Convergence of Integrable Operators Affiliated to a Finite von Neumann Algebra

A. M. Bikchentaev^a

Received August 13, 2015

Abstract—In the Banach space $L_1(\mathcal{M}, \tau)$ of operators integrable with respect to a tracial state τ on a von Neumann algebra \mathcal{M} , convergence is analyzed. A notion of dispersion of operators in $L_2(\mathcal{M}, \tau)$ is introduced, and its main properties are established. A convergence criterion in $L_2(\mathcal{M}, \tau)$ in terms of the dispersion is proposed. It is shown that the following conditions for $X \in L_1(\mathcal{M}, \tau)$ are equivalent: (i) $\tau(X) = 0$, and (ii) $||I + zX||_1 \ge 1$ for all $z \in \mathbb{C}$. A.R. Padmanabhan's result (1979) on a property of the norm of the space $L_1(\mathcal{M}, \tau)$ is complemented. The convergence in $L_2(\mathcal{M}, \tau)$ of the imaginary components of some bounded sequences of operators from \mathcal{M} is established. Corollaries on the convergence of dispersions are obtained.

DOI: 10.1134/S0081543816040052

1. INTRODUCTION

Let τ be a faithful normal tracial state on a von Neumann algebra \mathcal{M} , \mathcal{M}^{pr} be the lattice of projectors in \mathcal{M} , and I be the identity operator in \mathcal{M} . We investigate the convergence in the Banach space $L_1(\mathcal{M}, \tau)$ of τ -integrable operators [1, 2]. We introduce the dispersion $\mathbb{D}(X) = ||X - \tau(X)I||_2^2$ of operators $X \in L_2(\mathcal{M}, \tau)$ and establish its main properties (Theorem 4.1 and Corollary 4.2). We show that $\inf_{a \in \mathbb{C}} ||X - aI||_2^2 = \mathbb{D}(X)$ for all $X \in L_2(\mathcal{M}, \tau)$ (Theorem 4.4). We propose a convergence criterion for sequences of operators in $L_2(\mathcal{M}, \tau)$ in terms of the dispersion (Theorem 4.5). Let $\mathcal{K}_0 = \{X \in L_2(\mathcal{M}, \tau) : \tau(X) = 0\}$. For $X_n, X \in \mathcal{K}_0$ $(n \in \mathbb{N})$, we prove the equivalence of the following conditions (Corollary 4.6):

- (i) $X_n \xrightarrow{\|\cdot\|_2} X$ as $n \to \infty$, and
- (ii) $X_n \xrightarrow{\tau} X$ and $\mathbb{D}(X_n) \to \mathbb{D}(X)$ as $n \to \infty$.

In Theorem 4.8, we show that the following conditions for $X \in L_1(\mathcal{M}, \tau)$ are equivalent:

- (i) $\tau(X) = 0$, and
- (ii) $||I + zX||_1 \ge 1$ for all $z \in \mathbb{C}$.

We complement Padmanabhan's result from [3] on a property of the norm of the space $L_1(\mathcal{M}, \tau)$: if an operator $A \in L_1(\mathcal{M}, \tau)^+$ is nonsingular, then

$$\forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall P \in \mathcal{M}^{\mathrm{pr}} \qquad \left(\tau(P) \ge \varepsilon \Rightarrow \|PAP\|_1 \ge \delta \right)$$

(Theorem 4.9). We establish the convergence in $L_2(\mathcal{M}, \tau)$ of the imaginary components of some bounded sequences of operators in \mathcal{M} (Theorem 4.13) and apply the result to the convergence of dispersions (Corollaries 4.7 and 4.14).

 $[^]a$ Kazan Federal University, ul. Kremlevskaya 18, Kazan, 420008 Russia.

E-mail address: Airat.Bikchentaev@kpfu.ru