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1. INTRODUCTION

A method for constructing upwind nonconformal finite element schemes (FEM) of arbitrary order of
accuracy for solving linear nonstationary convection–diffusion problems was proposed in [1]. In [2] the
method was extended to similar quasilinear equations. The stability of the schemes was analyzed in [1, 2],
but no error estimates were obtained. In this paper, we fill the gap and analyze the accuracy of the schemes

from [2] as applied to the stationary problem1

(1)

in a polyhedral domain Ω ⊂ Rd, d ≥ 1, with boundary ΓD. The coefficients k(x, ξ) = (k1(x, ξ), k2(x, ξ), …,

kd(x, ξ)), k0(x, ξ) are assumed to be continuous functions of x ∈  for any ξ ∈ Rd + 1 and, for any x ∈ Ω,
satisfy the estimates

(2)

(3)

(According to theory of monotone operators, these are sufficient conditions for the existence and unique-

ness of a weak solution of the problem in the Sobolev space (Ω).)

The scheme under study was obtained as a limit Galerkin–Petrov approximation based on a mixed for-
mulation of Eq. (1) in the form of the system of first-order equations

(4)

Later, it was found that the scheme belongs to the broader class of discontinuous Galerkin schemes (DG
or DGFEM schemes). For a linear elliptic problem, a similar scheme was somewhat earlier proposed and
analyzed in [3]. DG methods (see [4]) occupy an intermediate position between the finite-volume method
and FEM and combine many good properties of both methods, thus providing the practical foundation

1 The estimates obtained below are easy to extend to a similar parabolic problem.
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