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Abstract
Porous crystalline nitinol is widely applied in various fields of science and technology due to the
unique combination of physical and mechanical properties as well as biocompatibility. Porous
amorphous nitinol is characterized by improved mechanical properties compared to its
crystalline analogues. Moreover, this material is more promising from the point of view of
fundamental study and practical application. The production of porous amorphous nitinol is a
difficult task requiring rapid cooling protocol and optimal conditions to form a stable porous
structure. In the present work, based on the results of molecular dynamics simulations, we show
that porous nitinol with the amorphous matrix can be obtained by injection of argon into a liquid
melt followed by rapid cooling of the resulting mixture. We find that the porosity of the system
increases exponentially with increasing fraction of injected argon. It has been established that
the system should contain about ∼18%–23% argon for obtain an open porous structure, while
the system is destroyed by overheated inert gas when the argon fraction is more than ∼23%. It
is shown that the method of argon injection makes it possible to obtain a highly porous system
with the porosity ∼70% consisting the spongy porous structure similar to aerogels and metallic
foams.

Keywords: porous nitinol, argon injection, metallic foams, molecular dynamics, porosity,
porous structure

(Some figures may appear in colour only in the online journal)

1. Introduction

Porous titanium nickelide alloy Ni50Ti50 known as nitinol is
promising due to unique combination of physical and mech-
anical properties such as open porosity, biocompatibility,
shape memory effect and high strength [1, 2]. Therefore, por-
ous nitinol is preferable in medicine, aerospace and trans-
port industries for production of construction details, implants
and filter elements [3, 4]. The presence of such properties is
largely determined by the crystal structure that supports the
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austenitic-martensitic (B2→ B19 ′) and martensitic-austenitic
(B19 ′ →B2) transitions under thermal and mechanical influ-
ences [1]. The main advantage of porous crystalline nitinol is
the simplicity of its preparation and the availability of initial
powder raw materials for synthesis, for example, by powder
metallurgy methods [5]. The synthesized porous samples usu-
ally have an open porous structure with the average linear size
of the pores∼200µm, that is close to the pore size in bone tis-
sues [6]. At the same time, porous crystalline nitinol has some
limitations, which include increased fragility (with increasing
porosity, the fragility also become larger) and the tendency to
form cracks [7, 8].
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From point of view of fundamental studies and practical
applications, porous amorphous nitinol is of great interest [9].
This material is less exposed to crack formation due to the
absence of defects, which inevitably occur in the case of
the crystalline analogue. It has an increased resistance to
external deformations that is confirmed by the results of
molecular dynamics simulations. For example, it was shown
in [10, 11] that the Young’s modulus of porous amorph-
ous nitinol at tensile and compression deformations is more
than twice larger then in the case of the crystalline material
with the porosity ϕ ∈ [7.5; 35]%. Despite these advantages,
it is difficult to synthesize experimentally porous amorph-
ous nitinol. The main reason for this is the need to apply the
quench with extremely high rates (more than 1× 106 Ks−1)
to obtain a stable amorphous structure [12]. Difficulties may
also arise at choice an appropriate method for the synthesis
of a porous structure. The known methods for preparing por-
ous alloys, such as powder sintering [13], additive techno-
logies [14], spark plasma sintering [4], and self-propagating
high-temperature synthesis [15, 16], can lead to formation of
a crystalline structure in the powder contact zones [17, 18].
The presence of crystalline inclusions can lead to the degrad-
ation in the mechanical characteristics of the porous alloy, for
example, due to an increase in the probability of the nanosized
cracks formation at the interface between crystal and amorph-
ous phases [19, 20]. Therefore, themethod of directmelt foam-
ing by gas injection is the most preferable for obtaining the
amorphous structure without crystalline inclusions [21, 22].
This method is widely used to form the pores in various
metal melts by gas injection (most often by argon) under
high pressure or gas-evolving foaming agents (for example,
calcium oxide CaO, titanium hydride TiH2) or by means of
obtaining oversaturated metal-gas solutions followed by cool-
ing the foamed liquid melt. However, this method is dif-
ficult to apply for production of porous amorphous nitinol
due to the high melting point of Ni50Ti50 alloy (∼1570K)
and due to the lack of information about the optimal condi-
tions for foaming the corresponding melt. Insufficient under-
standing of the pore formation mechanisms in the nitinol
melt requires detailed studies related to molecular dynamics
simulations.

In the present work, the process of liquid nitinol foaming
via argon injection is studied by means of molecular dynamics
simulations. The simulation conditions are close to the exper-
imental ones implemented, for example, in the method of dir-
ect melt foaming by gas injection [21, 22]. We determine the
optimal fraction of the injected argon and the thermodynamic
parameters of the system to obtain the porous amorphous alloy
with the required porosity and the required pore morphology.
The possibility of obtaining porous amorphous nitinol with
closed pores (porosity up to 35%) andwith an open percolating
porous structure (with porosity up to 70%) is demonstrated. In
section 2, the melt foaming procedure and the details of the
applied hybrid interparticle interaction potential are discussed.
Section 3 is devoted to discussion of the obtained results. The
conclusion is given in section 4.

2. Argon injection procedure

Initially, crystalline nitinol consisting 68750 atoms of Ni and
68750 atoms of Ti was chosen. Molecular dynamics simula-
tions are performed in the isobaric-isothermal (NPT) ensemble
with the time step 1 fs using the Lammps simulation pack-
age [23]. At all stages of the simulations, the pressure is equal
to 1 atm.

The interaction between Ni, Ti and Ar atoms is specified
using the hybrid interaction potential. For Ni–Ni, Ti–Ti and
Ni–Ti interactions, the 2NN MEAM potential is applied to
compute the total energy of the system [24]:

E=
N∑
i=1

Fi(ρi)+ 1
2

N∑
j̸=i

Sijϕij(rij)

 . (1)

Here, Fi is the embedding function for the atom i within a
background electron density ρi; the pair potential ϕij(rij) and
screening function Sij are evaluated at the distance rij between
atoms i and j. In the 2NNMEAM potential, the pairwise inter-
action ϕij(rij) is not assigned a simple functional expression.
As a rule, the value of the quantity ϕij(rij) is estimated by the
embedding energy and the energy per atom

ϕij(rij) =
2
Z1

{Eui (rij)−Fi(ρi)} . (2)

In equation (2), Z1 is the number of nearest-neighbor atoms,
Eui (rij) is the energy per atom [25]:

Eui (rij) =−Ec(1+ a∗ + da∗3)e−a∗ , (3)

where

a∗ =

√
9BΩ
Ec

(
rij
re

− 1

)
. (4)

Here, re is the equilibrium nearest-neighbor distance; Ec is the
cohesive energy; d is an adjustable parameter; B is the bulk
modulus; Ω is the equilibrium atomic volume of the refer-
ence structure. The values of these parameters for Ni–Ti sys-
tem are given in table IV of [24]. The cutoff radius of the
2NN MEAM potential is 5.0 Å for considered binary system.
For Ni–Ar, Ti–Ar and Ar–Ar interactions, the binary Lennard-
Jones potential is applied [26]:

ELJ(rij) = 4ϵαβ

[(
σαβ

rij

)12

−
(
σαβ

rij

)6
]
,α,β ={Ni,Ti,Ar}.

(5)

The parameters of this potential—the potential well depth ϵαβ
and the effective atom diameter σαβ—are given as follows:
ϵArTi = 8.7× 10−2 eV and σArTi = 3 Å for Ar–Ti interaction;
ϵArNi = 7.9× 10−2 eV and σArNi = 3.04 Å for Ar–Ni; ϵArAr =
1× 10−2 eV and σArAr = 3.41 Å for Ar–Ar [27]. The applied
cutoff radius of the Lennard-Jones potential is 2.5σαβ .
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Figure 1. Snapshots of the system in various states: (a) liquid melt mixed with argon; (b) redistributed Ni, Ti and Ar atoms at the stage of
cooling of the liquid melt; (c) porous structure and amorphous matrix upon cooling of the liquid melt with injected argon.

The argon injection procedure and the preparation of por-
ous amorphous nitinol are carried out through the following
steps:

• The liquid sample is melted at the temperature T= 1.2Tm,
where the melting temperature is Tm ≃ 1570 K, and, then,
it is brought to the thermodynamic equilibrium state during
the time 0.1 ns.

• The injection of Ar atoms is carried out. This procedure
means the random replacement of some Ni and Ti atoms by
Ar atoms (see figure 1(a)). Here, the proportion of Ni and
Ti atoms in the system always remains the same and corres-
ponds to Ni50Ti50 alloy. The liquid samples are prepared by
injection of argon in the fractions f = 10, 14, 15, 16, 17, 18,
19, 20 and 23% from the total number of atoms in the sys-
tem. After the injection of argon, the system is again brought
to the thermodynamic equilibrium state.

• The liquid nitinol mixed with argon is rapidly cooled to the
temperature 300 K at the cooling rate 1× 1012 Ks−1. The
redistribution of the components occurs during the cool-
ing procedure, as a result of which argon is separated from
amorphous nitinol (see figures 1(b) and(c)). The separation
of argon gas and solid nitinol occurs heterogeneously. This
leads to the formation of the foamed amorphous samples,
where the percolating network of pores filled with argon.
Note that the porosity and distribution of pores in the system
may be dependent on the cooling rate applied to generate the
porous amorphous system [28, 29].

• The foamed samples were held at the temperature 300 K
for the time 0.1 ns for stabilization of the amorphous matrix.
Then, argon is completely removed from the system. The
resulting porous amorphous samples are held again at the
temperature 300 K.

The porosity ϕ of the obtained samples is determined by
the well-known expression [30]:

ϕ=

(
1− ρ

ρ0

)
· 100%, (6)

where ρ is the density of a porous sample, ρ0 = 6.21 g cm−3

is the density of nitinol without pores at the temperature
T = 300 K.

To avoid the artifacts due to the molecular dynamics sim-
ulations of a porous system, the following condition must be
satisfied: the average linear pore size must be less than the lin-
ear size of the simulation box. In this case, there will be no
significant artifacts generated by the periodic boundary con-
ditions. In the present study, the linear size of the simulated
system is set so that it exceeds the characteristic size of the
pores formed in the system. For example, in the case of the
porosity 25%, the linear size of the system is L≈ 14.8 nm,
while the average linear pore size is l≈ 3 nm. In the case of
the maximum considered porosity 70%, we have L≈ 26 nm
and l≈ 20 nm.

3. Porosity as function of Argon fraction

Figure 2 shows the dependence of the porosity ϕ on the injec-
ted argon fraction f. We find that porous amorphous nitinol
contains only closed pores at argon less than ∼18%. In this
case, the system porosity does not exceed ϕ= 35%. The res-
ulting pores are stable and have a shape close to spherical.
Average linear size of the closed pores is ∼2 nm, which is
a low threshold value for porous alloys belonging to the class
of nanoporous materials [31]. To obtain the porous structure
with open pores and the percolating amorphous matrix, the
fraction of argon must be above 18%. Here, the argon frac-
tion from f∼18% to 23% is optimal. In this case, the porosity
of the system varies in the range ϕ ∈ [40; 70]%. It is important
to note that the fraction of the injected argon should not exceed
∼23%–25% at the considered thermodynamic conditions. The
structure of the system is destroyed with an increase in the
argon fraction above this value: the liquid melt is decayed
by overheated argon. Thus, the optimal fraction of the injec-
ted argon required to obtain the highly porosity system with
open pores is about ∼20% at the considered thermodynamic
conditions.
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Figure 2. Dependence of the porosity ϕ on the injected argon fraction f. Regions corresponding to the amorphous system with different
porous structures (with open pores, with closed pores) are identified. The system instability region is shown, where the addition of Ar atoms
leads to the destruction of the system.

We find that the dependence of the system porosity on the
injected argon fraction can be reproduced by the exponential
law

ϕ( f) = ϕ0

[
e f/f0 − 1

]
, f⩾ f0. (7)

Here, ϕ0 is the fraction of the free volume in the system
without pores; this parameter is related to the packing frac-
tion f p, ϕ0 ≈ 1− fp [32, 33]. The parameter f 0 characterizes
the minimum fraction of the injected argon that is sufficient
for the formation of stable pores. Expression (7) is an empirical
result and it is realized at f⩾ f0. In fact, equation (7) indicates
that the density of the porous system ρ is related to the fraction
of injected gas f according to the exponential law

ρ( f) = ρ0(1+ϕ0 −ϕ0e
f/f0), f⩾ f0. (8)

Both equations (7) and (8) take into account the physical effect
associated with the fact that there is a minimum fraction of
injected gas f 0, at which stable pores are formed in the sys-
tem and the system is not able to ‘heal’ these pores. The val-
ues of the parameters f 0 and ϕ0 were determined by fit of
equation (7) to the simulation data. For the considered system,
the found value f0 = (7.6± 0.8)% determines the minimum
argon fraction that should be injected into nitinolmelt to obtain
the minimum porosity ϕ( f0)≈ 1.72ϕ0 ≈ 6.9%, where ϕ0 =
(4.0± 1.0)%. The formed pores will coalesce after removal of

Ar atoms from the system if value of the parameter f 0 is less
than 7.6%. We find that for the case minimal porosity with
ϕ( f0) it is satisfied the correlation relation f0 ≈ 1.9ϕ0. Then,
from expression (8) at f= f0 we find

ρ( f0)≈ ρ0(1− 0.9f0). (9)

Expression (9) shows the ultimate density of the system, at
which the formation of stable pores becomes possible.

Figure 3 shows the fragment of the amorphous matrix of
porous nitinol with the porosity 70%. As can be seen from
this figure, the so-called spongy porous structure is formed at
injected of more than 20% argon. The reason for formation of
such spongy structure is the thermal expansion of the liquid
melt due to the large fraction of overheated noble gas. In this
spongy porous structure the average thickness of the interpore
walls is much less than the average linear size of the pores:
average thickness of interpore walls is ∼5 nm, while the aver-
age linear size of the pores is ∼20 nm. We note that nitinol
is in the state of viscous liquid at the considered temperature
≃1890 K, while argon at this temperature is in strongly over-
heated gas phase (the melting temperature of solid argon is
∼88K). Despite the high fraction of argon, the high viscos-
ity of liquid nitinol does not allow the gas phase to be com-
pletely separated from the melt. Thus, the partial coalescence
of the formed gas bubbles and foaming of liquid nitinol are
occurred. The high viscosity of the melt also contributes to

4



J. Phys.: Condens. Matter 34 (2022) 414003 A A Tsygankov et al

Figure 3. Snapshot of the system with porosity ∼70% prepared by
injecting 23% argon.

formation of the percolating matrix at the cooling procedure
(see figure 3). It is noteworthy that such the spongy porous
structure almost completely corresponds to the structure of
organic foams, aerogels and metallic foams, the porosity of
which ones usually is larger than 70% [34–38]. Average value
of the linear size of the pores in the considered system is also
close to the pore size in aerogels, where pores can have sizes
from ∼10 to ∼100 nm [39]. Such the spongy porous structure
could be of great interest for various practical applications: for
example, for the design of filter elements, fuel reservoirs and
battery electrodes [40].

4. Conclusion

Based on the results of molecular dynamics simulations, we
have shown the possibility of obtaining porous amorphous
nitinol by injecting argon into the corresponding melt. The
energies and forces between Ni, Ti, and Ar atoms were cor-
rectly calculated using the hybrid interparticle interaction
potential, which made it possible to obtain the porous sys-
tem whose structure is close to experimentally synthesized
aerogels and metallic foams. A relationship between the frac-
tion of the injected argon and the system porosity has been
determined, which is well reproduced by an exponential func-
tion. We have determined the optimal fraction of the injected
argon, whichmakes it possible to obtain the porous amorphous
nitinol with the spongy structure and with the stable amorph-
ousmatrix without crystalline inclusions. The limiting fraction

of the injected argon was also found, the excess of which leads
to the complete extrusion of argon from the liquid melt and to
destroy of the system. It is shown that for formation of stable
porous structure, the minimum fraction of the injected argon
should not be less than ∼7.6% at the considered thermody-
namic conditions. The obtained results show that well-known
method of direct melt foaming by gas injection [21, 22] can
be adapted for the synthesis of porous amorphous nitinol if
the rapid cooling protocol will be implemented.

The results of the present study are practically significant
and can be applied to improve the foaming protocols of metal
melts. For example, based on the results presented in figure 2,
it is possible to determine the optimal ratio of foaming gas
and metal melt to obtain a sample with the required poros-
ity and pore morphology. This makes it possible to simplify
the procedure for synthesizing samples with desired mechan-
ical properties for specific applications, for example, for the
manufacture of construction materials or implants [41, 42].
Moreover, the ultimate value of the argon fraction necessary
to obtain a highly porous system with the porosity ∼70%
was determined for the first time. At such porosity, we have
a sponge-like porous structure as in the case of aerogels,
organic and metal foams. This result is of great importance
in production of porous filters and biocompatible porous nan-
oparticles, for example, for the delivery and storage of drugs
in humans [43–45].
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