d¢ (1= ¢?) 3V (), Z(C)=de™ RGH(1—C?) 22 F(C 1 — ). (5)

In accordance with (3), (5)
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A real constant d is found from the condition Imw(—1) = /2, which gives d = @ /7. Eventually,

the free boundary and flow net are plotted.

In the unsaturated-saturated flow model for transient seepage, p and the volumetric moisture
content 6 are interrelated via the Van Genuchten relationship, k(p) is another characteristic
function of the soil, such that a nonlinear parabolic Richards-Richardson equation holds in a
fixed flow domain. Initial boundary value problems are solved by the finite element method with
the help of HYDRUS2D package (Radcliffe and Simunek, 2018). Three seepage problems are
modeled. First, for comparisons with the analytical solution, a curvilinear tetragon is considered
as a flow tube, with a circular arc serving as a “feeding” positive-pressure isobar and horizontal
segment of the soil surface as an evaporating isobar such that a 2-D ascending flow crosses
an aposteriori determined phreatic line and makes a vadose zone above it. Second, we model
infiltration in a lysimeter of Moscow State University station (Umarova et al., 2021). The flow
domain is a trapezium with a tilted bottom and a blanket drain on its part. A “perched”
nhreatic line emercee above <11ich drain with a vadoce 7one malkine a mini_hbiibble (Fio 9)
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Fig 2: Results of HYDRUS2D computations (steady-state limit). Volumetric moisture content
and streamlines (left and right panels, correspondingly).

Third, we model infiltration in a two-component composite, which consists of a bulk sandy soil
and a cylindrical lens of peat (Smagin, 2005) or fine-textured loam such that an essentially
axisymmetric seepage is transformed from a purely unsaturated to saturated-unsaturated one,
involving nontrivial phreatic surfacessimilar to one in Fig.2. For all three cases we reconstruct
the vector fields of Darcian velocity, and scalar field of isobars, isotachs and isohumes.
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Hacpimiennast 1 HeHachIIIeHHAasA (pUIbTPaIls U3 OPOCUTEJIsA-IPEHbI
KopHeBa: cpaBHeHne aHAJUTUYECKUX M YNCJIEHHBIX PeIneHuit

A.P. Kacumos, FO.B. Obnocos, A.B. ¥Ymaposa, H.B. Canosuukona, A.
Anp-Iykeitmn, A.B. Cmarun

AnHoTanus

IloazeMHubIe OpOCHTENN MOJAEIUPYIOTCS JTUHEHHBIMI HCTOYHUKAMU, ¢ (pUILTPAINEii, KO-
Topasi OJIONKpyeTCsi OO €CTeCTBEHHBIM HEITPOHUIIAEMBIM TOPH30HTOM JTUOO HCKYCTBEH-
HBIM OapbepoM, KOTOPLLA 00pa3yIoT KJIUH IO OpocuTeIeM. AHaJIUTHIeCKas MOLeIb IPel-
[OJIaraeT HACBIIEHHbIH CTAIMOHADHBII JIByMEPHBI HOTOK (ONUCHIBAEMBIil ypaBHEHHEM



Jlammaca) B obsectam co CBOGOJHON TpaHUIEil, BIOIL KOTOPOIl (DYHKIHMs MOTOKA JIH-
HEHO 3aBUCUT OT INOPU3OHTAJBHOW KOODJWHATHI, YTO IMO3BOJSIET MUCIIOJIb30BATH TEXHU-
Ky Ilomybapunosoii-Kounmoii, ncrnosb3yoreii koadgopMHOe 0TOOpakeHne KPyroBoro Tpe-
YyIOJIbHUKA B 00JIaCTU Tojorpada Ha BCIOMOIaTe/IbHYIO HOJIYILIOCKOCTh. MeTooM KoHed-
HbIx 71eMenToB (maker HYDRUD2D, ypasuenne Puuapsca-Puuapicona) HecrannonapHasi
HavaJbHAs 3a/1a49a (JIA0Iasi aCUMITOTHYECKHUIl [IPeJIeJT CTaIlMOHAPHOTO COCTOSTHUST) Pellia-
ercss B uKcupoBaHHOil obsiacTu (paBHOGEIPEHHbII KPUBOJIMHENHDI YeThIPeXyroJbHUK
wn Tparnenys ). Berancisoress n306apbl, H30XbIOMBI, JIHHUU TOKa, N30TaxXu U KO3 duim-
et oxguopoauoctu Kpucruancena.

Karouesvie crosa: KondopMHOE OTOOpazKeHne KPYTOBBIX MHOTOYTOJIbHUKOB, 3ajiada PuMana-
IMmmsbepra, mogemposanue Ha HYDRUS2D, Tomotorust hbuibrpalinoHHOTO TedeHns, OoIeBbIe
9KCIIEPUMEHTBI



