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Abstract—In the Banach space L1(M, τ) of operators integrable with respect to a tracial
state τ on a von Neumann algebra M, convergence is analyzed. A notion of dispersion of
operators in L2(M, τ) is introduced, and its main properties are established. A convergence
criterion in L2(M, τ) in terms of the dispersion is proposed. It is shown that the following
conditions for X ∈ L1(M, τ) are equivalent: (i) τ(X) = 0, and (ii) ‖I + zX‖1 ≥ 1 for all z ∈ C.
A.R. Padmanabhan’s result (1979) on a property of the norm of the space L1(M, τ) is comple-
mented. The convergence in L2(M, τ) of the imaginary components of some bounded sequences
of operators from M is established. Corollaries on the convergence of dispersions are obtained.
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1. INTRODUCTION

Let τ be a faithful normal tracial state on a von Neumann algebra M, Mpr be the lattice of
projectors in M, and I be the identity operator in M. We investigate the convergence in the Banach
space L1(M, τ) of τ -integrable operators [1, 2]. We introduce the dispersion D(X) = ‖X − τ(X)I‖22
of operators X ∈ L2(M, τ) and establish its main properties (Theorem 4.1 and Corollary 4.2). We
show that infa∈C‖X − aI‖22 = D(X) for all X ∈ L2(M, τ) (Theorem 4.4). We propose a convergence
criterion for sequences of operators in L2(M, τ) in terms of the dispersion (Theorem 4.5). Let
K0 = {X ∈ L2(M, τ) : τ(X) = 0}. For Xn,X ∈ K0 (n ∈ N), we prove the equivalence of the
following conditions (Corollary 4.6):

(i) Xn

‖·‖2
−−→ X as n → ∞, and

(ii) Xn

τ

−→ X and D(Xn) → D(X) as n → ∞.

In Theorem 4.8, we show that the following conditions for X ∈ L1(M, τ) are equivalent:

(i) τ(X) = 0, and

(ii) ‖I + zX‖1 ≥ 1 for all z ∈ C.

We complement Padmanabhan’s result from [3] on a property of the norm of the space L1(M, τ):
if an operator A ∈ L1(M, τ)+ is nonsingular, then

∀ε > 0 ∃δ > 0 ∀P ∈ Mpr
(

τ(P ) ≥ ε ⇒ ‖PAP‖1 ≥ δ
)

(Theorem 4.9). We establish the convergence in L2(M, τ) of the imaginary components of some
bounded sequences of operators in M (Theorem 4.13) and apply the result to the convergence of
dispersions (Corollaries 4.7 and 4.14).
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