
Tool for 3D Gazebo map construction from arbitrary

images and laser scans

Roman Lavrenov

Intelligent Robotics Dept., Higher Institute for Information

Technology and Information Systems (ITIS)

Kazan Federal University

Kazan, Russian Federation

e-mail: lavrenov@it.kfu.ru

Aufar Zakiev

Intelligent Robotics Dept., Higher Institute for Information

Technology and Information Systems (ITIS)

Kazan Federal University

Kazan, Russian Federation

e-mail: zaufar@gmail.com

Abstract — Algorithms for mobile robots, such as navigation,

mapping, and SLAM, require proper modelling of environment.

Our paper presents an automatic tool that allows creating a

realistic 3D-landscape in Gazebo simulation, which is based on the

real sensor-based experimental results. The tool provides an

occupancy grid map automatic filtering and import to Gazebo

framework as a heightmap and enables to configure the settings

for created simulation environment. In addition, the tool is

capable to create a 3D Gazebo map from any arbitrary image.

Keywords-Gazebo; ROS; octomap; occupancy grid; heightmap;

map filtering;

I. INTRODUCTION

At present, mobile robotics are developing rapidly.
Navigation problem is one of the most important difficulties in
mobile robotics. The main components of the navigation of an
autonomous vehicle are localization, mapping and path planning
[1]. Localization is responsible for exact determining of robot's
current position in an environment. Mapping process is a
collecting sensory data about environment and storing it in a
form that is convenient for further using. Path planning is a
search of route within an environment from start to target
position while utilizing data about obstacles that was collected
during a mapping process [17,18]. SLAM unites localization
and mapping processes to achieve autonomous operation of the
mobile vehicle. SLAM algorithms cope with various particular
hardware and/or environmental constraints, e.g. monocular
SLAM methods [2], LIDAR and visual sensors combining
SLAM methods [3].

Navigation and SLAM algorithms should be carefully tested
before integrating them into real mobile robot software. Testing
is usually performed with a help of a computer simulation,
which is an efficient and inexpensive way to verify new
methods, algorithms correctness and possibility to apply them
on existing robotic systems [4]. The best way to create simulated
environment is to employ real sensor-based input data. For our
research project on SLAM for a heterogeneous group using
active collaborative vision and multi-robot belief space

planning, we are utilizing Robot Operating System (ROS).
However, it is currently missing a simple and convenient tool
for real sensor-based data import and processing, and such tool
development is a core contribution of our paper.

The rest of paper is organized as follows. Section 2
introduces project motivation and system setup. Section 3
overviews filter types and justifies our selection of a best
suitable filter, while Section 4 presents details of map importing
process. Section 5 shows the example of using the tool. Finally,
we summarize our research in section 6.

II. MOTIVATION AND SYSTEM SETUP

A. Project motivation

The main goal of our research deals with collaboration
aspects investigation between a heterogonous group of a UGV
and a number of small-size UAVs, focusing on operation in
uncertain environments. The environment could be represented
by an outdated or imprecise map. To facilitate a reliable
autonomous operation, robots will collaboratively perceive the
surrounding environment and plan high-quality actions while
taking different sources of uncertainty into account. We build
upon recent progress in SLAM and belief space planning [5],
and will explore approaches that take into account the
uncertainty in the environment. In particular, such a framework
will allow robots to devise proper motion to improve
localization and mapping even in lack of GPS signal.

Our first and very simplified team collaboration approach
dealt with two quadrotors performing 3D-mapping with Kinect
sensors and path planning with a Husky robot [6]. Husky robot
employed data from quadrotors and its LIDAR sensor to create
Voronoi Graph, performed global path planning and followed a
selected path while applying local re-planning for dynamic
obstacles avoidance. The simulation was performed in a
synthetic ROS/Gazebo environment, and all phases of the
operation (namely, 3D mapping, path calculation and
locomotion) were very sensitive to landscape changes. To
further sophisticate the simulation, we want to substitute a
synthetic environment with a real sensor-based map.

This work was partially supported by the Russian Foundation for Basic
Research (RFBR) and Ministry of Science Technology & Space State of

Israel (joint project ID 15-57-06010). Part of the work was performed
according to the Russian Government Program of Competitive Growth of

Kazan Federal University.

mailto:lavrenov@it.kfu.ru
mailto:zaufar@gmail.com

B. Simulation setup

For our research, we use ROS Indigo (Robot Operating
System) together with Gazebo 2.2 simulator that has a built-in
physics engine, convenient programmable and graphical
interfaces, and allows creating high-quality simulations. We
perform mapping with occupancy grid and octomap approaches
within ROS/Gazebo environment.

Occupancy grid is a field of values, each representing an
obstacle presence in a specified location [7]. Values could be
binary (0 for a free cell, 1 for an occupied with an obstacle cell)
or store non-binary data that reflects terrain roughness, i.e.
particular region traversability [8]. When occupancy level varies
from 0 to 255, an occupancy grid is visualized as grayscale
image with 0 assigned for a free cell and 255 for a completely
non-traversable cell (Fig. 3, both).

Octomap is another way to store information about 3D-space
occupancy. To store data effectively, entire volume is divided
into voxels, and each voxel state is stored in nodes of a
corresponding octree (a tree with a branching factor of 8) [9].
This provides map resolution control with limiting octree depth.
An example of voxel structure and its octree representation are
demonstrated in Fig. 1.

Figure 1. Volume represented as an octomap and it’s corresponding

octree scheme

Generic quadrotor UAVs in our simulation perform 3D

mapping of imported landscapes with Kinect RGBD-sensors in
order to demonstrate a success of map import with our tool.
Quadrotor simulation is based on ROS-package
hector_quadrotor [10]. Kinect sensors are located at quadrotor
bottom with a 45-degree pitch angle (Fig.2, left). This angle
helps avoiding occlusions (with propellers) and is optimal for
object detection under a flying quadrotor.

Husky robot (ROS-package husky_robot) checks collision
detection while moving through synthetic landscape and is fully
operational in ROS framework [11]. As a second platform for
map verification we employ Turtlebot robot (ROS-package
TurtleBot, is shown in Fig. 2, right) – a simple moving base with
sensors that has libraries for visualization, planning, perception
and control, which is featured with a simpler moving and
collision physics compared to Husky.

C. Sensor-based input data

In order to create a realistic simulation and verify the
proposed solution we used a real data environment map. The
data was obtained with a mounted on top of a Pioneer ground
mobile robot laser range finder while navigating through

Autonomous Navigation and Perception Lab (ANPL) facility at
the Technion - Israel Institute of Technology (Fig.3, left). The
second map (Fig.3, right) was obtained from Hackaday website
(https://hackaday.com/tag/lidar/). The maps are built using the
gmapping code (ROS package) and can be loaded by using
rosservice from map_server ROS package. The resulting maps
present an occupancy grid that could be visualized as a grayscale
image in PGM format. It has three possible pixel values of
"black" for occupied space, "white" for free space and "gray" for
vaguely defined space that means uncertain situation with no
scanning data available. In order to support path planning, maps
should be filtered before importing it to Gazebo environment.

Figure 2. Generic quadrotor model with a Kinect sensor (on the left),

Turtlebot robot model in Gazebo (on the right side)

III. MAP FILTERING

Various existing filters for image noise reduction could be

roughly classified into linear, non-linear and fuzzy-classical

filters [12]; particularly interesting for our task is a simple salt-

and-pepper filter [13]. In this section we briefly overview these

filter types and justify the selection of a best suitable for our

task filter. Throughout the section we keep a uniform notation

for an image A that consists of pixels (i,j) with (i,j)’s grey-value

denoted by A(i,j) and a corresponding filtered image A'.

Figure 3. Original sensor-based maps

A. Linear filters

Linear filters filter images by replacing an original pixel

value with a linear combination of the pixel's neighborhood.

Linear filters are easy to implement but all of them blur an

image, making obstacle edges smoother. A new pixel value is

calculated as a weighted average of the values within a square

region centered at a pixel (i,j):

 
 


N

Nk

N

Nl

ljkiAlkwjiA),(),(),(' (1)

where N is a size of a square mask of the filter and weight

coefficients w(k,l) satisfy the condition:

 
 


N

Nk

N

Nl

lkw 1),((2) .

B. Non-linear filters

Non-linear filters have several improvements to cope with
disadvantages of linear filters. Adaptive mean filters are
designed to detect if pixels belong to a same homogeneous
region. To do that, the algorithm counts the difference between
a proceeded pixel of interest and its neighbor. If they belong to
a same region, their mutual influence is significant, otherwise –
very low. This dependency is expressed with the equation:

𝑤𝑖𝑗(𝑘, 𝑙) ~ |𝐴(ⅈ, 𝑗) − 𝐴(ⅈ − 𝑘, 𝑗 − 𝑙)| (3)

Such filters better preserve object edges but do not
completely eliminate a blurring effect.

Median filters work in slightly different way, applying pixel
neighborhood median value; they are ideal for reducing extreme
pixel values and successfully deal with impulse noises:

A′(i, j) = median−N≤k,l≤N A(i − k, j − l) (4)

Main drawback of median filters is that thin edges and lines
may be entirely eliminated during filtering process.

C. Fuzzy-classical filters

Fuzzy-classical filters apply particular mathematical

functions (e.g., mean, median or a more sophisticated function)

and holistic rules to calculate weights of each neighbor pixel,

considering difference between pixels’ locations and values.

Commonly, large value difference or distance decrease pixel

weight and vice versa.

Fuzzy-classical filters may be the most agile way to reduce

noises on a wide range of images. However, optimal function

selection and implementation of these filters may be rather

cumbersome.

D. Salt-and-pepper filter

Salt-and-pepper filters are used mainly to reconstruct image

after data loss during a delivery or file damaging [13].

Algorithms of these filters look for "extreme" values, which are

called "salt" and "pepper" if pixel values are abnormally low or

high respectively. Filtering consists of two main stages:

detection stage and filtering stage.

Detection stage searches noisy pixels - local minima ("salt")

and maxima ("pepper") of intensities starting from boundary

pixels. The second stage is actual filtering when algorithm

starts to gradually increase neighborhood area in order to make

a filtered value as much accurate as possible. Increasing stops

when it becomes impossible to do that without new noisy pixels

inclusion. This constraint minimizes influence of noisy pixels

on each other.

Figure 4. Filtering ROS node data flow scheme

E. Filter selection

Original sensor-based mapping marks pixels as "white" (free
space), "black" (obstacle) or "grey" (unknown pixel that had
been invisible for the sensor). Thus, noisy pixels contain exactly
the same values variety options as pixels with real values.
Moreover, all noises are impulse noises, i.e. they are not
uniformly distributed within a map.

Figure 5. Original sensor-based map filtered using median filter

Having only three types of pixel values makes impossible

to use all filters, which produce mean filtered values, as they

cannot be interpreted in terms of pixel occupancy. Fuzzy-

classical filters may perform slightly better, but require a

significant amount of time to adapt to particular map properties.

Salt-and-pepper filters may seem to be the best in reducing

impulse noises but their weakness is noisy pixel detection stage,

as it is impossible to classify noise by its value because there is

no difference between noisy and noise-free pixels' values.
Therefore, we use a non-linear median filter, which does not

produce meaningless values, effectively reduces impulse noises
and is easy to implement. The filter was implemented as ROS
node written in C++ language. It receives an occupancy grid as
an input, filters it and outputs an occupancy grid in a same
format (Fig. 4 represents the algorithm flow). All phases -
original map processing, filtering and filtered map saving - were
combined into a single launch-file, which makes filtering and
further import easy. The filtered map is demonstrated in Fig. 5.

Figure 6. The initial sensor-based map, which is filtered with the use of

modified median filter

However, we noticed that thin structures, such as inner

walls, were eliminated during the filtering process. To cope

with this, we modified our median filter implementation not to

affect pixels (i,j) which closest elements in row have the same

value as pixel of interest itself. We denoted them as (i,j-1),

(i,j+1) (i-1,j) in row case and as (i+1,j) in column case. The

result of filtered map is demonstrated in Fig. 6.

Figure 7. Scaled region of the initial map (left) is filtered with use of

median filter (on the middle), and modified median filter (on the right).
Modified filter effectively preserves thin structures in

heightmap. Difference between initial map and two filtering

results is demonstrated on Fig. 7

IV. MAP IMPORTING

To store object descriptions in a scene, parameters of

physics, collision detection, etc., Gazebo uses special world

SDF format file [14]. Initially, within our project such SDF

world was populated with manually created objects (traffic

cones, walls etc.), which were stored as 3D-models with

textures (Fig. 8). However, this solution could not be applied

directly for automatic import of a sensor-based map into SDF

world. To import such map as a landscape we verified several

options, which are described in details in this section.

Figure 8. Initial project with Husky and two quadrotors

A. Automatic map to 3D-model conversion

Automatic map to 3D-model conversion method was tested
using third-party command line tool called stl_tools [15]. This
tool uses PNG image as an input, processes it and outputs STL
model. Figure 9 demonstrates a resulting model of original
sensor-based map (Fig.3, left). However, this model cannot store
textures and measuring units, as well as does not interact with
light or shades in the simulator.

Figure 9. Resulting STL model from stl_tools

B. Automatic world file generation

Automatic world file generation is implemented as a ROS
node, which takes a filtered occupancy grid and creates a world
that is populated with box-type objects that correspond to
occupied areas coordinates.

However, when the node was implemented and launched,
we discovered an undocumented constraint of Gazebo simulator
that does not allow to have more than one thousand distinct
objects in a scene simultaneously. Thus, as the filtered original
map contains over 3000 occupied grid cells, the automatic
generator succeeded to support only a partial map. While it may

be possible to optimize the script by merging distinct
neighboring occupied cells, such solution is not generally
scalable. In addition, there is no direct way to explicitly mark
uncertain areas ("grey" pixels).

C. Heightmap construction

We build an octomap type map using SDF-element
heightmap, which requires base image file for environment
construction and allows specifying landscape size and its
maximum height within its XML format. The attempt to utilize
heightmap directly failed to create a valid landscape as in
addition to issues with obstacle heights (the automatic
conversion inverted all heights) it does not support robot
collision treatment (Fig. 10 shows the resulting invalid map).
This was caused by requirements of heightmap on base image
file to be in grayscale mode PNG format instead of a standard
default RGB mode.

Figure 10. RGB image importing result: inverted heights

Figure 11. Successfully imported heightmap with textures

Our tool fixes this issue by performing file conversion of a
preprocessed with a filtering map from RGB to PNG format
prior to employing a heightmap. As an output the tool provides
a valid map that supports proper textures, colors and heights for
occupied, free and unknown areas as well as collision, light and
shading treatment. Figure 11 demonstrates the resulting final
map of the filtered original map (Fig.3, right).

D. Map verification stage

To verify the usability and quality of the created with our
tool landscape, we tested it for a navigation task with the
mentioned above Husky robot and two quadrotors. While
testing, we measured performance of Gazebo simulation with
Real Time Factor (RTF), which shows a ratio of execution time

and calculation time within a simulation for a particular task. For
example, if it takes 4 seconds to compute 1 second of execution
in the simulation, RTF equals 0.25. Naturally, the larger is RTF,
the more efficient is the simulation.

Several optional robot models were used for verification. For
the two quadrotors performing a navigation task within the
simulated landscape the RTF was equal to 0,7. For Husky robot
together with the two quadrotors the RTF decreased to
unacceptable rate of 0,01, while for Tutrlebot robot [16] with the
two quadrotors the RTF decreased to acceptable value of 0,3.
This confirmed our assumption about a particularly complicated
interaction between the resulting heightmap and Husky robot
model. Figure 12 demonstrates a simulation of navigation task
for a Tutrlebot robot and two quadrotors within a resulting
environment that was obtained from the filtered map (Fig. 5).

Figure 12. A final map with two quadrotors and Tutrlebot, performing a joint

navigation task

V. TOOL PARAMETERS

Multiple parameters allow to define cropping offsets;
minimal desired image height and width; filtering and color
inversion options. The implemented in tool options are:

map_filepath – path for processing the initial heightmap.
saving_path – path for processing the map saving.
use_filtering – filters image with modified median filter.
color_inverse – replaces every pixel with its additional color

(Fig. 13).
cropped_width / cropped_height – crops (or extends) the

image as defined by the passed sizes. In case of extension,
additional color area changes the color mode to the grayscale.

offset_x and offset_y – crop the area of vertical and
horizontal image respectively, that are defined by passed value.
The example of changing offsets is shown on Figure 14.

Only map_filepath option is necessary, all others are
optional and implemented for easy usage.

After launching, the initial heightmap becomes cropped (or
extended) and changes the color mode to the grayscale. Next
steps, which include filtering and color inverse, are optional. For
further use the image need to be saved in PNG format. Finally,
Gazebo file is created and can be used by Gazebo simulator to
launch. For easy usage all tool features are integrated with ROS.

Tool launching example with multiple options:

roslaunch gazebo_heightmap_preparation start.launch

map_filtering:=home/project/ANPL_map.pgm

saving_filepath:= home/project use_filtering:=true

cropped_width:=400 color_inverse:=false offset_x:=1830

offset_y:=1800

Figure 13. Tool launching with multiple options

Figure 14. Tool launching with multiple options

Figure 15. Example of tool execution – from initial image (left) to Gazebo

environment (right)

VI. CONCLUSIONS

In this paper, we presented the development of an
automatic tool that allows creating realistic landscapes in
Gazebo simulation from arbitrary images (Fig. 15) and from a
real world sensor-based exploration map. The tool provides
automatic filtering and import of an occupancy grid map into
Gazebo framework as a heightmap. As a part of our future
work, we plan to verify the obtained tool for a set of existing in
ROS models of robots as well as for the ROS-model of
Engineer robot [6]. The tool will be further improved and
compiled as an open source ROS-package for public domain.

REFERENCES

[1] Jorge Fuentes-Pacheco, José Ruiz-Ascencio, Juan Manuel

Rendón-Mancha. Visual simultaneous localization and mapping: a

survey. Artificial Intelligence Review, November 2015.

[2] A. Buyval, I. Afanasyev, and E. Magid, Comparative analysis of

ROS-based Monocular SLAM methods for indoor navigation, The

9th Int. Conf. on Machine Vision, 2016.

[3] R. W. Wolcott, R. M. Eustice. Visual Localization within LIDAR

Maps for Automated Urban Driving, 2014.
[4] I. Afanasyev, A. Sagitov, and E. Magid. ROS-Based SLAM for a
Gazebo-Simulated Mobile Robot in Image-Based 3D Model of Indoor
Environment. Advanced Concepts for Intelligent Vision Systems,
Springer International Publishing, pp.273-283, 2015.
[5] V. Indelman, L. Carlone and F. Dellaert, ""Planning in the
continuous domain: A generalized belief space approach for
autonomous navigation in unknown environments.", The Int. Journal
of Robotics Research, vol. 34, no. 7, pp. 849-882, 2015.
[6] M. Sokolov, R. Lavrenov, A. Gabdullin, I. Afanasyev and E.
Magid. 3D modelling and simulation of a crawler robot in
ROS/Gazebo. The 4th Int. Conf. on Control, Mechatronics and
Automation, 2016.
[7] Open Source Robotics Foundation, "nav_msgs/OccupancyGrid
Documentation," http://docs.ros.org/kinetic/
api/nav_msgs/html/msg/OccupancyGrid.html

[8] S. Singh, R. Simmons, T. Smith, A. Stentz, V. Verma, A. Yahja

& K. Schwehr. Recent Progress in Local and Global Traversability

for Planetary Rovers. IEEE Int. Conf. on Robotics and Automation,

2000.
[9] Hornung, A., Wurm, K. M., Bennewitz, M., Stachniss, C., &
Burgard, W. (2013). OctoMap: An efficient probabilistic 3D mapping
framework based on octrees. Autonomous Robots, 34(3), 189-206.
[10] S. K. Johannes Meyer, "hector_quadrotor - ROS Wiki,"
http://wiki.ros.org/hector_quadrotor.
[11] Clearpath Robotics, "Robots/Husky - ROS Wiki,"
http://wiki.ros.org/Robots/Husky
[12] Nachtegael, M., Van der Weken, D., Van De Ville, D., Kerre, E.,
Philips, W., & Lemahieu, I. (2001). An overview of classical and
fuzzy-classical filters for noise reduction. The 10th IEEE Int. Conf.
on Fuzzy Systems (Vol. 1, pp. 3-6), 2001.
[13] Toh, Kenny Kal Vin, and Nor Ashidi Mat Isa. "Noise adaptive
fuzzy switching median filter for salt-and-pepper noise
reduction." IEEE signal processing letters 17.3 (2010): 281-284.
[14] Open Source Robotics Foundation, "SDF," http://sdformat.org/
[15] T. Hearn, "GitHub - thearn/stl_tools: Python code to produce
STL geometry files from plain text, LaTeX code, and 2D numerical
arrays (matrices)," https://github.com/thearn/stl_tools
[16] M. W. Tully Foote, "Robots/TurtleBot - ROS Wiki,"
http://wiki.ros.org/Robots/TurtleBot
[17] E. Magid, T. Tsubouchi. Static Balance for Rescue Robot
Navigation : Discretizing Rotational Motion within Random Step
Environment. Lecture Notes In Artificial Intelligence, Vol. 6472,
Proceedings of International Conference on Simulation, Modeling,
and Programming for Autonomous Robot, pp. 423-435, 2010.
[18] E. Magid, T. Tsubouchi, E. Koyanagi, T. Yoshida. Building a
Search Tree for a Pilot System of a Rescue Search Robot in a
Discretized Random Step Environment, Journal of Robotics and
Mechatronics, Vol.23(1), August 2011, pp.567-581.

http://wiki.ros.org/hector_quadrotor
http://sdformat.org/
https://github.com/thearn/stl_tools
http://wiki.ros.org/Robots/TurtleBot

