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INEQUALITIES FOR DETERMINANTS AND

CHARACTERIZATION OF THE TRACE

A. M. Bikchentaev UDC 512.643:517.982

Abstract: Let tr be the canonical trace on the full matrix algebra Mn with unit I. We prove that if
some analog of classical inequalities holds for the determinant and trace (or the permanent and trace)
of matrices for a positive functional ϕ onMn with ϕ(I) = n, then ϕ = tr. Also, we generalize Fischer’s
inequality for determinants and establish a new inequality for the trace of the matrix exponential.
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Introduction

Let tr be the canonical trace on the full matrix algebra Mn = Mn(C) and let det(A) stand for the
determinant of A ∈Mn. LetM pr

n ,M id
n ,M

sa
n , andM+

n be the lattice of projections (P = P
2 = P ∗), the

set of idempotents (P = P 2), the Hermitian part, and the cone of nonnegative definite matrices in Mn

respectively. Let I be the unit of Mn. We obtain the following generalization of Fischer’s inequality
for determinants. Suppose that {Pk}mk=1 ⊂ M id

n with PiPk = 0 for i �= k, i, k = 1, 2, . . . ,m, and∑m
k=1 Pk = I. Then det(P(A)) ≥ det(A) for all A ∈ M+

n , where P(A) =
∑m
k=1 PkAP

∗
k (Theorem 1).

For {Pk}mk=1 ⊂M pr
n , we demonstrate that tr(exp(P(A))) ≤ tr(P(exp(A))) for all A ∈M+

n (Theorem 2).

It is well known that validity of each of the Young, Hölder, Cauchy–Bunyakovskii–Schwartz, Golden–
Thompson, Peierls–Bogoliubov, and Araki–Lieb–Thirring inequalities implies the equality ϕ = tr for
an arbitrary positive functional ϕ on Mn with ϕ(I) = n (see [1–4]). Suppose that ϕ = tr, while per(A)
is the permanent, and λt(A) (t = 1, . . . , n) are the eigenvalues of A ∈Mn. Then the following relations
hold:

• Schur’s inequality [5, Chapter III, § 1.4]
n∑

t=1

|λt(A)|2 ≤
n∑

i,j=1

|aij |2(= ϕ(AA∗)) for all A ∈Mn;

the equality is attained if and only if A is normal;

• the equality [5, Chapter I, § 4.16, formula (1)]

det(exp(A)) = exp(ϕ(A)) for all A ∈Mn; (1)

• the inequality [6, Problem 3, p. 163] det(A) 1n ≤ 1
nϕ(A) for all A ∈M+

n ;

• the inequality [5, Chapter II, § 4.4.12] per(A) ≤ 1
nϕ(A

n) for all nonnegative matrices A ∈M sa
n .

We will demonstrate that validity of each of these four relations implies that ϕ = tr (Theorems 3
and 4) for an arbitrary positive functional ϕ on Mn with ϕ(I) = n.
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1. Definitions and Notation

A C∗-algebra is a complex Banach ∗-algebra A such that ‖A∗A‖ = ‖A‖2 for all A ∈ A . Denote
by A pr, A id, and A + the subsets of projections, idempotents, and positive elements of a C∗-algebra A .
Let H be a Hilbert space over C and let B(H ) be the ∗-algebra of all bounded linear operators on H .
Each C∗-algebra can be realized as a C∗-subalgebra in B(H ) for some Hilbert space H (Gelfand–
Naimark, see [7, Theorem 3.4.1]).
Recall that A∗ = [aji]ni,j=1 for A = [aij ]ni,j=1 ∈Mn. A linear functional ϕ on Mn is called Hermitian

if ϕ(A∗) = ϕ(A) for all A ∈Mn and positive if ϕ is Hermitian and ϕ(M+
n ) ⊂ R+. A positive functional ϕ

on Mn is called faithful if ϕ(A) = 0 (A ∈M+
n )⇒ A = 0.

Let {Pk}mk=1 ⊂ M id
n with PiPk = 0 for i �= k, i, k = 1, 2, . . . ,m, and

∑m
k=1 Pk = I. Define the

mapping P :Mn →Mn by the formula

P(A) =
m∑

k=1

PkAP
∗
k for all A ∈Mn.

If {Pk}mk=1 ⊂ M pr
n , then P is a block projection operator whose properties are studied in [8–10]. The

formula S = 2P − I (P ∈M id
n ) establishes a bijection betweenM id

n and the setM sym
n of all symmetries

(S2 = I) from Mn.

2. New Inequalities for Determinants and the Trace

Lemma 1. Suppose that {Pk}mk=1 ⊂ M id
n with PiPk = 0 for i �= k, i, k = 1, 2, . . . ,m, and∑m

k=1 Pk = I. Then tr(A) = tr
(∑m

k=1 Pk APk
)
for all A ∈ Mn. In particular, tr(P(A)) = tr(A),

A ∈Mn, for {Pk}mk=1 ⊂M pr
n .

Proof. If A ∈Mn, then

tr(A) = tr

( m∑

k=1

PkA

)

=
m∑

k=1

tr(PkA) =
m∑

k=1

tr(PkAPk) = tr

( m∑

k=1

Pk APk

)

. �

Lemma 2 [11, Theorem 1.3]. Let A be a C∗-algebra and P ∈ A id. There is a unique decomposition

P = P̃ + Z, where P̃ ∈ A pr and the nilpotent Z belongs to A with Z2 = 0; moreover, ZP̃ = 0 and

P̃Z = Z.

Proposition 1. Let A be a unital C∗-algebra, A ∈ A + is invertible, P ∈ A id, and P = P̃ + Z is

the decomposition described in Lemma 2. Then PAP ∗ is invertible in the reduced algebra P̃A P̃ .

Proof. There exists ε > 0 such that A ≥ εI. Consider the multiplicative representation P = P̃ T
with an invertible T ∈ A + [12, Lemma 3]. Let δ > 0 be such that T ≥ δI. Then T 2 ≥ δ2I and

PAP ∗ ≥ εPP ∗ = εP̃T 2P̃ ≥ εδ2P̃ .
It remains to take into account the fact that P̃P = P , P̃PAP ∗P̃ = PAP ∗, and P̃ is the unit of the
reduced algebra P̃A P̃ . �
Theorem 1. det(P(A)) ≥ det(A) for all {Pk}mk=1 ⊂M id

n with PiPk = 0 for i �= k, i, k = 1, 2, . . . ,m,
and
∑m
k=1 Pk = I for all A ∈M+

n .

Proof. By the Determinant Product Theorem, det(S) ∈ {−1,+1} for each S ∈ M sym
n . Since

P(M+
n ) ⊂ M+

n and det(X) ≥ 0 for all X ∈ M+
n , it suffices to verify the claim only for invertible

matrices. The results of [13, 14] imply that the function

A �→ log det(A) (2)
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is concave on the set of invertible matrices A ∈ A + (see also [15, Chapter 10, § 2, Theorem 9′]). By
Lemma 2 from [10],

P(A) =
1

2m−1

2m−1∑

j=1

SjAS
∗
j (3)

for 2m−1 collections {tjk}mk=1 with tjk ∈ {−1,+1}, where Sj =
∑m
k=1 tjkPk ∈M sym

n for all j = 1, 2, 3, . . . ,
2m−1. Therefore, det(Sj) = det(S∗j ) ∈ {−1,+1} for all j = 1, 2, 3, . . . , 2m−1. The invertibility ofP(A) for
an invertible A ∈M+

n follows from the representation of (3) where each summand SjAS
∗
j lies inM+

n and

is invertible by the Invertible Product Theorem. Concavity of (2), the Determinant Product Theorem,
and (3) imply that

log det(P(A)) ≥
2m−1∑

j=1

1

2m−1
log det(SjAS

∗
j )

=

2m−1∑

j=1

1

2m−1
log det(A) = log det(A).

Therefore,
det(P(A)) ≥ det(A) (4)

due to strict monotonicity of the logarithmic function on the half-axis (0,+∞). �
Remark 1. Relation (4) for a particular case when {Pk}mk=1 ⊂M pr

n is known as Fischer’s inequality
[16, Problem II.5.6]. Hence, by Lemma 1 and (1), we obtain

det(P(exp(A))) ≥ det(exp(A)) = exp(tr(A)) = exp(tr(P(A)))
for all A ∈M+

n .

Corollary 1. det(P(A)) ≥ exp(tr(logA)) for each positive definite matrix A ∈M+
n .

Proof. We have

det(P(A)) = det(P(exp(logA))) ≥ det(exp(logA)) = exp(tr(logA))
for a positive definite matrix A ∈M+

n . �
Proposition 2. Let n ∈ N be odd, A ∈ Mn, and S, T ∈ M sym

n with det(S) = det(T ). Then
det(A− SAT ) = 0.
Proof. The claim follows from the relations

S(A− SAT )T = −(A− SAT ), det(S) = det(T ) ∈ {−1,+1}
and the Determinant Product Theorem. �
Here the oddness of n ∈ N is essential. Consider the matrices

A =

(
2 1
1 1

)

and S =

(
1 x
0 −1

)

, where x ∈ R,

in M2. Then S ∈ M sym
2 and det(A − SAS) = x2 + 2x − 4 �= 0 for 2x �= −1 ± √5. The trace

tr(A − SAS∗) = x2 + 2x can take arbitrary values from the interval [−1,+∞). We have tr(PAP ∗) −
tr(P̃AP̃ ) = x + x2/4 for the idempotent P = (I + S)/2, while the projection P̃ is defined in Lemma 2.
Since tr(P(A))− tr(A) = x+ x2/2 for the pair P1 = P , P2 = I − P , the requirement {Pk}mk=1 ⊂M pr

n is
essential in Lemma 1.

250



Lemma 3. Suppose that A ∈ M+
n and B ∈ Mn with the operator norm ‖B‖ ≤ 1, 1 ≤ p < ∞.

Then
λt((BAB

∗)p) ≤ λt(BApB∗) for all t = 1, 2, . . . , n. (5)

Proof. Since the real function s �→ sq (s ∈ R+) is operator convex for 1 ≤ q ≤ 2, we have
(BXB∗)q ≤ BXqB∗

for all X ∈ M+
n and B ∈ Mn with ‖B‖ ≤ 1 by [17, Theorem 2.1]. By monotonicity of eigenvalues

(i.e., λt(X) ≤ λt(Y ) for all t = 1, 2, . . . , n for 0 ≤ X ≤ Y ) this matrix inequality leads to the claim of
the lemma for 1 ≤ q ≤ 2. Let t ∈ {1, 2, . . . , n} and let 2 < p < ∞ be fixed. Choose j ∈ N such that
2j−1 < p ≤ 2j and put q = j

√
p. Then j ≥ 2 and 1 < 2 j−1j < q ≤ 2. We have

λt(BA
pB∗) = λt(B(Ap/q)qB∗) ≥ λt((BAp/qB∗)q) = λt((BAp/qB∗))q

= λt(B(A
p/q2)qB∗)q ≥ · · · ≥ λt(BAp/qjB∗)qj = λt(BAB∗)p = λt((BAB∗)p)

by monotonicity of the power functions s �→ sb (s ∈ R+) and the equality λt(Xb) = λt(X)b for all
X ∈M+

n and the reals b > 0. �
Theorem 2. Let {Pk}mk=1 ⊂ M pr

n with PiPk = 0 for i �= k, i, k = 1, 2, . . . ,m, and
∑m
k=1 Pk = I.

Then tr(exp(P(A))) ≤ tr(P(exp(A))) for all A ∈M+
n .

Proof. It is easy to see that

exp(P(A)) = I +
m∑

k=1

PkAPk +
m∑

k=1

(PkAPk)
2

2!
+ · · ·+

m∑

k=1

(PkAPk)
j

j!
+ · · ·

= −(m− 1)I +
(

I + P1AP1 +
(P1AP1)

2

2!
+ · · ·+ (P1AP1)

j

j!
+ · · ·

)

+ · · ·+
(

I + PmAPm +
(PmAPm)

2

2!
+ · · ·+ (PmAPm)

j

j!
+ · · ·

)

,

P(exp(A)) = P1

(

I +A+
A2

2!
+ · · ·+ A

j

j!
+ · · ·

)

P1

+ · · ·+ Pm
(

I +A+
A2

2!
+ · · ·+ A

j

j!
+ · · ·

)

Pm

= −(m− 1)I +
(
I + P1AP1 +

P1A
2P1

2!
+ · · ·+ P1A

JP1

j!
+ · · ·

)

+ · · ·+
(

I + PmAPm +
PmA

2Pm

2!
+ · · ·+ PmA

jPm

j!
+ · · ·

)

;

the matrix series converges in norm (i.e., elementwise). Since the matrix trace coincides with the spectral
trace and is a continuous linear functional, Theorem 2 follows from Lemma 3. �

3. The Inequalities for Determinants Characterize the Trace

Theorem 3. The following are equivalent for a positive functional ϕ on the algebra Mn with
ϕ(I) = n:
(i) ϕ = tr;
(ii) det(P(exp(A))) ≥ exp(ϕ(A)) for all P and A ∈M+

n ;

(iii) det(A)
1
n ≤ 1

nϕ(A) for all A ∈M+
n ;
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(iv) per(A) ≤ 1
nϕ(A

n) for all nonnegative matrices A ∈M sa
n ;

(v) det(I + εA) = 1 + εϕ(A) + o(ε) as ε→ 0+ for all A ∈M+
n .

Moreover, if ϕ is faithful, then (i)–(v) are equivalent to the conditions:
(vi) det(exp(A)) ≤ exp(ϕ(A)) for all A ∈M+

n ;

(vii) ϕ(Ap)
1
p ≤ ϕ(Aq) 1q for all A ∈M+

n and 0 < q < p.

Proof. The implication (i) ⇒ (ii) follows from Theorem 1 and (1); see the implication (i) ⇒ (v)
in [18, Chapter 6, § 9, Exercise 1].
Without loss of generality, assume that ϕ(X) = tr(SϕX) for all X ∈Mn, where

Sϕ = diag(s1, . . . , sn) ∈M+
n

and s1 + · · ·+ sn = n. We need to show that
s1 = · · · = sn = 1. (6)

(ii) ⇒ (i): If (6) is not valid, then there exists k ∈ {1, . . . , n} such that sk > 1. By the Spectral
Theorem in finite dimensions, exp(A) = exp(1) ·A+ exp(0) · (I −A) for the projection

A = diag(0, . . . , 0
︸ ︷︷ ︸
k−1 times

, 1, 0, . . . , 0) ∈M pr
n , (7)

while, by (ii), exp(1) ≥ exp(sk) for the mapping P associated with all projections of the form (7) with
k = 1, 2, . . . , n. Consequently, sk ≤ 1; a contradiction.
(iii)⇒ (i): If (6) is not valid, then there exists k ∈ {1, . . . , n} such that sk > 1. Given a real ε > 0,

introduce the matrix Aε = (1 + ε)I − εA, where A is from (7). Inserting Aε(∈M+
n ) in (iii), we obtain

(1 + ε)
n−1
n ≤ 1

n
((1 + ε)s1 + · · ·+ (1 + ε)sk−1 + sk

+(1 + ε)sk+1 + · · ·+ (1 + ε)sn)
=
1

n
((1 + ε)n− εsk) = 1 + ε− sk

n
ε.

Recall the Taylor formula with Peano’s remainder:

(1 + ε)
n−1
n = 1 +

n− 1
n
ε+ o(ε) as ε→ 0 + .

Now, (iii) takes the form

1 +
n− 1
n
ε+ o(ε) ≤ 1 + ε− sk

n
ε as ε→ 0 + .

Consequently, sk ≤ 1; a contradiction.
(iv) ⇒ (i): If (6) is not valid, then there exists k ∈ {1, . . . , n} such that sk > 1. Given 1 > ε > 0,

introduce the matrix Aε = I − εA, where A is from (7). Inserting Aε in (iv), we obtain

1− ε ≤ 1
n
(s1 + · · ·+ sk−1 + (1− ε)nsk + sk+1 + · · ·+ sn).

Write the Taylor formula with Peano’s remainder:

(1− ε)n = 1− nε+ o(ε) as ε→ 0 + .
Now, (iv) takes the form 1− ε ≤ 1− skε+ o(ε) as ε→ 0+. Consequently, sk ≤ 1; a contradiction.
252



(v)⇒ (i): If (6) is not valid, then there exists k ∈ {1, . . . , n} such that sk > 1. By (v), we obtain
1 + ε = 1 + skε+ o(ε) as ε→ 0+

for the projection A from (7). Consequently, sk = 1; a contradiction.
(vi) ⇒ (i): If (6) is not valid, then there exists k ∈ {1, . . . , n} such that 0 < sk < 1. By (vi),

exp(1) ≤ exp(sk) for the projection A from (7). Consequently, sk ≥ 1; a contradiction.
(i) ⇒ (vii): Without loss of generality, assume that A = diag(a1, . . . , an) with aj ≥ 0 for all j =

1, . . . , n. Then Ar = diag
(
ar1, . . . , a

r
n

)
for all r > 0. By Jensen’s inequality (see [19, Theorem 19]),

ϕ(Ap)
1
p =
(
a
p
1 + · · ·+ apn

) 1
p ≤ (aq1 + · · ·+ aqn

) 1
q = ϕ(Aq)

1
q

for all 0 < q < p.
(vii)⇒ (i): If (6) is not valid, then there exists k ∈ {1, . . . , n} such that 0 < sk < 1. By (vii), sqk ≤ spk

for the projection A from (7). Consequently, sk ≥ 1; a contradiction. Recall that if 1 < p <∞ and ϕ is
a positive functional on Mn with ϕ(A

p) ≤ ϕ(Bp) for 0 ≤ A ≤ B, then ϕ = λ tr with some λ ∈ R+ [20,
Theorem]. �

Corollary 2. For a positive functional ϕ on Mn with ϕ(I) = n the following are equivalent:
(i) ϕ = tr;
(ii) det(exp(A)) ≥ exp(ϕ(A)) for all A ∈M+

n .

Remark 2. In connection with the inequality from Theorem 3(iii), recall that

det(A)
1
n = min

B∈M+
n , det(B)=1

tr(AB)

n

for all positive definite real matrices A ∈M+
n [21, Chapter II, § 21, Theorem 14].

Theorem 4. For a positive functional ϕ on Mn with ϕ(I) = n the following are equivalent:
(i) ϕ = tr;
(ii)
∑n
t=1 λt(A)

2 ≤ ϕ(A2) for all A ∈M+
n ;

(iii)
∣
∣λt(A)− ϕ(A

∗A)
n

∣
∣ ≤ (n−1n

(
ϕ(A∗A)− |ϕ(A)|2n

))1/2
for all A ∈Mn and t = 1, . . . , n;

(iv)
∑n
i=1 a

2
ii ≤ ϕ(A2) for all A = [aij ] ∈M+

n ;
(v) ϕ(A2) ≤ tr(A)2 for all A ∈M+

n ;

(vi)
√
tr(A) ≤ ϕ(√A) for all A ∈M+

n ;

(vii) ϕ(
√
A) ≤∑ni=1

√
aii for all A = [aij ] ∈M+

n .

Proof. The implication (i) ⇒ (ii) is the aforementioned Schur’s inequality. See the implication
(i)⇒ (iii) in [16, Problem I.6.16, p. 172] and the implications (i)⇒ (iv)–(vii) in [6, Problem 16, p. 24].
Show the converse implications. Without loss of generality, assume that ϕ(X) = tr(SϕX) for all

X ∈ Mn, where Sϕ = diag(s1, . . . , sn) ∈ M+
n and s1 + · · · + sn = n. We need to verify relations (6).

If (6) is not valid, then there exist m, j ∈ {1, . . . , n} such that sm < 1 and sj > 1.
(ii) ⇒ (i): By (ii), 1 =

∑n
t=1 λt(A)

2 > ϕ(A2) = sj for a projection A (with j = k) from (7);
a contradiction.
(v) ⇒ (i) and (vii) ⇒ (i): For the matrix A indicated above, inequality (v) (or (vii)) gives sj ≤ 1;

a contradiction.
(iii) ⇒ (i): Inequality (iii) for t = 1 implies sm ≥ 1 for a projection A (with m = k) from (7);

a contradiction.
(iv) ⇒ (i) and (vi) ⇒ (i): Inequality (iv) (or (vi)) gives sm ≥ 1 for the projection A (with m = k)

from (7); a contradiction. �
About other characterizations of the trace, see [22–25] and references therein.
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