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Предисловие

Учебное пособие представляет собой обработанный
курс лекций, читаемый автором студентам-бакалаврам
в Институте математики и механики им. Н.И. Лобачев-
ского Казанского федерального университета.

В книге изложены численные методы решения си-
стем линейных алгебраических уравнений, алгоритмы
решения нелинейных уравнений и систем, теория ин-
терполяции функций и квадратурных формул, наилуч-
шие приближения в функциональных пространствах,
а также базовые алгоритмы приближенного решения
дифференциальных, операторных и интегральных урав-
нений. Более полно с содержанием книги можно позна-
комиться по оглавлению.

Некоторые заголовки содержат общепринятые со-
кращения: СЛАУ — система линейных алгебраических
уравнений, ОДУ — обыкновенные дифференциальные
уравнения, УЧП — уравнения в частных производных,
МКР — метод конечных разностей, НП — наилучшие
приближения.

Поскольку лекции предназначены для студентов-
математиков, все основные утверждения даны с пол-
ными доказательствами. Отметим также, что для по-
нимания содержания книги вполне достаточно знаний,
получаемых студентами на первых двух курсах уни-
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верситета по линейной алгебре, дифференциальному и
интегральному исчислению, начальным фактам теории
функциональных пространств.

По большому счету практика вычислений являет-
ся искусством, творческим процессом, основанном на
знании различных алгоритмов. Поэтому при изучении
данного курса нужно уделить особое внимание числен-
ным алгоритмам решения рассматриваемых задач. Ко-
нечно, леммы и теоремы, теоретические оценки погреш-
ности тех или иных алгоритмов играют важную, но
вспомогательную роль. Однако знание теоретических
основ приобретает первостепенное значение при созда-
нии новых численных методов и алгоритмов.

В заключение отметим, что представленные лек-
ции следует рассматривать как вводный курс в обшир-
ную область знаний, называемой "Вычислительной ма-
тематикой". Все мы понимаем, что в настоящее время
роль вычислительной математики неуклонно растет в
связи с бурным развитием компьютерных технологий.

Выражаю благодарность рецензентам за ряд полез-
ных замечаний, которые были учтены мной при ком-
пьютерной верстке книги.

Казанский федеральный университет,
июнь 2022 года,
Ф.Г. Авхадиев
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Глава 1

Методы решения СЛАУ

В первой части курса мы будем рассматривать базо-
вые алгоритмы решения трех задач. В основном речь
пойдет о решении системы линейных алгебраических
уравнений (сокращенно, СЛАУ) вида

a11x1 + a12x2 + a13x3 + . . . + a1nxn = b1

a21x1 + a22x2 + a23x3 + . . . + a2nxn = b2

. . . . . . . . . . . . . . . . . . . . . . . . . . .

an1x1 + an2x2 + an3x3 + . . . + annxn = bn

.

С использованием матриц и векторов линейную систе-
му можно записать в виде одного уравнения

Ax = b,

где A = {aij}ni,j=1 — квадратная матрица порядка n
с вещественными или комплексными коэффициентами,
b = (b1, . . . , bn) — заданный вектор, а x = (x1, . . . , xn)
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— искомый вектор.
Из курса линейной алгебры мы знаем, что если

определитель (=детерминант) detA матрицы

A = {aij}ni,j=1

отличен от нуля, то решение СЛАУ существует и опре-
деляется единственным образом при любом заданном
векторе b = (b1, . . . , bn), и это решение можно найти по
правилу Крамера.

Применение формул Крамера связано с вычисле-
нием определителей, а эта операция является весьма
трудоемкой для больших n. А именно, вычислитель-
ная сложность, т. е. число арифметических операций,
необходимых для вычисления detA, превосходит n!, ес-
ли пользоваться классическим определением детерми-
нанта.

Поэтому для решения СЛАУ разработаны менее
трудоемкие, новые методы. Они делятся на два типа:
точные и приближенные. "Точным" называют метод,
позволяющий найти решение за конечное число шагов
(арифметических операций).

Забегая вперед, отметим, что в следующей главе 2
будем рассматривать базовые методы приближенного
решения нелинейных алгебраических уравнений и си-
стем нелинейных уравнений. В частности, будем знако-
миться с методами нахождения собственных значений
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и собственных векторов конечномерных линейных опе-
раторов, заданных матрицами.

Для СЛАУ рассмотрим сначала несколько точных
методов решения, а именно, правило Крамера, метод
Гаусса и его модификации, метод ортогонализации и
несколько методов, связанных со специальными разло-
жениями матрицы системы.

1.1 О формулах Крамера

Пусть A = (aij) — квадратная матрица порядка n,
A(k) — квадратная матрица, полученная из матрицы
A заменой k-того столбца элементов (a1k, a2k, . . . , ank)

на столбец свободных членов (b1, b2, . . . , bn). Правило
Крамера предполагает, что detA 6= 0.

Тогда, как хорошо известно, решение уравнения

Ax = b

существует, единственно и определяется следующими
формулами Габриэля Крамера (1704-1752):

xk =
detA(k)

detA
, k = 1, 2, . . . , n.

Найдем теперь число арифметических операцийN ,
необходимых для определения решения методом Кра-
мера. Будем учитывать только умножения и деления
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(пренебрегаем сложениями и вычитаниями) и пользу-
емся индуктивным определением детерминантов мат-
риц, равносильным стандартному.

Очевидно, имеем n делений, а количество умноже-
ний равно (n + 1)Mn, где Mn − число умножений при
вычислении определителя матрицы порядка n. Таким
образом, N = n + (n + 1)Mn.

Далее применим метод математической индукции.
Для матрицы второго порядка определитель равен

a11a22 − a21a12

и содержит 2 = 2! умножения. Применяя разложение
по элементам третьей строки для определителя матри-
цы третьего порядка, получаем M3 = 2! 3 = 3!. Ана-
логично, если Mk = k! (k ≥ 3), то, применяя разло-
жение по элементам последней строки для определите-
ля матрицы порядка k + 1, немедленно получаем, что
Mk+1 = (k+ 1)!, и, следовательно, N = n+ (n+ 1)! при
указанном методе вычисления определителей. Напом-
ним, что n! ≈

√
2πn (n/e)n.

На самом деле можно считать, что

N = n + (n + 1)Mn = O(n4),

так как метод Гаусса, который мы рассмотрим в следу-
ющем пункте, позволяет вычислить определитель мат-
рицы порядка n за значительно меньшее число умно-
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жений и делений. А именно, Mn = O(n3) при исполь-
зовании алгоритма Гаусса.

Замечание Существует иная, более общая, фор-
мулировка правила Крамера для совместных систем,
не требующая предположения detA 6= 0. А именно,
имеет место такое утверждение: если x1, . . . , xn — одно
из решений системы, то для любых коэффициентов
c1, c2, . . . , cn справедливо равенство

(c1x1 + c2x2 + . . . + cnxn) detA = − detC,

где C — следующая квадратная матрица порядка n+1

C =


a11 a12 . . . a1n b1

a21 a22 . . . a2n b2

. . . . . . . . . . . . . . .

an1 an2 . . . ann bn
c1 c2 . . . cn 0

 .

1.2 Метод Гаусса

Речь идет об известном с древнейших времен методе
последовательного исключения переменных.

В настоящее время этот подход принято называть
методом Гаусса в честь Карла Фридрихса Гаусса (1777-
1855), систематически использовавшего метод последо-
вательного исключения переменных на практике при
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обработке результатов проводимых им геодезических
измерений в Нижней Саксонии.

1.2.1 Основные алгоритмы

Рассмотрим систему линейных алгебраических уравне-
ний общего вида

a11x1 + a12x2 + a13x3 + . . . + a1nxn = b1

a21x1 + a22x2 + a23x3 + . . . + a2nxn = b2

. . . . . . . . . . . . . . . . . . . . . . . .

an1x1 + an2x2 + an3x3 + . . . + annxn = bn

. (1.1)

Применим к этой системе специальные элементарные
преобразования следующих трех типов:

(α) умножение или деление элементов какой-либо
строки на число, отличное от нуля;

(β) добавление к элементам какой-либо строки чи-
сел, пропорциональных элементам одной из предыду-
щих строк;

(γ) добавление к элементам какой-либо строки чи-
сел, пропорциональных элементам одной из последую-
щих строк.

Целью этих преобразований является приведение
матрицы A к верхнетреугольной матрице, т. е. к мат-
рице, у которой равны нулю все элементы, расположен-
ные ниже главной диагонали.
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Основной алгоритм Гаусса, основанный на опера-
циях вида (α) и (β), опишем по шагам.

Шаг 1.1 Предположим, что a11 6= 0. Делим на
это число коэффициенты первого уравнения, получаем
новое первое уравнение вида

x1 + a
(1)
12 x2 + a

(1)
13 x3 + . . . + a

(1)
1nxn = b

(1)
1 .

Шаг 1.2 Умножаем новое первое уравнение на
число ak1, (k = 2, . . . , n), и вычитаем из k-го уравне-
ния. Получаем новые уравнения вида

a
(1)
22 x2 + a

(1)
23 x3 + . . . + a

(1)
2nxn = b

(1)
2

a
(1)
32 x2 + a

(1)
33 x3 + . . . + a

(1)
3nxn = b

(1)
3

. . . . . . . . . . . . . . . . . . . . .

a
(1)
n2x2 + a

(1)
n3x3 + . . . + a

(1)
nnxn = b

(1)
n

. (1.2)

Фактически мы имеем новую систему линейных ал-
гебраических уравнений порядка (n− 1) с неизвестны-
ми x2, . . . , xn. С ней поступаем точно так же, как и с
исходной системой.

Шаги 2.1 и 2.2 Предполагаем, что a(1)
22 6= 0, 1-ое

уравнение из (1.2) делим на a(1)
22

x2 + a
(2)
23 x3 + . . . + a

(2)
2nxn = b

(2)
2 .

Это уравнение умножаем на a(1)
k2 (k = 3, . . . , n) и вы-
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читаем из k-го уравнения. Уравнения с номерами

k = 3, . . . , n

преобразуются к следующему виду

a
(2)
33 x3 + a

(2)
34 x4 + . . . + a

(2)
3nxn = b

(2)
3

a
(2)
43 x3 + a

(2)
44 x4 + . . . + a

(2)
4nxn = b

(2)
4

. . . . . . . . . . . . . . . . . . . . . . . .

a
(2)
n3x3 + a

(2)
n4x4 + . . . + a

(2)
nnxn = b

(2)
n

. (1.3)

Шаги 3.1 и 3.2 аналогичны шагам 2.1 и 2.2. А имен-
но, предполагаем, что a(2)

33 6= 0, 1-ое уравнение из (1.3)
делим на a(2)

33 и приходим к уравнению вида

x3 + a
(3)
34 x4 . . . + a

(3)
3nxn = b

(3)
3 ,

с использованием полученного уравнения исключаем
переменную x3 из всех последующих уравнений. Да-
лее, продолжаем процесс. Понятно, что через 2n − 1

шаг, в предположении отличности от нуля чисел (веду-
щих элементов)

a11, a
(1)
22 , a

(2)
33 , . . . , a

(n−1)
nn ,

получаем следующую систему с верхнетреугольной мат-
рицей
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

x1 + a
(1)
12 x2 + . . . + a

(1)
1nxn = b

(1)
1

x2 + . . . + a
(2)
2nxn = b

(2)
2

. . . . . . . . .

xn = b
(n)
n

. (1.4)

Переход от СЛАУ вида (1.1) к системе вида (1.4)
называется прямым ходом метода Гаусса.

Обратный ход метода Гаусса заключается в на-
хождении неизвестных x1, . . . , xn из системы (1.4) в по-
рядке, обратном номеру неизвестной. Согласно (1.4),
имеем xn = b

(n)
n . Из (n− 1)-й строки находим xn−1:

xn−1 = −a(n−1)
n−1,nxn + b

(n−1)
n−1 .

Зная xn, xn−1 и используя (n − 2)-ю строку системы
(1.4), определяем xn−2, и т.д. Наконец, находим x1 по
формуле x1 = −a(1)

12 x2 − a(1)
13 x3 . . . − a(1)

1nxn + b
(1)
1 по из-

вестным значениям x2, . . . , xn.
Замечание 1. Если detA 6= 0, то за счет пере-

становки строк в системе (1.1) можно добиться того,
что все ведущие элементы в основном алгоритме Гаус-
са будут отличны от нуля. В этом можно убедиться по
индукции.

Действительно, если detA 6= 0, но a11 = 0, то хо-
тя бы один элемент aj1 (2 ≤ j ≤ n) первого столбца
матрицы должен быть отличен от нуля. Мы можем пе-
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реставить строки с номерами 1 и j, и проделать шаги
1.1 и 1.2 с новым a

(0)
11 = a1j 6= 0. Если detA 6= 0 и

a
(0)
11 a

(1)
22 a

(2)
33 . . . a

(k−1)
kk 6= 0, то детерминант системы

a
(k)
k+1 k+1xk+1 + a

(k)
k+1 k+2xk+2 + . . . + a

(2)
k+1nxn = b

(k)
k+1

a
(k)
k+2 k+1xk+1 + a

(k)
k+2 k+2x4 + . . . + a

(k)
k+2nxn = b

(k)
k+2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a
(k)
n k+1xk+1 + a

(k)
n k+2xk+2 + . . . + a

(k)
nnxn = b

(k)
n

.

отличен от нуля. Поэтому среди элементов первого столб-
ца a(k)

k+1 k+1, a
(k)
k+2 k+1, . . . , a

(k)
n k+1 имеется хотя бы один эле-

мент a(k)
j k+1, отличный от нуля. Ясно, что перестановка

строк с номерами k+ 1 и j позволяет продолжить пря-
мой ход алгоритма Гаусса с ведущим элементом

ã
(k)
k+1 k+1 = a

(k)
j k+1 6= 0.

Описанный выше основной алгоритм Гаусса связан
лишь с операциями типа (α) и (β). Легко видеть, что
для перестановки строк, о чем идет речь в замечании,
необходимо привлечь и преобразования типа (γ).

Отметим также, что при перестановке двух строк
матрицы определитель меняет знак. Этот факт легко
доказать по индукции, взяв за базу индукции n = 2 и
пользуясь разложением по элементам нетронутой пере-
становкой строки для определителя матрицы порядка
n + 1 при индуктивном переходе.
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1.2.2 Число операций. Модификации

Вычислим число арифметических операций N , необхо-
димых для выполнения алгоритма Гаусса. Как и ра-
нее, будем учитывать только операции умножения и
деления. При обратном ходе определение xn не требует
затрат, при определении xn−1 используется одно умно-
жение, для нахождения xk требуется k− 1 умножение,
обратный ход заканчивается вычислением x1 за n − 1

умножение. В итоге, число умножений для осуществ-
ления обратного хода Гаусса равно

N1 = 1 + 2 + . . . + (n− 1) =
(n− 1)n

2
= O(n2).

Рассмотрим прямой ход. В шаге 1.1 имеется n делений
на число a11. Шаг 1.2 связан с n умножениями на числа
ak1 для k = 2, 3, . . . , n, т.е. число умножений в шаге
1.2 равно n(n − 1). Итак, шаги 1.1 и 1.2 требуют n +

n(n− 1) = n2 арифметических операций умножения и
деления.

Число умножений и делений для шагов 2.1 и 2.2
вычисляется аналогично и равно (n − 1)2, для шагов
3.1, 3.2 − (n− 2)2 и т.д.

Очевидно, искомое число операций для прямого хо-
да Гаусса определяется формулой

N2 = n2 + (n− 1)2 + . . . + 22 + 12 =
n(n + 1)(2n + 1)

6
.
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Таким образом, арифметическая сложность алгоритма
Гаусса равна

N = N1 + N2 =
n(n2 + 3n− 1)

3
= O(n3).

Метод Гаусса с выбором ведущих элементов В
замечании 1 мы уже отметили необходимые измене-
ния основного алгоритма Гаусса в том случае, когда
диагональный элемент a(k−1)

kk равен нулю. Кроме того,
поскольку деление на малое число может привести к
большим ошибкам, то неприятной является и ситуация,
когда элемент a(k−1)

kk отличен от нуля, но является ма-
лым числом.

Поэтому рекомендуется следующее усовершенство-
вание (модификация) основного метода Гаусса.

На первом шаге выбирают коэффициент aj11, кото-
рый является максимальным по модулю среди элемен-
тов первого столбца и меняют местами первую строку
со строкой под номером j1. Ясно, что в шагах 1.1 и 1.2
коэффициент aj11 играет роль a11.

Аналогично поступаем на k-том шаге. В качестве
a

(k−1)
kk берем элемент a(k−1)

jkk
, максимальный по модулю

среди чисел a(k−1)
kk , . . . , a(k−1)

nk . Меняем местами строки
под номерами k и jk (если k 6= jk) и следуем основному
алгоритму Гаусса.

При этом, если детерминант матрицы отличен от
21



нуля, то, очевидно, все ведущие элементы ã(k−1)
kk = a

(k−1)
jkk

будут отличны от нуля.
Описанный алгоритм называется методом Гаусса с

выбором ведущих элементов по столбцам.
Существуют две других разновидности этого алго-

ритма с выбором ведущего элемента. А именно, в каче-
стве ведущего элемента выбирают коэффициент, мак-
симальный по модулю среди элементов строки, т. е. сре-
ди чисел a(k−1)

kk , . . . , a(k−1)
kn . Практически это связано с

соответствующей перестановкой столбцов на k-том ша-
ге основного алгоритма Гаусса. Другая разновидность
связана с выбором ведущего элемента, максимального
по модулю среди всех элементов матрицы, с которой
мы работаем на k-том шаге основного алгоритма Гаус-
са. Ясно, что метод Гаусса с выбором ведущего элемен-
та по всей матрице связан с возможной перестановкой
как строк, так и столбцов.

Метод Гаусса с оптимальным исключением
переменных

Этот метод преобразует невырожденную матрицу
в единичную. Приведем укрупненные шаги.

Шаг 1. Начало остается таким же, как и раньше.
Делим первое уравнение на a11 и получаем из 1-го урав-
нения

x1 + a
(1)
12 x2 + a

(1)
13 x3 . . . + a

(1)
1nxn = b

(1)
1 .
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Умножаем это уравнение на a21 и вычитаем из 2-го
уравнения. Затем второе уравнение делим на a(1)

22 . Ис-
пользуя новое 2-е уравнение, из первого исключаем x2.
Первые два уравнения преобразуются к видуx1 + a

(2)
13 x3 + . . . + a

(2)
1nxn = b

(2)
1

x2 + a
(2)
23 x3 + . . . + a

(2)
2nxn = b

(2)
2

. (1.5)

Шаг 2. Пользуясь (1.5), из k-того уравнения k ≥ 3

исключаем x1, x2, затем, используя преобразованное 3-е
уравнение во всех уравнениях ( кроме третьего уравне-
ния) исключаем x3.

Продолжаем процесс. В результате матрица систе-
мы преобразуется в единичную матрицу, а система урав-
нений преобразуется к виду

x1 = b
(2n)
1 , x2 = b

(2n)
2 , . . . , xn = b(2n)

n .

Можно сочетать этот основной алгоритм оптимального
исключения с одним из алгоритмов Гаусса с выбором
ведущих элементов. Итог таков: невырожденная квад-
ратная матрица преобразуется в диагональную. Легко
увидеть, что число операций увеличивается, но поря-
док остается тем же. А именно, число умножений и де-
лений для указанных модификаций алгоритма Гаусса
равно

N = N1 + N2 = O(n3).
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1.2.3 Вычисление обратных матриц

Пусть detA 6= 0. При применении основного алгоритма
Гаусса без перестановок строк будем иметь

detA =

∣∣∣∣∣∣∣∣∣∣
a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . . . . . . . .

an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣∣
=

= a11

∣∣∣∣∣∣∣∣∣∣
1 a

(1)
12 . . . a

(1)
1n

0 a
(1)
22 . . . a

(1)
2n

. . . . . . . . . . . .

0 a
(1)
n2 . . . a

(1)
nn

∣∣∣∣∣∣∣∣∣∣
= a11

∣∣∣∣∣∣∣∣∣∣
a

(1)
22 . . . a

(1)
2n

a
(1)
32 . . . a

(1)
3n

. . . . . . . . .

a
(1)
n2 . . . a

(1)
nn

∣∣∣∣∣∣∣∣∣∣
.

Продолжая основной алгоритм, получаем формулу

detA = a11 · a(1)
22 . . . a

(n−1)
nn ,

т. е. detA равен произведению ведущих элементов. В
общем случае, когда применение метода Гаусса сопро-
вождается перестановками строк, имеем

detA = (−1)m a
(0)
11 · a

(1)
22 . . . a

(n−1)
nn ,

где m — суммарная перестановка строк.
Рассмотрим вычисление обратной матрицы. Эта за-

дача является более сложной. ПустьA = (aij)
n
i,j=1; пред-

полагаем, что detA 6= 0, так как это условие необходи-
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мо и достаточно для существования обратной матрицы
A−1. Из курса линейной алгебры известно, что элемен-
ты обратной матрицы определяются формулами

bij =
Aji

detA
,

где Aij – алгебраическое дополнение к элементу aij.
Мы не пользуемся этими формулами. Рассмотрим

иной подход к определению A−1. А именно, неизвест-
ную обратную матрицу X = A−1 будем искать как ре-
шение матричного уравнения

AX = E :=


1 0 . . . 0 0

0 1 . . . 0 0

. . . . . . . . . . . . . . .

0 0 . . . 0 1

 ,
где через E обозначена единичная матрица.

Понятно, что нахождение неизвестной матрицы

X =


x

(1)
1 . . . x

(k)
1 . . . x

(n)
1

x
(1)
2 . . . x

(k)
2 . . . x

(n)
2

. . . . . . . . . . . . . . .

x
(1)
n . . . x

(k)
n . . . x

(n)
n


требует вычисления n2 чисел x(k)

j . Неизвестные числа
составляют n столбцов. Для определения k-го столбца
неизвестных x(k)

1 , x
(k)
2 , . . . , x

(k)
n имеем следующую систе-
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му линейных алгебраических уравнений:


a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . . . . . . . .

an1 an2 . . . ann



x

(k)
1

x
(k)
2
...
x

(k)
n

 =


0
...
1
...
0

 ,

где в правой части единица стоит на k-ой строчке, осталь-
ные координаты этого вектора равны нулю.

Следовательно, эту систему можно записать в виде
СЛАУ

n∑
j=1

amjx
(k)
j = δmk, m = 1, 2, . . . , n,

где δmk — символ Кронекера.
Полученную систему для определения вектора

x(k) = (x
(k)
1 , x

(k)
2 , . . . , x(k)

n )

решаем методом Гаусса.
Так как число столбцов у матрицы X = A−1 рав-

но n, то приходится решать n однотипных систем. По-
скольку эти системы уравнений отличаются только пра-
выми частями, то очевидно, что прямой ход метода
Гаусса можно проводить одновременно для всех систем.
Наиболее простой и эффективный алгоритм возникает
при применении метода Гаусса с оптимальным исклю-
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чением переменных. На практике новый алгоритм сво-
дится к следующим действиям.

Записываем рядом матрицы A и E, получаем сле-
дующую прямоугольную матрицу

a11 a12 . . . a1n 1 0 . . . 0 0

a21 a22 . . . a2n 0 1 . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .

an1 an2 . . . ann 0 0 . . . 0 1

 ,
где число строк в два раза меньше, чем число столбцов.

К строкам длины 2n применяем преобразования
типа (α), (β) и (γ), так же, как и в методе Гаусса с
оптимальным исключением переменных. В результате
преобразований получаем

1 0 . . . 0 0 b11 b12 . . . b1n

0 1 . . . 0 0 b21 b22 . . . b2n

. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . 0 1 bn1 bn2 . . . bnn

 .
Сама матрица A преобразовалась в единичную, а на
месте единичной матрицы E возникает автоматически
некоторая новая матрица, которая и является обратной
матрицей.

Этот алгоритм можно обосновать и без привлече-
ния матричного уравнения. Действительно, для задан-
ной матрицы каждое преобразование строк типа (α),
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(β) и (γ) равносильно умножению слева на некоторую
невырожденную матрицу Bj. Поэтому при применении
метода Гаусса с оптимальным исключением перемен-
ных мы получаем формулу: E = BA, где

B = B1B2 . . . Bm,

m — число преобразований типа (α), (β) и (γ), которые
использовались для преобразования матрицы A в еди-
ничную. По определению обратной матрицы из равен-
ства E = BA немедленно получаем, что B = X = A−1.

С другой стороны, в приведенном выше алгорит-
ме одновременного преобразования записанных рядом
матриц A и E, над строками единичной матрицы про-
водятся те же преобразования, что и над строками мат-
рицы A. Следовательно, матрица E преобразуется в
матрицу BE = B = X = A−1.

Таким образом, мы познакомились с двумя дока-
зательствами достоверности указанного алгоритма для
вычисления обратной матрицы.

В заключение приведем примеры, показывающие
равносильность преобразований строк типа (α), (β) и
(γ) умножению слева на некоторую невырожденную
матрицу. Для простоты мы выбрали лишь матрицы
третьего порядка. Понятно, что эти примеры легко обоб-
щаются на матрицы любого порядка и на действия с
любыми строками.
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(α) Умножаем вторую строку на число c: a11 a12 a13

c a21 c a22 c a23

a31 a32 a33

 =

 1 0 0

0 c 0

0 0 1


 a11 a12 a13

a21 a22 a23

a31 a32 a33

 .
(β) Умножаем вторую строку на число c и прибав-

ляем к третьей строке:

 a11 a12 a13

a21 a22 a23

a31 + c a21 a32 + c a22 a33 + c a23

 =

=

 1 0 0

0 1 0

0 c 1


 a11 a12 a13

a21 a22 a23

a31 a32 a33

 .
(γ) Умножаем третью строку на число c и прибав-

ляем ко второй строке: a11 a12 a13

a21 + c a31 a22 + c a32 a23 + c a33

a31 a32 a33

 =

=

 1 0 0

0 1 c

0 0 1


 a11 a12 a13

a21 a22 a23

a31 a32 a33

 .
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1.3 Метод ортогонализации

Метод ортогонализации представляет собой, как и ме-
тоды Крамера и Гаусса, точный метод, позволяющий
найти решение СЛАУ с применением конечного числа
арифметических операций.

Рассмотрим СЛАУ вида Ax = b, где

A = (aij)
n
i,j=1, x = (x1, . . . , xn), b = (b1, . . . , bn).

Предположим, что detA 6= 0. Тогда существует един-
ственное решение x∗ = (x∗1, x

∗
2, . . . , x

∗
n) этой системы.

Введем новые переменные y = (x1, . . . , xn, 1).
Запишем нашу систему Ax = b в новой форме

как однородную систему уравнений для этого (n + 1)-
мерного вектора y = (x1, . . . , xn, 1):



a11x1 + a12x2 + . . . + a1nxn − b1 · 1 = 0

a21x1 + a22x2 + . . . + a2nxn − b2 · 1 = 0

. . . . . . . . . . . . . . . . . . . . . . . .

an1x1 + an2x2 + . . . + annxn − bn · 1 = 0

. (1.6)

Рассмотрим следующие (n + 1)-мерные векторы, опре-
деленные формулами

a(i) = (ai1, ai2, . . . , ain,−bi), i = 1, n,
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и скалярные произведения

(a(i), y) := ai1x1 + ai2x2 + . . . + ainxn − bi · 1.

Тогда наша исходная система (1.6) запишется в виде
системы уравнений

(a(i), y) = 0, i = 1, n,

в терминах скалярного произведения. Таким образом,
решение исходной СЛАУ свелось к следующей задаче:
найти (n + 1)-мерный вектор

y = (x1, . . . , xn, 1)

с последней координатой, равной единице, и ортого-
нальный заданным векторам a(i), i = 1, n.

Для решения этой новой задачи введем (n + 1)-
мерный вектор

a(n+1) = (0, . . . , 0, 1)

с последней координатой, равной единице, и имеющий
первые n координат, равные нулю.

Рассмотрим новую систему векторов

a(1), a(2), . . . , a(n), a(n+1).

Эта система является линейно независимой, так как
31



detA 6= 0 и поэтому

detAn+1 := det


a11 a12 . . . a1n −b1

a21 a22 . . . a2n −b2

. . . . . . . . . . . . . . .

an1 an2 . . . ann −bn
0 0 . . . 0 1

 = 1·detA 6= 0.

Воспользуемся теперь методом ортогонализации Грама-
Шмидта. А именно, построим ортонормированную си-
стему векторов

v(1), v(2), . . . , v(n), v(n+1),

которая получается из линейно независимой системы
a(1), a(2), . . . , a(n), a(n+1) по рекуррентным формулам

v(1) =
a(1)

‖a(1)‖
, v(2) =

a(2) − (a(2), v(1)) v(1)

‖a(2) − (a(2), v(1)) v(1)‖
, . . . ,

v(k) =
a(k) −

∑k−1
j=1(a(k), v(j)) v(j)

‖a(k) −
∑k−1

j=1(a(k), v(j)) v(j)‖
(k = 2, 3, . . . , n+1).

По построению имеем: вектор

v(n+1) = (v
(n+1)
1 , v

(n+1)
2 , . . . , v

(n+1)
n+1 )

ортогонален векторам v(1), v(2), . . . , v(n). Следователь-
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но, вектор v(n+1) также ортогонален векторам

a(1), a(2), . . . , a(n)

и, кроме того, ‖v(n+1)‖ = 1.

Утверждение. (n + 1)-ая координата вектора

v(n+1) =
(
v

(n+1)
1 , . . . , v

(n+1)
n+1

)
отлична от нуля.

Обоснование: Предположим, что v(n+1)
n+1 = 0. Но

тогда скалярное произведение (v(n+1), a(n+1)) равно ну-
лю, так как

(v(n+1), a(n+1)) = v
(n+1)
1 · 0 + . . . + v(n+1)

n · 0 + 0 · 1 = 0.

Таким образом, вектор v(n+1) ортогонален всем элемен-
там линейно независимой системы (n+ 1)-мерных век-
торов

a(1), a(2), . . . , a(n), a(n+1).

Следовательно, v(n+1) — нулевой вектор. Это противо-
речит тому, что по построению ‖v(n+1)‖ = 1.

Теперь легко получить формулы для записи в яв-
ном виде искомого решения y∗ = (x∗1, x

∗
2, . . . , x

∗
n, 1).

Поскольку v(n+1)
n+1 6= 0, то определен (n+ 1)-мерный
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вектор

y∗ :=
v(n+1)

v
(n+1)
n+1

=

(
v

(n+1)
1

v
(n+1)
n+1

,
v

(n+1)
2

v
(n+1)
n+1

, . . . ,
v

(n+1)
n

v
(n+1)
n+1

, 1

)
,

ортогональный векторам a(1), a(2), . . . , a(n) и имеющий
последнюю координату, равную единице.

Следовательно, решение рассматриваемой системы
Ax = b определяется формулами

x∗1 =
v

(n+1)
1

v
(n+1)
n+1

, x∗2 =
v

(n+1)
2

v
(n+1)
n+1

, . . . , x∗n =
v

(n+1)
n

v
(n+1)
n+1

.

Число арифметических операций для метода ор-
тогонализации сравнимо с числом операций в методе
Гаусса, но среди операций имеются непростые вычис-
ления евклидовой нормы векторов a(1) и

a(k) −
k−1∑
j=1

(a(k), v(j)) v(j) (k = 2, . . . , n).

1.4 Методы факторизации

Факторизация означает представление в виде произ-
ведения. Применительно к функциям или операторам
под факторизацией понимают представление в виде су-
перпозиции.

Пусть A — квадратная матрица порядка n, пред-
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ставимая в виде
A = BC,

где C − верхнетреугольная матрица

C =


c11 c12 . . . c1n

0 c22 . . . c2n

. . . . . . . . . . . .

0 0 . . . cnn

 ,
и B − нижнетреугольная матрица

B =


b11 0 . . . 0

b11 b22 . . . 0

. . . . . . . . . . . .

b11 b22 . . . bnn

 .
Предположим, что detA 6= 0. Поскольку

detA = detB detC,

то получаем

detB =
n∏
k=1

bkk 6= 0, detC =
n∏
k=1

ckk 6= 0.

Таким образом, обе матрицы B и C являются невы-
рожденными.

Уравнение Ax = b запишется в виде BCx = b.
Решение этой системы может быть получено последо-
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вательным решением двух систем уравненийBy = b

Cx = y
.

Решение каждой из этих систем получается просто в
силу того, что их матрицы являются треугольными.
Можно записать и явные формулы. Ясно, что реше-
ниеBy = b сводится к последовательному определению
неизвестных y1, y2, . . . , yn по формулам

y1 =
b1

b11
, y2 =

b2 − b21y1

b22
, . . . , yn =

bn −
∑n−1

j=1 bnjyj

bnn
.

Зная y1, y2, . . . , yn, последовательно определяем

xn, xn−1, . . . , x1

по формулам xn = yn/cnn,

xn−1 =
yn−1 − cn−1nxn

cn−1n−1
, . . . , x1 =

y1 −
∑n

j=2 c1jxj

c11
.

Нетрудно видеть, что число умножений и делений, необ-
ходимых для решения СЛАУ имеет порядок O(n2).

Рассмотрим базовые методы, основанные на фак-
торизации матриц.

Метод квадратного корня

Требуется решить систему линейных алгебраиче-
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ских уравнений

Ax = b, aij ∈ C, detA 6= 0,

где A = A∗ — самосопряженная матрица, т. е.

aij = aji, в частности, akk ∈ R.

Если элементы матрицы являются вещественными чис-
лами, то матрица является самосопряженной тогда и
только тогда, когда она совпадает с транспонирован-
ной. Иными словами, матрица является симметричной
относительно своей главной диагонали.

Самосопряженную матрицу можно представить в
виде

A = S∗DS, (1.7)

где D — диагональная матрица, а S — верхнетреуголь-
ная матрица, т. е. имеет вид

S =


s11 s12 . . . s1n

0 s22 . . . s2n

. . . . . . . . . . . .

0 0 . . . snn

 .
Строго говоря, для того чтобы представление (1.7) бы-
ло возможным, необходимо еще отличие от нуля неко-
торых коэффициентов, возникающих в ходе преобразо-
ваний (см. ниже примеры).
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Очевидно, решение системы Ax = b, т. е. системы

S∗DSx = b

сводится к последовательному решению двух простых
систем S∗Dy = b

Sx = y
,

где

S∗D =


s∗11d11 0 . . . 0

s∗21d11 s∗22d22 . . . 0

. . . . . . . . . . . .

s∗n1d11 s∗n2d22 . . . s∗nndnn


— нижнетреугольная матрица, s∗kj = sjk.

Понятно, что на практике основная трудность со-
стоит в том, что для заданной матрицы A = A∗ нужно
найти подходящие матрицы S и D, удовлетворяющие
равенству (1.7).

Рассмотрим сначала случай n = 2. Дана матрица

A =

(
a11 a12

a12 a22

)
,

а матрицы

D =

(
d11 0

0 d22

)
,
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S =

(
s11 s12

0 s22

)
, S∗ =

(
s11 0

s12 s22

)
нужно определить так, чтобы выполнялось равенство
A = S∗DS. Имеем

S∗DS =

(
d11s11 0

d11s12 d22s22

)(
s11 s12

0 s22

)
=

=

(
d11s

2
11 d11s11s12

d11s12s11 d11s12s12 + d22s
2
22

)
.

Для определения неизвестных коэффициентов получа-
ем систему нелинейных уравнений

d11s
2
11 = a11 6= 0, a11 ∈ R,

d11s11s12 = a12,

d11s12s11 = a12,

d11s12s12 + d22s
2
22 = a22.

Число уравнений меньше, чем число неизвестных. По-
этому, если это система разрешима, то решение не яв-
ляется единственным. Но нам нужно лишь одно из воз-
можных решений, которое можно определить следую-
щим образом.

Из самосопряженности матрицыA следует, что чис-
ла a11 и a22 являются вещественными числами. Допол-
нительно предположим, что a11 6= 0. Тогда можно по-
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ложить, что d11 равен плюс или минус единице, точнее,
полагаем d11 = sign a11. Тогда

s11 =

√
a11

d11
, s12 =

√
a12

d11

√
a11/d11

.

Предположим, далее, что a22−|s12|2d11 6= 0. Тогда мож-
но взять d22 = sign(a22 − |s12|2d11) и определить

s22 =

√
a22 − d11s12s12

d22
.

Общий случай, когда n ≥ 3. Перемножение мат-
риц показывает, что факторизация имеет место тогда и
только тогда, когда справедливы следующие равенства

aij =
i∑

k=1

skidkkskj, i ≤ j.

Решение этой системы можно определить в явном виде.
Элементы dii будем брать равными 1 или −1.

При i = j = 1 уравнение имеет вид a11 = s2
11d11,

поэтому можно взять

d11 = sign a11, s11 =

√
a11

d11
.

Пусть i = 1, j ≥ 2, уравнение имеет вид a1j = s11d11s1j,
40



отсюда
s1j =

a1j

s11d11
.

Далее рассматриваем случай i ≥ 2. Непосредствен-
ными вычислениями получаем следующие рекуррент-
ные соотношения для последовательного определения
остальных элементов матриц S и D:

dii = sign

(
aii −

i−1∑
k=1

|ski|2dkk

)
,

sii =

∣∣∣∣∣aii −
i−1∑
k=1

|ski|2dkk

∣∣∣∣∣
1/2

,

sij =
aij −

∑i−1
k=1 skiskjdkk
siidii

, i < j.

Для больших n метод квадратного корня требует при-
мерно n3/3 арифметических операций.

Решение системы с ненулевыми главными ми-
норами

Дана квадратная матрица A = (aij), у которой
главные миноры отличны от нуля, т. е.

a11 6= 0,

∣∣∣∣∣ a11 a12

a21 a22

∣∣∣∣∣ 6= 0, . . . , detA 6= 0.

Для такой матрицы, как это доказывается в курсе ли-
нейной алгебры, справедливо разложение A = BC, где
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B — нижнетреугольная матрица, C — верхнетреуголь-
ная матрица. При определении коэффициентов cij, bij
имеется произвол. Можно взять bkk = 1. Имеются яв-
ные формулы для других коэффициентов cij, bij (см.,
например, стр. 26–32 книги [17]).

1.5 Метод прогонки

Для матриц специального вида, часто встречающих-
ся на практике, разработаны упрощенные методы, поз-
воляющие эффективно применять метод Гаусса. Мы
проиллюстрируем это на примере алгоритма решения
СЛАУ вида

Ax = d = (d1 . . . dn),

когда матрица имеет вид

A =


−b1 c1 0 . . . 0

a2 −b2 c2 . . . 0

0 a3 −b3 . . . 0

. . . . . . . . . . . . . . .

0 0 . . . an −bn

 ,

т. е. является ленточной 3-х диагональной матрицей.
Излагаемый ниже метод называется методом про-

гонки и используется при решении ряда задач, в част-
ности, при численном решении краевой задачи для ли-
нейного дифференциального уравнения второго поряд-
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ка.
Итак, система линейных алгебраических уравнений

имеет вид

aixi−1 − bixi + cixi+1 = di (i = 1, 2, . . . , n),

где a1 = 0, cn = 0, т. е. 1-ое и n-ое уравнения имеют
только по два слагаемых в левой части уравнений.

Прямой ход метода прогонки связан с определени-
ем прогоночных коэффициентов ξi, ηi и выводом фор-
мул

xi−1 = ξixi + ηi, i = 2, 3, . . . ,

необходимых для реализации последовательного исклю-
чения переменных.

Опишем кратко, как возникает прогоночный метод
для решения СЛАУ с нашей 3-х диагональной матри-
цей.

Пусть b1 6= 0. Тогда из 1-го уравнения

−b1x1 + c1x2 = d1,

получаем формулы

x1 =
c1

b1
x2 −

d1

b1
, ξ2 =

c1

b1
, η2 = −d1

b1
.

Подставляя выражение для x1 во второе уравнение,
имеем

a2(ξ2x2 + η2)− b2x2 + c2x3 = d2,
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отсюда находим x2 по формуле

x2 =
c2

b2 − a2ξ2
x3 +

−d2 + a2η2

b2 − a2ξ2
.

Следовательно, соответствующие прогоночные коэффи-
циенты даны формулами

ξ3 =
c2

b2 − a2ξ2
, η3 =

−d2 + a2η2

b2 − a2ξ2
.

Выражение x2 = ξ3x3 +η3 подставляем в 3-е уравнение.
Новое 3-е уравнение содержит лишь две неизвестных,
x3 и x4. Поэтому из нового 3-его уравнения переменная
x3 определяется через x4 формулой вида x3 = ξ4x4 + η4

и т.д. Закономерность строения прогоночных коэффи-
циентов ясна. Для переменной xk при 2 ≤ k ≤ n − 1

получаем формулу xk = ξk+1xk+1 + ηk+1 с прогоночны-
ми коэффициентами

ξk+1 =
ck

bk − akξk
, ηk+1 =

−dk + akηk
bk − akξk

.

В частности, из (n − 1)-го уравнения находим xn−1 =

ξnxn + ηn и подставляем это выражение в последнее
уравнение. Новое последнее уравнение будет содержать
только одну переменную xn. Поэтому из него находим
xn = ηn+1, где

ηn+1 =
−dn + anηn
bn − anξn

.
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Формально мы можем считать, что ξn+1 = 0.

Обратный ход прогонки тривиален: xn = ηn+1 най-
ден на последнем шаге прямого хода, находим xn−1 =

ξnηn+1 + ηn, затем последовательно определяем xn−2,
xn−3, . . . , x1.

Нетрудно подсчитать число операций, точнее, чис-
ло умножений и делений прямого и обратного хода про-
гонки. Обратный ход содержит (n−1) умножение. При
прямом ходе имеется (2n−1) деление и 2n умножений.
Таким образом, метод прогонки для трехдиагональной
матрицы порядка n требует не более 5n умножений и
делений.

Может быть так, что bk − akξk = 0 для некоторого
номера. Тогда приведенный алгоритм не осуществим.
Но имеется весьма простое достаточное условие, гаран-
тирующее отличие от нуля знаменателей в формулах
для прогоночных коэффициентов.

Определение 1.1 Говорят, что матрица имеет
диагональное преобладание, если для любого номера
i = 1, 2, . . . , n

|aii| >
n∑

j=1,j 6=i
|aij|.

В частности, для трехдиагональной матрицы условие
диагонального преобладания сводится к следующим тре-
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бованиям

|b1| > |c1|, |bn| > |an|, |bk| > |ak|+|ck|, (2 ≤ k ≤ n−1).

Утверждение. Пусть A — трехдиагональная матри-
ца с диагональным преобладанием. Тогда для всех но-
меров |ξk| < 1, следовательно, bk − akξk 6= 0 и метод
прогонки применим.

Доказательство. Докажем по индукции, что

|ξk| < 1.

При k = 2 имеем

ξ2 =
c1

b1
=⇒ |ξ2| < 1, так как |b1| > |c1|.

Далее, пусть дано, что |ξk| < 1, тогда оценим |ξk+1|
следующим образом:

|ξk+1| ≤
|ck|

|bk| − |ak| · |ξk|
<

|ck|
|bk| − |ak|

< 1.

Последнее строгое неравенство (< 1) следует из того,
что |ck| < |bk| − |ak| по определению диагонального
преобладания.

Итак, для любого номера |ξk| < 1. Но тогда

|bk − akξk| ≥ |bk| − |ak| > 0,

так как |bk| > |ck| + |ak| ≥ |ak|.
46



Этим и завершается доказательство.

Следствие 1.0.1 Предположим, что A — трехдиаго-
нальная матрица с диагональным преобладанием. То-
гда detA 6= 0.

Это утверждение допускает обобщение. Сформули-
руем это обобщение в виде задачи на доказательство.

Упражнение. Пусть A — матрица с диагональ-
ным преобладанием. Тогда detA 6= 0.

Замечание. Диагональное преобладание является
лишь достаточным (но не необходимым) условием для
реализации метода прогонки.

1.6 О нормах векторов и матриц

Рассмотрим n-мерное вещественное евклидово простран-
ство Rn (или Cn), n ≥ 2. Тогда для любого вектора
x = (x1, x2, . . . , xn) ∈ Rn (или Cn) определена евклидо-
ва норма

‖x‖ =
√
|x1|2 + |x2|2 + . . . + |xn|2,

согласованная со скалярным произведением

(x, y) = x1y1 + x2y2 + . . . + xnyn

векторов x = (x1, . . . , xn) ∈ Rn, y = (y1, . . . , yn) ∈ Rn.
Напомним, что в Cn скалярное произведение определе-
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но формулой

(x, y) = x1y1 + x2y2 + . . . + xnyn.

При изучения ряда вопросов, в частности, топологи-
ческих, нет необходимости вводить иные нормы. Тем
более, как гласит известная теорема функционально-
го анализа, в конечномерном пространстве все нормы
эквивалентны, т. е. для любых двух норм ‖x‖′, ‖x‖′′
существуют положительные числа c1, c2 такие, что вы-
полняются неравенства

c1‖x‖′ ≤ ‖x‖′′ ≤ c2‖x‖′

для любого x = (x1, x2, . . . , xn) ∈ Rn (или Cn).

1.6.1 p-нормы векторов

При изучении ряда прикладных задач, например, при
исследовании сходимости итерационных методов реше-
ния систем алгебраических уравнений, числовые зна-
чения и простота вычисления норм векторов и соот-
ветствующих им норм матриц имеют важное значение.
В особенности, оказываются полезными следующие p-
нормы (1 ≤ p ≤ +∞):

‖x‖p := (|x1|p + |x2|p + . . . + |xn|p)1/p , 1 ≤ p < +∞,

‖x‖∞ := max{|x1|, |x2|, . . . , |xn|}, p = +∞,
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где x = (x1, x2, . . . , xn) ∈ Rn (или Cn). Очевидно, ес-
ли все координаты вектора x = (x1, x2, . . . , xn) равны
нулю или является отличной от нуля только одна из ко-
ординат, то норма не зависит от p, т. е. ‖x‖p = ‖x‖q =

const для любых допустимых p и q.

Теорема 1.1 Для любого вектора x ∈ Rn (или Cn) его
p-норма ‖x‖p является невозрастающей функцией от
параметра p ∈ [1,+∞]. В частности, будем иметь
неравенства

‖x‖1 ≥ ‖x‖2 ≥ ‖x‖∞.

Равенство ‖x‖p = ‖x‖q для любых допустимых раз-
личных p и q имеет место тогда и только тогда, ко-
гда отличной от нуля является не более, чем одна из
координат этого вектора.

Доказательство. Очевидно, что достаточно рассмот-
реть случай, когда количество ненулевых координат
вектора не меньше, чем 2. Кроме того, p-норма не ме-
няется, если мы поменяем номера координат. Поэтому,
без ограничения общности предполагаем, что

|x1| = ‖x‖∞ := max{|x1|, |x2|, . . . , |xn|} > 0,

xj 6= 0, 2 ≤ j ≤ m, 2 ≤ m ≤ n.
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Обозначим αj =
|xj|
|x1|. Простые преобразования дают

формулу

‖x‖p = |x1|

1 +
m∑
j=2

αpj

1/p

, 0 < αj ≤ 1.

Пусть

y = y(p) := ln
‖x‖p
|x1|

=
1

p
ln

1 +
m∑
j=2

αpj

 .
Очевидно, нам достаточно убедиться в том, что y(p) —
строго убывающая функция при условии, что количе-
ство ненулевых координат вектора x не меньше, чем
2. А этот факт проверяется простыми вычислениями.
Действительно, имеем

y′(p) := − 1

p2
ln

1 +
m∑
j=2

αpj

 +

∑m
j=2 α

p
j lnαj

p
(

1 +
∑m

j=2 α
p
j

) < 0

с учетом неравенств

lnαj ≤ 0, ln

1 +
m∑
j=2

αpj

 > 0.

Таким образом, мы показали, что норма ‖x‖p является
строго убывающей функцией от p ∈ [1,+∞], когда ко-
личество ненулевых координат вектора не меньше, чем
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2.
Этим и завершается доказательство.

1.6.2 Нормы матриц

Пусть A — квадратная матрица порядка n с элемента-
ми akj из R или C.

Понятно, что такая матрица задает линейный непре-
рывный оператор A : Rn → Rn или A : Cn → Cn,
сопоставляющий любому вектору x его образ y, опре-
деленный равенством y = Ax.

Нормой матрицы A будем называть норму этого
линейного оператора A, т. е. норма ‖A‖ матрицы A

определяется равенством

‖A‖ = sup
x 6=θ

‖Ax‖
‖x‖

.

В силу конечномерности пространств Rn и Cn су-
премум можно заменить на максимум. Следовательно,
число c ≥ 0 является нормой матрицыA тогда и только
тогда, когда выполняются два следующих свойства:

1) ‖Ax‖ ≤ c ‖x‖ для любого вектора x;
2) существует вектор x0 6= θ такой, что

‖Ax0‖ = c ‖x0‖.

В силу линейности оператора при определении нор-
мы и проверке приведенных свойств 1) и 2) можно огра-
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ничиться векторами, для которых ‖x‖ = 1.
Ясно также, что норма оператора будет зависеть

от того, каким образом задана сама норма векторов.
В следующей теореме даны простые формулы для на-
хождения p-норм матриц

‖A‖p = sup
x 6=θ

‖Ax‖p
‖x‖p

в трех важных для приложений случаях, когда p = 1,
p = 2 и p =∞.

Через A∗ мы будем обозначать матрицу, сопряжен-
ную к матрице A. Предполагаем, что в Rn и Cn заданы
стандартные ортонормированные базисы, тогда

(x,Ay) = (A∗x, y) для любых векторов x и y,

т. е. A∗ определяет сопряженный линейный оператор.

Теорема 1.2 Для квадратной матрицы A порядка n с
элементами akj из R или C имеют место следующие
формулы для норм:

1) ‖A‖1 = max
1≤j≤n

αj, αj :=
n∑
k=1

|akj|,

т. е. ‖A‖1 определяется "максимальным" столбцом;

2) ‖A‖∞ = max
1≤k≤n

βk, βk :=
n∑
j=1

|akj|,
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т. е. ‖A‖∞ определяется "максимальной" строкой;

3) ‖A‖2 = max{
√
λ : λ− собственное значениеA∗A}.

Доказательство. Пусть x = (x1, x2, . . . , xn), y = Ax,
где y = (y1, y2, . . . , yn). Имеем

yk =
n∑
j=1

akj xj.

1) Очевидно,

‖Ax‖1 = ‖y‖1 = |y1| + |y2| + . . . + |yn| =
n∑
k=1

|yk| =

=
n∑
k=1

∣∣∣∣∣∣
n∑
j=1

akj xj

∣∣∣∣∣∣ ≤
n∑
j=1

|xj|
n∑
k=1

|akj| =

=
n∑
j=1

αj|xj| ≤ c
n∑
j=1

|xj| = c‖x‖1,

где
c = max

1≤j≤n
αj.

С другой стороны, существует номер столбца j0 такой,
что c = αj0

. Рассмотрим вектор x0 = (x0
1, x

0
2, . . . , x

0
n),

у которой x0
j0

= 1, а все остальные координаты равны
нулю, и вектор Ax0 = y0 = (y0

1, y
0
2, . . . , y

0
n). Но тогда
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‖x0‖1 = 1, y0
k = akj0

и

‖y0‖1 =
n∑
k=1

|akj0
| = c = c‖x0‖1.

Следовательно,

‖A‖1 = c = max
1≤j≤n

αj,

что и требовалось доказать.

2) Величина ‖A‖∞ вычисляется проще. Действи-
тельно, имеем

‖Ax‖∞ = max
1≤k≤n

|yk| = max
1≤k≤n

∣∣∣∣∣∣
n∑
j=1

akj xj

∣∣∣∣∣∣ ≤
≤ max

1≤k≤n

n∑
j=1

|akj| max
1≤j≤n

|xj| = ‖x‖∞ max
1≤k≤n

βk = c ‖x‖∞,

где
c = max

1≤k≤n
βk.

С другой стороны, существует номер строки k0 такой,
что c = βk0

. Рассмотрим вектор x0 = (x0
1, x

0
2, . . . , x

0
n) та-

кой, что |x0
j| = 1 для любого номера j, причем ak0jx

0
j =

|ak0j|. Последнее условие выбора x0 = (x0
1, x

0
2, . . . , x

0
n)

можно выполнить так: полагаем x0
j = 1, если ak0j = 0;

если же ak0j является вещественным или комплексным
числом, отличным от нуля, то возьмем x0

j = ak0j/|ak0j|.
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Тогда ‖x0‖∞ = 1, а для Ax0 = y0 = (y0
1, y

0
2, . . . , y

0
n)

получаем

‖y0‖∞ = max
1≤k≤n

|y0
k| = |y0

k0
| = βk0

= c = c ‖x0‖∞,

что и требовалось доказать.

3) Отметим прежде всего, что определение ‖A‖2

является корректным, так как собственные числа мат-
рицы A∗A являются неотрицательными числами. Дей-
ствительно, если λ — собственное число этой матрицы
и x 6= θ — соответствующий ему собственный вектор, то
A∗Ax = λx и (A∗Ax, x) = (Ax,Ax) = λ(x, x), поэтому
λ = (‖Ax‖2/‖x‖2)2 ≥ 0.

Как доказывается в курсе линейной алгебры, для
самосопряженной матрицы A∗A существует матрица U
порядка n, обладающая свойствами:

1) A∗A = U ∗DU , где D = diag(λ1, λ2, . . . , λn) —
диагональная матрица, λj — собственные числа матри-
цы A∗A,

2) U ∗ = U−1,

3) ‖U−1y‖2 = ‖y‖2 для всех векторов y.

Применяя это утверждение, а также замену векто-
ров Ux = y и определение нормы ‖A‖2, получаем

‖A‖2 = max
‖x‖2=1

√
(Ax,Ax) = max

‖x‖2=1

√
(A∗Ax, x) =
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= max
‖U−1y‖2=1

√
(Dy, y) = max

‖y‖2=1

√
(Dy, y) =

= max
‖y‖2=1

√√√√ n∑
k=1

λk|yk|2.

Отсюда получаем ‖A‖2 ≤
√
λk0

, где λk0
— максималь-

ное из чисел λk. В достижении равенства легко убе-
диться, выбрав элемент y0 = (y0

1, y
0
2, . . . , y

0
n) такой, что

y0
k0

= 1, а все остальные координаты этого вектора рав-
ны нулю.

Теорема доказана.

Отметим, что в кольце матриц порядка n опреде-
ляют также алгебраические матричные нормы, удовле-
творяющие следующим условиям:

1) ‖A‖ ≥ 0 и ‖A‖ = 0⇐⇒ A = 0 (т. е. все akj = 0);

2) ‖λA‖ = |λ| ‖A‖ для любого скаляра λ;

3) ‖A + B‖ ≤ ‖A‖ + ‖B‖;

4) ‖AB‖ ≤ ‖A‖ ‖B‖.

Нетрудно проверить, что определенные выше нор-
мы матрицы как нормы линейного оператора удовле-
творяют требованиям 1) – 4).

Существует ряд других алгебраических норм мат-
рицы, удовлетворяющих этим условиям. Например, тре-
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бованиям 1) – 4) удовлетворяет норма Фробениуса

‖A‖F =

√√√√ n∑
k=1

n∑
j=1

|akj|2,

которую называют евклидовой нормой матрицы, так
как ‖A‖F — евклидова норма вектора размерности n2.

С применением свойства 4) легко получаем, что
при любом определении матричной нормы

‖A−1‖ ‖A‖ ≥ ‖E‖ ≥ 1.

Заметим, что при любом определении нормы век-
торов операторная норма единичной матрицы

E = diag(1, 1, . . . , 1)

равна единице, а норма Фробениуса ‖E‖F =
√
n. Сле-

довательно, норма Фробениуса не является оператор-
ной нормой для любого n ≥ 2.

Мы будем пользоваться только операторными нор-
мами матриц. В дальнейшем нам потребуется также
следующее

Определение 1.2 Пусть λk = λk(B) — собственные
значения матрицы B. Число

ρ(B) = max
k
|λk(B)|
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называется спектральным радиусом матрицы B.

В терминах спектрального радиуса равенство

‖A‖2 = max{
√
λ : λ− собственное значениеA∗A}.

можно записать так: ‖A‖2 =
√
ρ(A∗A).

Отметим также, что норма ‖A‖2 называется спек-
тральной нормой.

Приведем одно из применений норм матриц, а имен-
но, итерационное уточнение обратной матрицы, вы-
численной приближенно. Пусть X0 — решение матрич-
ного уравнения AX = E. Если ‖E − AX0‖ = 0, то
решение определено точно. Но на правктике обратная
матрица определяется приближенно из-за округлений
и других погрешностей вычислений, и мы имеем лишь
приближенное равенство X0 ≈ A−1. Предположим, что
ε > 0 — допустимая погрешность и требуется следую-
щая точность вычислений: ‖A−1 − X0‖ < ε. Понят-
но, что если ‖A−1 − X0‖ > ε, то необходимо уточне-
ние приближенной обратной матрицы X0. Оказывает-
ся, что если ‖E−AX0‖ 6= 0, но ‖E−AX0‖ = q < 1, то
существует простой итерационный метод, приводящий
за небольшое число шагов к матрице Xk ≈ A−1, для
которой справедливо неравенство ‖A−1 − Xk‖ < ε. А
именно, рассмотрим итерации

X0 → X1 = X0(2E − AX0),
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X2, X3, . . ., определяемые формулой

Xk = Xk−1(2E − AXk−1), k = 1, 2, . . . (1.8)

Утверждение. Если ‖E − AX0‖ = q < 1, то

‖A−1 −Xk‖ ≤ ‖A−1‖ · q2k,

и, следовательно, последовательность Xk сходится к
A−1, т. е. limk→∞ ‖A−1 −Xk‖ = 0.

Доказательство. Подставляя вместо Xk ее выра-
жение из формулы (1.8), получаем

E − AXk = E − A(Xk−1(2E − AXk−1)) =

= E − AXk−1 − AXk−1 + AXk−1AXk−1 =

= E − AXk−1 − AXk−1(E − AXk−1) = (E − AXk−1)2,

т. е. E−AXk = (E−AXk−1)2. Применяя эту формулу
k раз, будем иметь

E − AXk = (E − AXk−1)2 =

= (E − AXk−2)4 = . . . = (E − AX0)2k.

Кроме того, имеем простую формулу

A−1 −Xk = A−1(E − AXk),
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поэтому

A−1 −Xk = A−1(E − AXk) = A−1(E − AX0)2k.

Но тогда ‖A−1 −Xk‖ ≤ ‖A−1‖ · ‖E − AXk‖ ≤

≤ ‖A−1‖ · ‖E − AX0‖2k = ‖A−1‖ · q2k → 0

при k →∞.

1.6.3 Число обусловленности матрицы

Пусть A — заданная квадратная матрица порядка n,
причем detA 6= 0. Тогда определена величина

ν(A) = ‖A−1‖ · ‖A‖,

которая называется числом обусловленности мат-
рицы A.

Предположим, что вектор b 6= θ определяется при-
ближенно как b̃ в результате каких-то измерений или
приближенных вычислений. Возникает необходимость
сравнения решений

x∗ = A−1b, x̃∗ = A−1b̃

двух следующих систем линейных алгебраических урав-
нений

Ax = b, Ax = b̃.
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Обозначим δ := b− b̃ и ξ := x∗ − x̃∗.
Имеем следующие числовые характеристики:
‖δ‖ — абсолютная погрешность правой части;
‖ξ‖ — абсолютная погрешность решения;
‖δ‖/‖b‖ — относительная погрешность правой ча-

сти;
‖ξ‖/‖x∗‖ — относительная погрешность решения.
Поделим относительную погрешность решения на

относительную погрешность правой части. Понятно, что
максимум этого отношения, т. е. величина

µ(A) := sup
δ 6=θ

‖ξ‖/‖x∗‖
‖δ‖/‖b‖

,

называемая мерой обусловленности СЛАУ, характери-
зует устойчивость решения по отношению к изменени-
ям правой части системы уравнений.

Теорема 1.3 Справедлива следующая оценка

µ(A) ≤ ν(A) := ‖A−1‖ · ‖A‖.

Доказательство. Имеем

µ(A) = sup
δ 6=0

‖A−1δ‖
‖δ‖

· ‖Ax
∗‖

‖x∗‖
.

Пользуясь соотношениями

‖A−1δ‖ ≤ ‖A−1‖ · ‖δ‖,
61



‖Ax∗‖ ≤ ‖A‖ · ‖x∗‖,

немедленно получаем

µ(A) ≤ ‖A−1‖ · ‖A‖ = ν(A).

Теорема доказана.

Замечание. Существуют термины, пришедшие из
практики приближенных вычислений. К этому типу
терминов относится и термин число обусловленно-
сти матрицы. Если число ν(A) = ‖A−1‖ · ‖A‖ на-
много больше единицы, то говорят, что матрица плохо
обусловлена. Если ν(A) является не очень большим
числом, то говорят, что матрица хорошо обусловле-
на.

Понятно, что термин "матрица плохо обусловлена"
отражает реальные проблемы: если матрица системы
Ax = b плохо обусловлена, то погрешности коэффи-
циентов матрицы A и погрешности правых частей b,
а также погрешности округления при расчетах могут
сильно исказить решение. Напомним, что при любом
определении операторной нормы

1 = ‖E‖ = ‖A−1A‖ ≤ ‖A−1‖ · ‖A‖,

т. е. число обусловленности матрицы не меньше, чем
единица.
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1.7 Метод простых итераций

Пусть A = (aij)
n
i,j=1 и B = (bij)

n
i,j=1 — квадратные мат-

рицы порядка n с вещественными или комплексными
элементами. Рассмотрим системы линейных алгебраи-
ческих уравнений вида

Ax = b, (1.9)

а также вида
x = Bx + c, (1.10)

где b = (b1, . . . , bn) и c = (c1, . . . , cn) — заданные век-
торы из Rn или из Cn. Свести (1.9) к эквивалентной
системе вида (1.10) можно множеством разных спосо-
бов. Опишем простейший прием.

Пусть α — фиксированное число, отличное от ну-
ля, и пусть E — единичная матрица. Тогда СЛАУ вида
(1.9) равносильна системе 0 = α(b− Ax), следователь-
но, равносильна СЛАУ

x = (E − αA)x + αb.

Последняя система имеет вид (1.10) с матрицей

B = E − αA

и с заданным вектором c = αb.
Метод простых итераций применяется для нахож-
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дения решения

x∗ = (x∗1, x
∗
2, . . . , x

∗
n)

системы вида (1.10) в предположении det(E −B) 6= 0.
В частности, если спектральный радиус ρ(B) < 1,

то число 1 не является собственным значением матри-
цы B. Поэтому определитель det(E − B) 6= 0, следо-
вательно, существует обратная матрица (E − B)−1 и
решение x∗ = (E −B)−1 c.

Алгоритм метода простых итераций заключается в
следующем. Выбираем вектор

x0 = (x0
1, x

0
2, . . . , x

0
n) — начальное приближение.

Выбор начального приближения субъективен. Понят-
но, что в качестве начального (= нулевого) приближе-
ния желательно назначить вектор, близкий к решению.
Если нет никакой информации о решении, то нулевое
приближение берем "с потолка" , т. е. выбираем произ-
вольно. Последующие приближения определяются по
правилам:

x1 = Bx0 + c — первое приближение,

x2 = Bx1 + c — второе приближение,

. . . . . . . . .

xk = Bxk−1 + c — k-е приближение.
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Здесь xk = (xk1, x
k
2, . . . , x

k
n), причем k означает номер

итерации (это не показатель степени!).
Если последовательность векторов (xk)∞k=0 сходит-

ся, т. е. существует некоторый вектор

x∗ = (x∗1, x
∗
2, . . . , x

∗
n),

такой, что

x∗ = lim
k→∞

xk, т. е. lim
k→∞
‖x∗ − xk‖ = 0,

то x∗ = (x∗1, x
∗
2, . . . , x

∗
n) — решение системы (1.10). Дей-

ствительно, с учетом непрерывности операций видаBx,
‖x‖, при k →∞ из соотношения xk = Bxk−1 + c полу-
чаем, что

x∗ = Bx∗ + c.

Применяя формулу xk = Bxk−1 + c и индукцию,
легко получаем следующую формулу для выражения
k-того приближения xk через начальное приближение:

xk = Bkx0 + (E + B + . . . + Bk−1) c.

Здесь E = B0 — единичная матрица.
При изучении сходимости метода простых итера-

ций оказываются полезными следующие утверждения
из теории матриц (см., например, стр. 135–138 книги
Д.К. Фаддеева и В.Н. Фаддеевой "Вычислительные ме-
тоды линейной алгебры").
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1) Bk → 0 при k → ∞ тогда и только тогда,
когда ρ(B) < 1.

2) Для того, чтобы ряд E+B+B2 + . . . сходился,
необходимо и достаточно, чтобы Bk → 0 при k →∞.

В этом случае, сумма ряда равна (E−B)−1, т. е.

(E −B)−1 = E + B + B2 + . . . =
∞∑
k=0

Bk.

Справедливо следующее утверждение.

Теорема 1.4 Пусть det(E − B) 6= 0. Метод простых
итераций xk = Bxk−1 + c (k = 1, 2, 3, . . .) для СЛАУ
вида x = Bx + c сходится при любом выборе нулево-
го приближения x0 тогда и только тогда, когда спек-
тральный радиус ρ(B) < 1.

Доказательство. Будем пользоваться указанны-
ми выше утверждениями из теории матриц. Пусть спек-
тральный радиус ρ(B) < 1. Тогда последовательность

xk = Bkx0 + (E + B + . . . + Bk−1)c

сходится как сумма двух сходящихся последовательно-
стей.

Докажем обратное утверждение. Пусть

det(E −B) 6= 0

и метод простых итераций сходится при любом выборе
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нулевого приближения x0.
Если c = 0, то x∗ = 0. Получаем, что последова-

тельность xk = Bkx0 сходится к нулевому вектору при
любом x0. Следовательно, ρ(B) < 1.

Если c 6= 0, то возьмем x0 = 0. Тогда имеем сходя-
щуюся последовательность xk = (E+B+ . . .+Bk−1) c,
где c 6= 0. Следовательно, ρ(B) < 1 в силу указанных
выше утверждений 1) и 2) из теории матриц.

Теорема доказана.
Заметим, что для матриц порядка n ≥ 3 спек-

тральный радиус вычисляется сложно. Поэтому про-
верка критерия ρ(B) < 1 представляет собой непро-
стую задачу. Более простое достаточное условие, обес-
печивающее сходимость метода простых итераций, име-
ет вид ‖B‖ < 1. Он годен при любом определении нор-
мы векторов и соответствующей операторной нормы
матриц. Напомним, что операторная норма матрицы
B определяется формулой:

‖B‖ = sup
x 6=0

‖Bx‖
‖x‖

= max
‖x‖=1

‖Bx‖.

Теорема 1.5 Пусть ‖B‖ < 1. Тогда
1) система x = Bx+ c имеет единственное реше-

ние x∗,
2) метод простых итераций

xk = Bxk−1 + c (k = 1, 2, 3, . . .)
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сходится при любом выборе нулевого приближения x0,
3) имеет место оценка

‖x∗ − xk‖ ≤ ‖B‖k

1− ‖B‖
· ‖x1 − x0‖, k ∈ N.

Доказательство. Единственность легко доказывает-
ся от противного. Действительно, если существуют по
крайней мере два решения x∗ и y∗, то{

x∗ = Bx∗ + c

y∗ = By∗ + c

отсюда следует равенство z∗ = Bz∗ для z∗ = x∗ − y∗.
Но тогда, пользуясь определением нормы оператора,
получаем

‖z∗‖ = ‖Bz∗‖ ≤ ‖B‖ · ‖z∗‖,

что влечет равенство z∗ = 0 с учетом соотношения
‖B‖ < 1.

Докажем теперь существование решения.
Пусть m ≥ 1, p ≥ 1 — натуральные числа. Поль-

зуясь правилом

xk = Bxk−1 + c, k = 1, 2, . . . ,

образования итераций, получаем

xm+p − xm =
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= Bxm+p−1 −Bxm−1 = . . . = Bm(xp − x0).

С другой стороны, элементарные вычисления дают, что

xp − x0 =

= xp − xp−1 + xp−1 − . . . + x1 − x0 =

= Bp−1(x1 − x0) + . . . + B0(x1 − x0).

Следовательно, имеем равенство

xm+p − xm = (Bm+p−1 + Bm+p−2 + . . . + Bm)(x1 − x0),

откуда следует, что

‖xm+p − xm‖ ≤ (‖B‖m + ‖B‖m+1 + . . .)‖x1 − x0‖ =

=
‖B‖m

1− ‖B‖
‖x1 − x0‖.

Поскольку ‖B‖ < 1 и поэтому ‖B‖m → 0 при m→∞,
то и ‖xm+p− xm‖ → 0 при m→∞, что влечет фунда-
ментальность по Коши последовательности итераций.
Поэтому существует предел

x∗ = lim
k→∞

xk, т. е. lim
k→∞
‖x∗ − xk‖ = 0,

где x∗ — решение. Далее, имеем неравенство
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‖xk+p − xk‖ ≤ ‖B‖k

1− ‖B‖
‖x1 − x0‖, k ∈ N.

Переходя к пределу при p→∞, получаем отсюда тре-
буемую оценку теоремы 1.5 для ‖x∗ − xk‖.

Замечание. В качественном плане теорема 1.5 тес-
но связана с теоремой 1.4, так как спектральный ради-
ус ρ(B) ≤ ‖B‖ при любом определении нормы. Дей-
ствительно, для любого собственного значения λi и со-
ответствующего собственного вектора матрицы B мы
можем записать равенство Bxi = λix

i, xi 6= 0. Отсю-
да следует, что |λi|‖xi‖ = ‖Bxi‖ ≤ ‖B‖‖xi‖, поэтому
|λi| ≤ ‖B‖ для любого собственного значения, что вле-
чет неравенство ρ(B) ≤ ‖B‖ при любом определении
нормы матрицы. Следовательно, условие ‖B‖ < 1 вле-
чет неравенство ρ(B) < 1.

Случай матрицы с диагональным преобла-
данием

Применим доказанную выше теорему к специаль-
ному случаю системы вида Ax = b, когда матрица
A = (aij) является матрицей с диагональным преоб-
ладанием по строкам. Напомним, что по определению
диагонального преобладания имеем неравенства

|aii| >
n∑

j=1,j 6=i
|aij|
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для любого i = 1, 2, . . . , n.

Для применения теоремы нам необходимо преобра-
зовать систему Ax = b к системе вида x = Bx + c. С
этой целью проделаем следующие элементарные преоб-
разования.

Первое уравнение a11x1+a12x2+. . .+a1nxn = b1 си-
стемы Ax = b поделим на a11, 2-ое уравнение поделим
на a22, и так далее.

Для любого k = 1, 2, . . . , n в k-м уравнении систе-
мы в левой части оставим xk, остальные члены перене-
сем в правую часть уравнения. Получаем следующую
систему:

x1 = −a12

a11
x2 − a13

a11
x3 − . . .− a1n

a11
xn + b1

a11

x2 = −a21

a22
x1 − a23

a22
x3 − . . .− a2n

a22
xn + b2

a22

. . . . . . . . . . . . . . . . . . . . . . . . . . .

xn = −an1

ann
x1 − an2

ann
x2 − . . .− ann−1

ann
xn−1 + bn

ann

.

Таким образом, мы получили эквивалентную Ax = b

систему вида: x = Bx + c, где

c =

(
b1

a11
,
b2

a22
, . . . ,

bn
ann

)
,

B = (bij), bii = 0, bij = −aij
aii

(i 6= j).

Вычислим норму ‖B‖∞ матрицы B. Эта норма меньше
единицы в силу условий диагонального преобладания,
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так как

‖B‖∞ = max
i

n∑
j=1

|bij| = max
i

∑n
j=1,j 6=i |aij|
|aii|

< 1.

Следовательно, система x = Bx+c имеет единственное
решение, которое можно найти методом простой ите-
рации xk = Bxk−1 + c, причем итерации сходятся при
любом выборе нулевого приближения. В частности, от-
сюда следует, что система Ax = b имеет единственное
решение при любой правой части, так как неравенство
‖B‖∞ < 1 не зависит от b. Поэтому как следствие тео-
ремы о сходимости метода простых итераций и наших
построений получаем следующее утверждение.

Теорема 1.6 Пусть A — матрица с диагональным пре-
обладанием по строкам. Тогда detA 6= 0.

В заключение укажем некоторые другие, употреби-
тельные способы преобразования системы Ax = b

к системе вида x = Bx + c.
Способ 1. Возьмем некоторую невырожденную мат-

рицу H . Имеем: detH 6= 0. Тогда система Ax = b эк-
вивалентна системе 0 = H(b − Ax), которая в свою
очередь эквивалентна системе

x = x + H(b− Ax).

Таким образом, мы получаем эквивалентную систему
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x = Bx + c, где

c = Hb, B = E −HA.

Обычно стремятся подобрать H так, чтобы

‖B‖ = ‖E −HA‖ << 1.

Если A−1 существует, то мы можем взять H = A−1,
отсюда B = 0.

Замечание. Выбор B = E − αA — частный слу-
чай этого способа. Известно такое утверждение (дока-
жите!). Пусть матрица A является эрмитовой и по-
ложительно определенной (т. е. A = A∗ и справедливо
неравенство (Ax, x) > 0 для любого x 6= θ). Тогда для
всех достаточно малых α > 0 матрица E−αA явля-
ется эрмитовой и спектральный радиус

ρ(E − αA) < 1.

Способ 2. Матрицу A представляем в виде

A = C + D,

причем detC 6= 0. Тогда система Ax = b перепишется
в виде Cx + Dx = b, что эквивалентно системе

x = −C−1Dx + C−1b.
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Таким образом, получаем равносильную систему ли-
нейных алгебраических уравнений вида x = Bx + c,
где c = C−1b, B = −C−1D.

1.8 Методы Зейделя

I вариант метода Зейделя для систем вида

x = Bx + c

Рассмотрим систему линейных алгебраических уравне-
ний вида

x = Bx + c, B = (bij) — n× n-матрица,

где x = (x1, . . . , xn), c = (c1, . . . , cn). В координатной
записи система уравнений x = Bx + c имеет вид

xi =
n∑
j=1

bijxj + ci, i = 1, 2, . . . , n.

Задаем начальное приближение

x0 = (x0
1, x

0
2, . . . , x

0
n).

В методе простых итераций для любого номера i коор-
динаты последующей итерации определялись по фор-
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муле

xki =
n∑
j=1

bijx
k−1
j + ci, k = 1, 2, . . . .

Метод Зейделя представляет собой модификацию мето-
да простых итераций, и приведенная формула сохраня-
ется только для первой координаты. Алгоритм Зейделя
таков:

xk1 =
n∑
j=1

b1jx
k−1
j + c1,

но

xk2 = b21x
k
1 +

n∑
j=2

b2jx
k−1
j + c2.

Для определения xk3 используются величины xk1, xk2, уже
известные по двум предыдущим формулам. А именно,
полагаем

xk3 = b31x
k
1 + b32x

k
2 +

n∑
j=3

b3jx
k−1
j + c3,

и далее, для любого i ≥ 2 алгоритм Зейделя задается
формулой

xki =
i−1∑
j=1

bijx
k
j +

n∑
j=i

bijx
k−1
j + ci.

Запишем метод Зейделя с использованием матриц.
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Полагаем B = H + F , где

H =


0 0 . . . 0

b21 0 . . . 0

. . . . . . . . . . . .

bn1 bn2 . . . 0

 ;

F =


b11 b12 . . . b1n

0 b22 . . . b2n

. . . . . . . . . . . .

0 0 . . . bnn

 .
Легко проверить, что итерационный метод Зейделя да-
ет следующий алгоритм:

xk = Hxk + Fxk−1 + c.

Это эквивалентно алгоритму

(E −H)xk = Fxk−1 + c.

Поскольку E −H — треугольная матрица и

det(E −H) = 1 6= 0,

то алгоритм Зейделя оказывается эквивалентным ал-
горитму

xk = (E −H)−1Fxk−1 + (E −H)−1c.
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Таким образом, метод Зейделя эквивалентен методу про-
стых итераций для системы линейных алгебраических
уравнений

x = B̃x + c̃,

где
B̃ = (E −H)−1F, c̃ = (E −H)−1c.

Очевидно, мы можем применить теоремы о сходимо-
сти метода простых итераций к вопросу о сходимости
метода Зейделя с заменой матрицы B на матрицу B̃.

Теорема 1.7 Пусть матрица B = H +F , где матри-
цы H и F определены выше.

1) Если
‖(E −H)−1F‖ < 1,

то метод Зейделя сходится при любом начальном при-
ближении x0. Решение уравнения единственное. Для
погрешности k-того приближения справедлива оцен-
ка

‖x∗ − xk‖ ≤ qk

1− q
‖x1 − x0‖,

где q = ‖(E −H)−1F‖.
2) Пусть det(E −B) 6= 0. Метод Зейделя (первый

вариант) сходится при любом выборе нулевого при-
ближения x0 тогда и только тогда, когда спектраль-
ный радиус

ρ((E −H)−1F ) < 1.
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II вариант метода Зейделя для систем вида
Ax = b

Этот метод является итерационным и применяет-
ся к системе Ax = b в предположении, что все диаго-
нальные элементы матрицы системы отличны от нуля.
Опишем алгоритм. Как обычно, задаем нулевое при-
ближение x0 = (x0

1, x
0
2, . . . , x

0
n). Определяем последо-

вательно координаты вектора x1 = (x1
1, x

1
2, . . . , x

1
n), за-

тем последовательно вычисляем координаты вектора
x2 = (x2

1, x
2
2, . . . , x

2
n) и так далее.

Для детального описания метода, а именно, для
описания итерационного перехода от xk−1 к xk, запи-
шем систему Ax = b в координатах. Диагональные эле-
менты и те, которые ниже главной диагонали, заменим
на xki , а то, что выше диагонали, заменим на xk−1

i . Име-
ем уравнения

a11x
k
1 + a12x

k−1
2 + . . . + a1nx

k−1
n = b1

a21x
k
1 + a22x

k
2 + . . . + a2nx

k−1
n = b2

. . . . . . . . . . . . . . . . . . . . . . . .

an1x
k
1 + an2x

k
2 + . . . + annx

k
n = bn

.

Из 1-го уравнения определяем xk1, из 2-го уравне-
ния определяем xk2. И так далее. Более точно, имеем

xk1 =
b1 − a12x

k−1
2 − . . .− a1nx

k−1
n

a11
,
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xk2 =
b2 − a21x

k
1 − a23x

k−1
3 − . . .− a2nx

k−1
n

a22
, . . . ,

xkn =
bn − an1x

k
1 − an2x

k
2 − . . .− ann−1x

k
n−1

ann
.

Таким образом, зная вектор x0, последовательно най-
дем векторы x1 → x2 → . . . → xk → . . . . Очевидно,
этот алгоритм в матричной форме можно записать так:
пусть A = B + C, где

B =


a11 0 . . . 0

a21 a22 . . . 0

. . . . . . . . . . . .

an1 an2 . . . ann

 ,

C =


0 a12 . . . a1n

0 0 . . . a2n

. . . . . . . . . . . .

0 0 . . . 0

 .
Тогда итерационный алгоритм Зейделя для системы
Ax = b можно записать следующим образом:

Bxk + Cxk−1 = b. (1.11)

Поскольку диагональные элементы матрицы A предпо-
лагаются отличными от нуля и поэтому

detB = a11a22 · . . . · ann 6= 0,
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то существует обратная матрица B−1, и поэтому алго-
ритм может быть представлен в форме

xk + B−1Cxk−1 = B−1b.

Ясно, что метод Зейделя (второй вариант) эквивален-
тен методу простых итераций

xk = B̃xk−1 + c, (1.12)

где
B̃ = −B−1C, c = B−1b.

Но тогда теоремы о сходимости метода простых итера-
ций (1.12) позволяют сформулировать теоремы сходи-
мости для изучаемого метода Зейделя.

Теорема 1.8 1) Пусть detA 6= 0, a11a22 · . . . · ann 6= 0.
Второй вариант метода Зейделя сходится для любого
x0 тогда и только тогда, когда спектральный радиус
ρ(B̃) < 1, где B̃ = −B−1C.

2) Если
‖B−1C‖ < 1,

то метод Зейделя (второй вариант) сходится для лю-
бого x0 и имеет место оценка

‖x∗ − xk‖ ≤ ‖B̃‖k

1− ‖B̃‖
· ‖x1 − x0‖.
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1.9 Методы градиентного спуска

Нам потребуется простая связь системы линейных ал-
гебраических уравнений с экстремумом квадратичной
функции.

Рассмотрим систему Ax = b, где b ∈ Rn, а матрица
A порядка n удовлетворяет двум следующим условиям.

Условие 1. Матрица A = (aij) является действи-
тельной и симметричной, т. е. aij ∈ R и aij = aji. Сле-
довательно, A = AT = A∗, т. е. матрица является само-
сопряженной. В частности, для любых двух векторов
x ∈ Rn и y ∈ Rn имеет место равенство скалярных
произведений

(Ax, y) = (x,Ay).

Условие 2. Матрица A = (aij) является положи-
тельно определенной, что означает (Ax, x) > 0 для лю-
бого x 6= θ. В частности, из этого условия вытекает,
что detA 6= 0. Поэтому существует A−1, и наша систе-
ма имеет единственное решение x∗ = A−1b.

Рассмотрим квадратичную функцию

F (x) = (Ax, x)− 2(b, x) =
n∑
i=1

n∑
j=1

aijxixj − 2
n∑
i=1

bixi.

Теорема 1.9 Пусть A — действительная, симмет-
ричная, положительно определенная матрица. Тогда
справедливы следующие утверждения:
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1) x∗ = A−1b доставляет минимум функционалу
F (x), т. е.

F (x) ≥ F (x∗),

для любого x ∈ Rn.
2) Если x̃ — точка минимума, т. е.

F (x) ≥ F (x̃),

для любого x ∈ Rn, то x̃ = x∗.

Доказательство. Оба утверждения теоремы яв-
ляются следствиями тождества

F (x)− F (x∗) = (A(x− x∗), x− x∗)

для квадратичной функции F (x) = (Ax, x) − 2(b, x).
Само тождество также легко проверяется: раскрываем
скобки в правой и левой частях тождества и убежда-
емся в равенстве с использованием соотношений

(x,Ay) = (Ay, x), Ax∗ = b

и коммутативности скалярного произведения в простран-
стве Rn. Действительно, с одной стороны,

F (x)−F (x∗) = (Ax, x)− 2(b, x)− (Ax∗, x∗) + 2(b, x∗) =

= (Ax, x)− 2(Ax∗, x) + (Ax∗, x∗).
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С другой стороны, имеем:

(A(x− x∗), x− x∗) = (Ax, x)− (Ax∗, x)− (Ax, x∗)+

+(Ax∗, x∗) = (Ax, x)− 2(Ax∗, x) + (Ax∗, x∗).

Этим и завершается доказательство теоремы.
На основании этой теоремы поиск решения систе-

мы Ax = b сводится к поиску точки минимума функ-
ции n переменных, а именно, квадратичной функции,
определенной равенством

F (x) = F (x1, . . . , xn) =
n∑
i=1

n∑
j=1

aijxixj − 2
n∑
i=1

bixi.

Как известно из курса математического анализа, точка
минимума этой функции является решением системы
уравнений

∂F (x1, . . . , xn)

∂xi
= 0, i = 1, 2, . . . , n.

Непосредственными вычислениями с учетом равенств
aij = aji, находим

∂F (x1, . . . , xn)

∂xi
= 2

 n∑
j=1

aijxj − bi

 , i = 1, 2, . . . , n.

Сравнение последних формул наглядно показыва-
ет связь между решениями системы Ax = b с действи-
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тельной симметричной матрицей и точками экстрему-
ма квадратичной функции F (x) = (Ax, x)− 2(b, x).

Метод покоординатного спуска
Пусть A = (aij) — действительная симметричная

положительно определенная матрица. Для любого k =

1, 2, . . . , n имеем akk = (Aek, ek) > 0, где ek – базис-
ный вектор, k-тая координата которого равна единице,
а остальные координаты равны нулю.

Алгоритм определения точки минимума функции
F (x) = (Ax, x) − 2(b, x), называемый методом поко-
ординатного спуска, заключается в следующем. Как
обычно, берем некоторое начальное приближение

x0 = (x0
1, . . . , x

0
n) ∈ Rn.

Рассмотрим вспомогательную функцию

y = F (x1, x
0
2, . . . , x

0
n)

одной переменной x1 и находим точку экстремума как
корень уравнения

∂F (x1, x
0
2, . . . , x

0
n)

∂x1
= 2

a11x1 +
n∑
j=2

a1jx
0
j − b1

 = 0.

Отсюда находим

x1
1 =
−a12x

0
2 − . . .− a1nx

0
n + b1

a11
.
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Для определения x1
2 рассматриваем функцию

y = F (x1
1, x2, x

0
3, . . . , x

0
n),

и определяем точку экстремума x2 = x1
2 как корень

уравнения

∂F (x1
1, x2, x

0
3, . . . , x

0
n)

∂x2
= 0.

Имеем

x1
2 =
−a21x

1
1 − a23x

0
3 − . . .− a2nx

0
n + b2

a22
.

Продолжаем процесс. Дальнейшие подробности не при-
водим, так как ясно, что метод покоординатного спуска
в точности совпадает с методом Зейделя (второй вари-
ант) и для него справедлива теорема 1.8 о сходимости.

Метод градиентного спуска

Поясним сначала идею градиентного спуска в об-
щем случае. Пусть F : Rn → R — некоторая непрерыв-
но дифференцируемая функция, имеющая единствен-
ную точку минимума x∗ ∈ Rn. Отправляясь от неко-
торого нулевого приближения x0 ∈ Rn можно органи-
зовать "спуск" от точки x0 ∈ Rn к точке минимума
x∗ ∈ Rn с помощью итераций

xk = xk−1 − τ gradF (xk−1), k = 1, 2, . . . ,
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где τ — фиксированное положительное число, возмож-
но, достаточно малое. Поскольку градиент функции на-
правлен в сторону возрастания этой функции, то анти-
градиент −gradF (xk−1) задает направление убывания.
Интуитивно понятно, что в пределе мы придем к точ-
ке минимума. Геометрически понятно также, что если
число τ велико, то итерационный процесс будет расхо-
дящимся. Возникает важный вопрос о выборе подходя-
щего параметра τ . Рассмотрим простой пример.

Возьмем n = 2, x = (x1, x2) и F (x) = x2
1 + x2

2. То-
гда x∗ = (0, 0), gradF (x) = (2x1, 2x2) = 2x и итерации
запишутся так:

xk = xk−1− 2τ xk−1 = (1− 2τ )xk−1 = . . . = (1− 2τ )k x0.

Ясно, что для любого x0 6= x∗ = (0, 0) сходимость имеет
место тогда и только тогда, когда |1−2τ | < 1, т. е. когда
0 < τ < 1.

Более общий метод градиентного спуска, называ-
емый нестационарным методом градиентного спуска,
имеет вид

xk = xk−1 − τk−1 gradF (xk−1), k = 1, 2, . . . ,

где τk−1 — положительное число, зависящее от k.
Применим описанную идею спуска к поиску реше-

ния системы линейных алгебраических уравнений ви-
да Ax = b, где A = (aij)

n
i,j=1 — действительная, сим-
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метричная и положительно определенная матрица. То-
гда, как мы уже знаем, x∗ = A−1b доставляет минимум
функции, определенной формулой

F (x) = (Ax, x)− 2(b, x) =
n∑
i=1

n∑
j=1

aijxixj − 2
n∑
i=1

bixi.

Поскольку для нашей функции

gradF (x) = 2[Ax− b],

то итерации метода градиентного спуска для нахожде-
ния решения системы Ax = b можно определить фор-
мулой

xk = xk−1 + t (b− Axk−1),

где параметр t = 2τ > 0, или более общей формулой

xk = xk−1 + tk−1 (b− Axk−1),

где параметры tk−1 > 0.

Справедливо следующее утверждение о сходимо-
сти стационарного метода градиентного спуска.

Теорема 1.10 Предположим, что A — действитель-
ная, симметричная, положительно определенная мат-
рица, ρ(A) — спектральный радиус этой матрицы.
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Пусть параметр t выбран таким, что

t ∈
(

0,
2

ρ(A)

)
.

Тогда метод градиентного спуска

xk = xk−1 + t (b− Axk−1)

сходится при любом начальном приближении x0 ∈ Rn,
причем

‖x∗ − xk‖2 ≤ qk ‖x∗ − x0‖2,

где
q = ‖E − t A‖2 < 1.

Доказательство. Существование и единственность
решения x∗ = A−1b гарантированы тем, что A — дей-
ствительная, симметричная, положительно определен-
ная матрица. Рассматриваем соотношения:{

x∗ = x∗ + t (b− Ax∗) — тождество,
xk = xk−1 + t (b− Axk−1) — заданная итерация.

Вычитаем из первого уравнения второе. Применяя эле-
ментарные преобразования и индукцию, получим

x∗ − xk = x∗ − xk−1 + t(−Ax∗ + Axk−1) =

= (E − t A)(x∗ − xk−1) =

= (E − t A)(E − t A)(x∗ − xk−2) = . . . =
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= (E − tA)k(x∗ − x0).

Обозначим q = ‖E − t A‖2. Тогда

‖x∗ − xk‖2 ≤ qk ‖x∗ − x0‖2.

Очевидно, если q = ‖E − t A‖2 < 1, то итерации схо-
дятся. Нам остается оценить q и убедиться, что q < 1.

Поскольку матрица E − t A является симметрич-
ной и действительной, то она будет самосопряженной.
Поэтому имеем равенство q = ‖E− t A‖2 = ρ(E− t A).

Ясно, что собственные значения матрицы E − t A
имеют вид 1− t λ, где λ — собственное значение само-
сопряженной, положительно определенной матрицы A.
Так как t ∈ (0, 2/ρ(A)) и

λ ∈ [λmin, ρ(A)] ⊂ (0, ρ(A)],

то получаем, что 1− tλ < 1 и 1− tλ ≥ 1− tρ(A) > −1.

Таким образом, −1 < 1− tλ < 1, где λ — любое из
собственных значений матрицы A. Следовательно,

q = max
λ
|1− t λ| < 1

для любого фиксированного числа t ∈ (0, 2/ρ(A)).

Теорема доказана.

Рассмотрим теперь один из нестационарных мето-
дов градиентного спуска, называемый методом наиско-
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рейшего спуска, который связан с параметром

tk =
(rk, rk)

(rk, Ark)
, (1.13)

где rk = b − Axk. Если на некотором шаге rk = 0, то
0 = b − Axk, следовательно, x∗ = xk. Процесс обрыва-
ется, так как найдено точное решение. Если же rk 6= 0

для любого k, то итерационный процесс продолжается
бесконечно, и его сходимость гарантируется следующей
теоремой Канторовича.

Теорема 1.11 Пусть A — действительная, симмет-
ричная, положительно определенная матрица. Тогда
метод градиентного спуска с выбором (1.13), т. е. с
итерациями

xk = xk−1 +
(rk−1, rk−1)

(rk−1, Ark−1)
(b− Axk−1),

сходится при любом начальном приближении x0 ∈ Rn,
причем

‖x∗ − xk‖2 ≤
‖b− Ax0‖2

m

(
M −m
M + m

)k
,

где
M = ‖A‖2, m =

1

‖A−1‖2
.

Схема доказательства такова. Как и в предыду-
щем случае, существование и единственность решения

90



x∗ = A−1b гарантированы тем, что A — действитель-
ная симметричная положительно определенная матри-
ца. Рассматриваем соотношения{

x∗ = x∗ + tk−1(b− Ax∗),
xk = xk−1 + tk−1(b− Axk−1).

Вычитаем из первого равенства второе. Применяя эле-
ментарные преобразования и индукцию, получаем

x∗ − xk = x∗ − xk−1 + tk−1(−Ax∗ + Axk−1) =

= (E − tk−1A)(x∗ − xk−1) =

= (E − tk−1A)(E − tk−2A)(x∗ − xk−2) = . . . =

=
k−1∏
i=0

(E − tiA)(x∗ − x0).

Кроме того, имеем

x∗ − x0 = A−1b− x0 = A−1(b− Ax0),

отсюда следует, что

‖x∗ − x0‖2 ≤ ‖A−1‖2 · ‖b− Ax0‖2 =
‖b− Ax0‖2

m
.

Применяя доводы, аналогичные тем, которые ис-
пользовались при доказательстве предыдущей теоре-
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мы, можно показать, что∥∥∥∥∥
k−1∏
i=0

(E − tiA)

∥∥∥∥∥
2

≤
(
M −m
M + m

)k
→ 0 при k →∞.

Этим и завершается доказательство.
Необходимо отметить, что в учебной и научной ли-

тературе по численным методам можно найти ряд обоб-
щений изученных нами методов градиентного спуска.
Отметим лишь одну плодотворную идею, позволяюще-
го каждому создать и исследовать новый метод гра-
диентного спуска. А именно, возьмем невырожденные
квадратные матрицы Ck порядка n и параметры tk > 0.
Тогда можно рассмотреть обобщенный метод градиент-
ного спуска, задавая итерации формулой

xk = xk−1 + tk−1Ck−1 (b− Axk).

Покажите, что специальным выбором tk и Ck мож-
но получить метод Зейделя как частный случай обоб-
щенного метода градиентного спуска.

В заключение приведем метод итерационного уточ-
нения приближенного решения СЛАУ.

Рассмотрим систему Ax = b, где A = (aij) — квад-
ратная матрица порядка n. Пусть detA 6= 0. Теоретиче-
ски мы можем тогда найти точное решение по формуле
x∗ = A−1b. Часто на практике обратная матрица A−1

определяется приближенно. Но тогда x̃∗ = Ã−1b яв-
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ляется лишь приближенным решением. Возникает во-
прос: как уточнить приближенное решение? Этого мож-
но достичь с помощью итерационного уточнения най-
денного приближенного решения.

Если Ax = b, то 0 = Ã−1(b − Ax). Следовательно,
система Ax = b эквивалентна системе

x = x + Ã−1(b− Ax),

или, что то же самое, системе

x = (E − Ã−1A)x + Ã−1b.

Обозначим B = E − Ã−1A, c = Ã−1b.

Пусть

‖B‖ = ‖E − Ã−1A‖ = q < 1,

тогда метод простых итерации xk = Bxk−1 +c сходится
при любом выборе нулевого приближения x0 ∈ Rn и
справедлива оценка

‖x∗ − xk‖ ≤ qk ‖x∗ − x0‖ ≤ qk

1− q
‖x1 − x0‖.

Следовательно, ‖x∗ − xk‖ → 0 при k →∞.
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1.10 Задачи и упражнения

1. Пусть A — невырожденная матрица. Покажи-
те, что для любого λ ∈ σ(A) справедливы неравенства
1/‖A−1‖ ≤ |λ| ≤ ‖A‖.

2. Докажите неравенство ‖A‖2
2 ≤ ‖A‖1 ‖A‖∞.

3. Убедитесь в том, что для произвольных матриц
A и B спектры матриц AB и BA совпадают.

4. Покажите, что число обусловленности матрицы
A не меняется при умножении матрицы A на ненулевое
число.

5. Пусть A — симметричная положительно опреде-
ленная матрица, A 6= βE для β ∈ R. Докажите, что
число обусловленности∥∥(A + αE)−1

∥∥
2 ‖A + αE)‖2 (α > 0)

является монотонно убывающей функцией от α.
Указание. Решения задач 1 – 5 можно найти в [7].
6. Вычислите решение системы

10−3x1 + x2 = 5, x1 − x2 = 6

двумя методами: основным методом Гаусса и методом
Гаусса с выбором ведущего элемента как максимально-
го по модулю среди элементов столбца. Проведите вы-
числения с двумя значащими цифрами после запятой
и сравните результаты. (Задача взята из книги [12]).
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7. Докажите известную формулу: если n ≥ 2, то

∆n =

∣∣∣∣∣∣∣∣∣∣
1 x1 x2

1 . . . xn−1
1

1 x2 x2
2 . . . xn−1

2

. . . . . . . . . . . . . . .

1 xn x2
n . . . xn−1

n

∣∣∣∣∣∣∣∣∣∣
=
∏
i>j

(xi − xj)

для определителя Вандермонда.
Указание. Легко обосновать формулу:

∆n(x) =

∣∣∣∣∣∣∣∣∣∣∣∣

1 x1 x2
1 . . . xn−1

1

1 x2 x2
2 . . . xn−1

2

. . . . . . . . . . . . . . .

1 xn−1 x2
n−1 . . . xn−1

n−1

1 x x2 . . . xn−1

∣∣∣∣∣∣∣∣∣∣∣∣
= ∆n−1

n−1∏
j=1

(x− xj).

Далее применяем метод математической индукции.
8. Пусть A — квадратная матрица порядка n, нор-

ма ‖A‖ определена как норма линейного оператора.
Докажите формулу Бёрлинга

ρ(A) = lim
k→∞

k

√
‖Ak‖.

9. Пусть A = {akj}nk,j=1 — квадратная матрица по-
рядка n ≥ 2. Докажите, что число nmaxk,j |akj| явля-
ется алгебраической нормой матрицы, но не является
операторной нормой.
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Глава 2

Нелинейные уравнения и

системы

Будем рассматривать уравнение вида: f (x) = 0, где
x ∈ R или x ∈ S, S – некоторый отрезок [a, b] ⊂ R.
Предполагаем, что отображение

f : R→ R

или
f : S → R

является непрерывной функцией. Решение нелинейно-
го уравнения требует предварительного анализа: при-
меняя аналитические и графические методы, нужно ис-
следовать множество корней и определить интервал рас-
положения интересующего нас корня.

Опишем сначала элементарный метод, связанный
с последовательным делением пополам интервала рас-
положения корня x∗.
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2.1 Метод дихотомии

Основан на теореме Коши о промежуточном значении
функции, непрерывной на некотором отрезке. Точнее,
нам нужен следующий частный случай теоремы Коши:

если функция f непрерывна на отрезке [a, b] и име-
ет место неравенство f (a) · f (b) < 0, то существует
такая точка c ∈ (a, b), что f (c) = 0.

Итак, пусть функция f непрерывна на отрезке [a, b]

и справедливо неравенство f (a) · f (b) < 0. Корень

x∗ = c ∈ (a, b)

можно найти с помощью следующего итерационного
процесса. Возьмем середину отрезка

x1 =
a + b

2
.

Возможны 3 случая.
Случай 1: f (x1) = 0. Тогда процесс завершен: чис-

ло x∗ = x1 — искомый корень.
Случай 2: f (x1) 6= 0 и f (a)f (x1) > 0. Тогда

f (b)f (x1) < 0,

поэтому берем половину исходного отрезка, полагая

[a1, b1] = [x1, b].
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Случай 3: f (x1) 6= 0 и f (a)f (x1) < 0. Тогда берем
половину исходного отрезка, полагая [a1, b1] = [a, x1].

На втором шаге возьмем середину отрезка [a1, b1]:

x2 =
a1 + b1

2
.

Снова возможны 3 случая. Имеем: либо f (x2) = 0 (и
тогда процесс завершен, так как x∗ = x2 — искомый
корень), либо существует половина [a2, b2] (вида [x2, b1]

или [a1, x2]) отрезка [a1, b1], обладающая свойством

f (a2)f (b2) < 0.

Далее, продолжаем процесс деления отрезка пополам.
На 3-ем шаге рассматриваем середину отрезка [a2, b2]:

x3 =
a2 + b2

2
.

Снова имеем: либо f (x3) = 0 и процесс завершается,
либо существует подходящая половина [a3, b3] отрезка
[a2, b2], обладающая свойством f (a3)f (b3) < 0, и тогда
продолжаем процесс деления отрезка пополам. Очевид-
но, при продолжении процесса деления возможны два
исхода: либо на некотором шаге мы найдем точное зна-
чение корня x∗ = xk, либо существуют бесконечная по-
следовательность точек xk+1 = (ak + bk)/2 и счетная
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система отрезков

[ak+1, bk+1] ⊂ [ak, bk], (k ∈ N)

со следующим свойством: f (ak)f (bk) < 0. Ясно, что
тогда

bk − ak =
b− a

2k
, x∗ = lim

k→∞
xk,

и f (x∗) = 0 в силу непрерывности функции f .

2.2 Итерационные методы

Уравнение f (x) = 0 заменяем на равносильное урав-
нение вида: x = ϕ(x). Переход от первого уравнения
ко второму можно осуществить различными способа-
ми. Например, уравнение f (x) = 0 равносильно урав-
нению x = ϕ(x), где ϕ(x) = x− f (x).

2.2.1 Применение простых итераций

Рассмотрим стандартный метод простых итераций для
решения нелинейного уравнения вида x = ϕ(x).

А именно, выбираем нулевое приближение x0 ∈ R
и рассматриваем итерации, определяемые формулой:
xk = ϕ(xk−1), где k = 1, 2, . . ..

Как следствие теоремы Банаха о сжимающих отоб-
ражениях имеем следующее утверждение.
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Теорема 2.1 Пусть функция ϕ : R → R удовлетво-
ряет условию Липшица

|ϕ(x)− ϕ(y)| ≤ α|x− y|, ∀x, y ∈ R,

где постоянная α ∈ (0, 1). Тогда существует един-
ственный корень x∗ уравнения x = ϕ(x), при любом
выборе нулевого приближения x0 ∈ R итерационный
метод xk = ϕ(xk−1) сходится, а именно,

x∗ = lim
k→∞

xk,

причем

|x∗ − xk| ≤
αk

1− α
|x1 − x0|.

При удачном выборе x0 теорему 2.1 можно распро-
странить на функции, заданные на некотором отрезке.

Теорема 2.2 Пусть точка x0 ∈ R такова, что

|ϕ(x)− ϕ(y)| ≤ α|x− y|, ∀x, y ∈ S = [x0 − ε, x0 + ε],

где ε > 0, α < 1. Пусть число m = |ϕ(x0) − x0| удо-
влетворяет условию

m

1− α
≤ ε.

Тогда на S уравнение x = ϕ(x) имеет единственный
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корень x∗, причем

x∗ = lim
k→∞

xk,

где
xk = ϕ(xk−1), k = 1, 2, . . . .

Доказательство. Для применения теоремы о сжи-
мающих отображениях нужно показать, что для любо-
го x ∈ S значение функции также лежит на S, т. е.
ϕ(x) ∈ S. Иными словами, мы имеем дело с отображе-
ним ϕ : S → S. Этот факт устанавливается просто.
Действительно, имеем

ϕ(x)− x0 = ϕ(x)− ϕ(x0) + ϕ(x0)− x0,

отсюда следует

|ϕ(x)− x0| ≤ |ϕ(x)− ϕ(x0)| + |ϕ(x0)− x0| ≤

≤ α|x− x0| + m ≤ αε + (1− α)ε = ε,

т. е. |ϕ(x)− x0| ≤ ε, что и требовалось доказать.
Замечание 1. В условиях теоремы 2.2

|x1 − x0| = |ϕ(x0)− x0| = m.

Поэтому имеет место следующая оценка скорости схо-
димости:

|x∗ − xk| ≤
m

1− α
αk.
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2.2.2 Порядок итерационного метода

Предположим, что функция ϕ дифференцируема до-
статочное число раз в некоторой окрестности корня x∗.

Определение 2.1 Пусть m ∈ N \ {1}. Число m назы-
вается порядком итерационного метода, если в точке
x∗ = ϕ(x∗) имеют место равенства

ϕ′(x∗) = ϕ′′(x∗) = . . . = ϕ(m−1)(x∗) = 0,

но ϕ(m)(x∗) 6= 0.

Если порядок итерационного метода m ≥ 2, то
можно получить более точные оценки скорости сходи-
мости итераций. Покажем это.

Запишем формулу Тейлора в окрестности x∗

ϕ(x) = ϕ(x∗) +
ϕ′(x∗)

1!
(x− x∗) +

ϕ′(x∗)

2!
(x− x∗)2 + . . .

+
ϕ(m−1)(x∗)

(m− 1)!
(x− x∗)m−1 +

ϕ(m)(ξ)

m!
(x− x∗)m.

Положим

x = xk−1, ϕ(xk−1) = xk, ϕ(x∗) = x∗.
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Так как ϕ′(x∗) = ϕ′′(x∗) = . . . = ϕ(m−1)(x∗) = 0, будем
иметь:

xk − x∗ = ϕ(xk−1)− ϕ(x∗) =
ϕ(m)(ξ)

m!
(xk−1 − x∗)m.

Предположим, что существует такое число Mm > 0,
что в некоторой окрестности корня справедливо нера-
венство

|ϕ(m)(x)| ≤Mm.

Тогда получаем оценки

|x∗ − xk| ≤
Mm

m!
|x∗ − xk−1|m ≤

≤
(
Mm

m!

)1+m+m2+...+mk−1

|x∗ − x0|m
k

=

=

(
Mm

m!

)mk−1
m−1

|x∗ − x0|m
k

, m ≥ 2.

Рассмотрим подробнее важный частный случай, ко-
гда порядок итерационного метода m = 2. В этом слу-
чае имеем

|x∗ − xk| ≤
(
M2

2

)2k−1

|x∗ − x0|2
k

=
2

M2
q2k,

где
q =

M2

2
|x∗ − x0|.
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Ясно, что если нулевое приближение x0 выбрано удач-
но, а именно, так, чтобы

q =
M2

2
|x∗ − x0| < 1,

то итерационный метод сходится со скоростью

|x∗ − xk| ≤
2

M2
q2k.

Уместно отметить, что успешное применение формаль-
ных методов итераций при решении нелинейных урав-
нений и систем нелинейных уравнений имеет важный
неформальный этап, зависящий от интуиции и опыта
вычислителя. А именно, необходим удачный выбор ну-
левого приближения.

2.3 Метод Ньютона

Рассмотрим уравнение f (x) = 0. Метод Ньютона, на-
зываемый также методом касательных, является ите-
рационным методом. Алгоритм таков: выбираем нуле-
вое приближение x0, такое, что f ′(x0) 6= 0. Итерации
определяются формулой

xk = xk−1 −
f (xk−1)

f ′(xk−1)
, k ∈ N.
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Формально метод Ньютона можно получить следую-
щим образом. Если f ′(x) 6= 0, то уравнение f (x) = 0

равносильно уравнению

x = ϕ(x), где ϕ(x) := x− f (x)

f ′(x)
.

Ясно, что метод простых итераций xk = ϕ(xk−1) с вы-
бранной выше функцией ϕ порождает метод Ньютона.
Порядок итерационного метода Ньютона m = 2, так
как

ϕ′(x∗) =
f (x∗)f ′′(x∗)

f ′2(x∗)
= 0.

Следовательно, мы можем применить оценку

|x∗ − xk| ≤
2

M2
q2k,

если нулевое приближение выбрано достаточно близ-
ким к искомому корню.

Если f ∈ C2(R) и имеет место оценка

sup
x∈R
|ϕ′(x)| = sup

x∈R

∣∣∣∣f (x)f ′′(x)

f ′2(x)

∣∣∣∣ = α < 1,

то ϕ является сжимающим отображением, и поэтому
справедлива оценка

|x∗ − xk| ≤
αk

1− α
|x1 − x0|.
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Метод Ньютона допускает следующую геометрическую
интерпретацию. Пусть x0 — нулевое приближение, и
пусть f ′(x0) 6= 0. Проведем касательную к графику
функции f в точке (x0, f (x0)). Уравнение касательной
имеет вид y = f ′(x0)(x − x0) + f (x0). Эта касательная
пересекает ось абсцисс в точке x1 = x0 − f (x0)/f ′(x0).
Получили первое приближение. Далее, проведем каса-
тельную к графику функции f в точке (x1, f (x1)). Точ-
ка пересечения этой касательной с осью абсцисс пред-
ставляет собой второе приближение

x2 = x1 − f (x1)/f ′(x1).

Продолжаем процесс.

Употребительной модификацией метода Ньютона
является метод хорд. Алгоритм: выбираем две точки a
и x0, удовлетворяющие условию f (a)f (x0) < 0. Итера-
ции строятся по формуле

xk = xk−1 −
f (xk−1)(xk−1 − a))

f (xk−1)− f (a)
, k ∈ N.

Более простой модификацией метода Ньютона являет-
ся следующий алгоритм:

xk = xk−1 −
f (xk−1)

f ′(x0)
, k ∈ N.
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2.4 Собственные значения матрицы

Пусть A = (akj) — квадратная матрица порядка n ≥ 2,
элементы которой akj ∈ R или akj ∈ C.

Число λ ∈ C называется собственным значением
матрицы A, если существует такой ненулевой вектор
x, что Ax = λx. Этот ненулевой вектор x называют
собственным вектором, соответствующим собственно-
му значению λ.

Таким образом, если λ ∈ C — собственное значение
матрицы A, то однородное уравнение (A − λE)x = θ

имеет ненулевое решение, а это возможно тогда и толь-
ко тогда, когда det(A − λE) = 0. Следовательно, все
собственные значения матрицы A определяются как
корни уравнения det(A− λE) = 0. Легко видеть, что

Pn(A;λ) := det(A− λE)

— алгебраический полином от переменной λ и имеет
вид

Pn(A;λ) = (−1)n[λn − pn−1λ
n−1 − . . .− p1λ− p0].

Полином Pn(A;λ) называют характеристическим поли-
номом матрицы A. Согласно основной теореме алгеб-
ры, характеристическое уравнение Pn(A;λ) = 0 имеет
корни λk ∈ C (k = 1, 2, . . . , n).

Таким образом, мы можем сказать, что спектр мат-
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рицы
σ(A) = {λ1, λ2, . . . , λn}

содержит не более, чем n чисел, так как некоторые кор-
ни могут оказаться кратными. Напомню, что число

ρ(A) = max
λ∈σ(A)

|λ|

называется спектральным радиусом и существенно ис-
пользуется при изучении сходимости методов итера-
ций.

В некоторых частных случаях все собственные зна-
чения матрицы легко определяются. Приведем два при-
мера.

ПустьD — диагональная матрица порядка n. Тогда
характеристический полином имеет вид

Pn(D;λ) =
n∏
k=1

(dkk − λ).

Следовательно, λk = dkk для любого k = 1, 2, . . . , n.

Пусть A — матрица порядка 2. Тогда

P2(A;λ) = (a11 − λ)(a22 − λ)− a12a21.

Поэтому собственные значения легко определяются как
корни квадратного уравнения

(a11 − λ)(a22 − λ)− a12a21 = 0.
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В общем случае вычисление собственных значений
матрицы представляет собой непростую задачу, для ре-
шения которой разработаны специальные методы. При-
ведем теоремы, лежащие в основе ряда методов вычис-
ления собственных значений матрицы, например, мето-
дов Леверье, А.Н. Крылова, А.М. Данилевского и ме-
тода вращений.

Теорема 2.3 Спектры подобных матриц совпадают.

Доказательство. Пусть A и B — подобные матрицы.
Тогда по определению подобия существует такая невы-
рожденная матрица C, что B = CAC−1. Пусть λ — од-
но из собственных значений матрицы B и x — соответ-
ствующий собственный вектор. Тогда y := C−1x 6= θ.
Имеем соотношения

Bx = λx ⇔ CAC−1x = λx ⇔

⇔ AC−1x = λC−1x ⇔ Ay = λy.

Следовательно,

λ ∈ σ(B)⇔ λ ∈ σ(A),

что и требовалось.
Отметим еще раз, что разработан ряд эффектив-

ных методов нахождения всех собственных значений
матриц высокого порядка. Многие из них основаны на
приведении матрицы преобразованиями подобия к мат-

109



рице простого вида, для которой собственные значения
находятся легко.

Рассмотрим круги, связанные с квадратной матри-
цей A = (akj) порядка n ≥ 2, а именно, круги

Dk(A) =

z ∈ C : |z − akk| ≤ Rk(A) =
n∑

j=1,j 6=k
|akj|

 ,

где k = 1, 2, . . . , n. Проблема локализации собственных
значений заданной матрицы частично решается следу-
ющей теоремой.

Теорема 2.4 (Первая теорема Гершгорина.) Любое соб-
ственное значение λ матрицы A = (akj) лежит в од-
ном из кругов Dk(A).

Доказательство. Пусть x = (x1, x2, . . . , xn) 6= θ —
собственный вектор, соответствующий собственному зна-
чению λ матрицы A. Пусть xk 6= 0 — максимальная по
модулю координата этого вектора. Приравнивая k-тые
координаты в векторном равенствеAx = λx, получаем:∑n

j=1 akjxj = λxk. Отсюда следует, что

|λ− akk| =

∣∣∣∣∣∣
n∑

j=1,j 6=k
akj

xj
xk

∣∣∣∣∣∣ ≤
n∑

j=1,j 6=k
|akj| = Rk(A).

Таким образом, λ ∈ Dk(A), что и требовалось доказать.
В заключение опишем интерполяционный ме-

тод вычисления собственных значений матрицы.
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Пусть A = (akj) — квадратная матрица порядка
n ≥ 2. Собственные значения этой матрицы вычисля-
ются в два этапа.

Этап 1 — нахождение характеристического поли-
нома матрицы. Зададим узлы x1, x2, . . . , xn, xn+1 ∈ R и
вычислим

y1 = det(A− x1E), y2 = det(A− x2E), . . . ,

yn+1 = det(A− xn+1E).

Обозначим f (λ) = Pn(A;λ) ≡ det(A− λE).

Зная yj = f (xj), мы можем построить интерполя-
ционный полином Лагранжа

Ln+1(f ;x) =
n+1∑
j=1

yj
ωn+1(x)

(x− xj)ω′n+1(xj)
,

где

ωn+1(x) =
n+1∏
k=1

(x− xk).

Поскольку степень полинома f меньше числа узлов, то
Ln+1(f ;x) ≡ f (x). Следовательно, характеристический
полином степени n определяется явно формулой

Pn(A;λ) =
n+1∑
j=1

yj ωn+1(λ)

(λ− xj)ω′n+1(xj)
.
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Этап 2. Определяем все собственные значения

λ1, λ2, . . . , λn,

решая уравнение Pn(A;λ) = 0, т. е. уравнение

n+1∑
j=1

yj ωn+1(λ)

(λ− xj)ω′n+1(xj)
= 0.

2.5 Метод Ньютона для систем

Рассмотрим систему нелинейных уравнений следующе-
го вида 

f1(x1, x2, x3, . . . , xn) = 0

f2(x1, x2, x3, . . . , xn) = 0

. . . . . . . . . . . . . . .

fn(x1, x2, x3, . . . , xn) = 0

.

Предположим, что функции fj : Rn → R являются
непрерывно дифференцируемыми. Предположим так-
же, что существует решение x∗ = (x∗1, x

∗
2, . . . , x

∗
n) ∈ Rn

этой системы уравнений. Наша цель — построить ите-
рационный метод для нахождения этого решения.

Указанную систему формально можно записать в
виде одного уравнения для отображения F : Rn → Rn,
определяя вектор F (x) равенствами

F (x) = (f1(x), f2(x), . . . , fn(x)) ∈ Rn.
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Очевидно, рассматриваемая нелинейная система урав-
нений может быть записана как одно уравнение

F (x) = θ,

где θ — нулевой вектор.
Рассмотрим матрицу Якоби для F : Rn → Rn:

F ′(x) :=


∂f1/∂x1 ∂f1/∂x2 . . . ∂f1/∂xn
∂f2/∂x1 ∂f2/∂x2 . . . ∂f2/∂xn
. . . . . . . . . . . .

∂fn/∂x1 ∂fn/∂x2 . . . ∂fn/∂xn

 .
Предположим, что det F ′(x) 6= 0. Тогда существует об-
ратная матрица [F ′(x)]−1.

Метод Ньютона для решения уравнения F (x) = θ,
равносильного системе уравнений, заключается в сле-
дующем.

Берем нулевое приближение x0 = (x0
1, x

0
2, . . . , x

0
n).

Итерации xk = (xk1, x
k
2, . . . , x

k
n) определяются по фор-

муле

xk = xk−1 −
[
F ′(xk−1)

]−1
F (xk−1), k ∈ N.

Рассмотрим одну теорему о сходимости метода Ньюто-
на для систем уравнений. Пусть a, a1, a2 — положи-
тельные постоянные.

Обозначим Ba(x
∗) = {x ∈ Rn : ‖x− x∗‖ ≤ a}.
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Пусть

c = a1a2, 0 < b < min{a, 1/c},

Bb(x
∗) = {x ∈ Rn : ‖x− x∗‖ ≤ b}.

Теорема 2.5 Пусть x∗ = (x∗1, x
∗
2, . . . , x

∗
n) ∈ Rn — ре-

шение уравнения F (x) = θ. Предположим, что для
любых точек x ∈ Ba(x

∗) и y ∈ Ba(x
∗) выполнены усло-

вия: ∥∥∥[F ′(x)]
−1
∥∥∥ ≤ a1,

‖F (x)− F (y)− F ′(y)(x− y)‖ ≤ a2 ‖x− y‖2.

Пусть нулевое приближение x0 ∈ Bb(x
∗). Тогда

xk = xk−1 −
[
F ′(xk−1)

]−1
F (xk−1) ∈ Bb(x

∗), ∀k ∈ N,

последовательность итераций сходится, т. е.

x∗ = lim
k→∞

xk.

Доказательство. Полагая x = x∗, y = xk, можем на-
писать∥∥∥F (x∗)− F (xk)− F ′(xk)(x∗ − xk)

∥∥∥ ≤ a2 ‖x∗ − xk‖2.

Так как F (x∗) = θ, то получаем неравенство∥∥∥F (xk) + F ′(xk)(x∗ − xk)
∥∥∥ ≤ a2 ‖x∗ − xk‖2.
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Далее, пользуясь простым неравенством∥∥∥[F ′(xk)]−1F (xk) + (x∗ − xk)
∥∥∥ ≤

≤ ‖[F ′(xk)]−1‖ ‖F ′(xk){[F ′(xk)]−1F (xk) + (x∗− xk)}‖ =

= ‖[F ′(xk)]−1‖ ‖F (xk) + F ′(xk)(x∗ − xk)‖,

с учетом неравенства
∥∥∥[F ′(x)]−1

∥∥∥ ≤ a1, имеем∥∥∥[F ′(xk)]−1F (xk) + (x∗ − xk)
∥∥∥ ≤

≤ a1a2 ‖x∗ − xk‖2 = c ‖x∗ − xk‖2.

Поскольку

‖x∗ − xk+1‖ = ‖x∗ − xk +
[
F ′(xk)

]−1
F (xk)‖,

то по индукции получаем

‖x∗ − xk+1‖ ≤ c ‖x∗ − xk‖2 ≤ . . . ≤ c2k−1‖x∗ − x0‖2k.

Индукцией также получаем, что условие x0 ∈ Bb(x
∗)

влечет xk ∈ Bb(x
∗) для любой итерации, так как

‖x∗ − xk+1‖ ≤ c ‖x∗ − xk‖2 ≤ c b2 < b.

Далее, имеем: число q = c b < 1 в силу выбора b. Следо-
вательно, предыдущая оценка запишется в виде нера-
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венства
‖x∗ − xk+1‖ ≤ 1

c
q2k,

что влечет сходимость итераций к точному решению.

Этим и завершается доказательство теоремы.

Нахождение обратных матриц
[
F ′(xk−1)

]−1 пред-
ставляет собой трудоемкую задачу. Поэтому рассмат-
ривают упрощенную версию метода Ньютона, задавая
итерации формулой

xk = xk−1 −
[
F ′(x0)

]−1
F (xk−1), ∀k ∈ N.

Кроме метода Ньютона существуют и другие ите-
рационные методы. Опишем один из них.

Рассмотрим систему нелинейных уравнений следу-
ющего вида

x1 = ϕ1(x1, x2, x3, . . . , xn)

x2 = ϕ2(x1, x2, x3, . . . , xn)

. . . . . . . . . . . . . . .

xn = ϕn(x1, x2, x3, . . . , xn)

.

Предположим, что функции ϕj : Rn → R являют-
ся непрерывными. Обозначим решение этой системы
уравнений как x∗ = (x∗1, x

∗
2, x
∗
3, . . . , x

∗
n) ∈ Rn.

Указанную систему формально можно записать в
виде одного уравнения для отображения Φ : Rn → Rn,
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определяя вектор Φ(x) равенствами

Φ(x) = (ϕ1(x), ϕ2(x), . . . , ϕn(x)) ∈ Rn.

Тогда наша нелинейная система уравнений может быть
записана как одно уравнение

x = Φ(x).

Рассмотрим метод прямых итераций. А именно, задаем
нулевое приближение x0 = (x0

1, x
0
2, . . . , x

0
n). Итерации

xk = (xk1, x
k
2, . . . , x

k
n) определяются по формуле

xk = Φ(xk−1), k ∈ N.

Как следствие теоремы Банаха о сжимающих отобра-
жениях получаем следующее утверждение.

Теорема 2.6 Пусть отображение Φ : Rn → Rn явля-
ется сжимающим, т. е.

‖Φ(x)− Φ(y)‖ ≤ α‖x− y‖, ∀x, y ∈ Rn,

где постоянная α ∈ (0, 1). Тогда существует един-
ственное решение x∗ уравнения x = Φ(x), при любом
выборе нулевого приближения x0 ∈ Rn итерационный
метод xk = Φ(xk−1) сходится, а именно,

x∗ = lim
k→∞

xk,
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причем

‖x∗ − xk‖ ≤ αk

1− α
‖x1 − x0‖.

Для систем нелинейных уравнений строятся итера-
ционные методы Зейделя по аналогии с методами ите-
раций Зейделя для СЛАУ. Как обычно, задаем нулевое
приближение. В обобщении первого варианта метода
Зейделя последующие итерации определяются форму-
лами: k ∈ N и

xk1 = ϕ1(xk−1
1 , xk−1

2 , xk−1
3 , . . . , xk−1

n )

xk2 = ϕ2(xk1, x
k−1
2 , xk−1

3 , . . . , xk−1
n )

. . . . . . . . . . . . . . . . . . . . .

xkn = ϕn(xk1, x
k
2, x

k
3, . . . , x

k
n−1, x

k−1
n )

.

2.6 Задачи и упражнения

1. Найдите миллионный член последовательности
чисел Фибоначчи

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . . .

2. Докажите вторую теорему Гершгорина: если объ-
единение круговDk(A) состоит из нескольких связных
частей, то каждая связная часть содержит столько
собственных значений, сколько кругов ее составляют.
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3. Найдите характеристический полином следую-
щей матрицы Фробениуса

Fn =


pn−1 pn−2 . . . p2 p1 p0

1 0 . . . 0 0 0

. . . . . . . . . . . . . . . . . .

0 0 . . . 1 0 0

0 0 . . . 0 1 0

 .

4. Пользуясь методом Ньютона, постройте алгоритм
для вычисления числа

√
7, рассматриваемая это число

как корень уравнения x2 = 7.
5. Найдите решения системы уравненийx2

1 + 4x2
2 = 1

x4
1 + x4

2 = 0, 5

с пятью верными знаками. (Задача взята из книги [12]).
6. Рассмотрите пример верхнетреугольной матри-

цы порядка n, все собственные значения которой яв-
ляются простыми (т. е. спектр состоит из n различных
чисел). Найдите все собственные векторы такой матри-
цы.
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Глава 3

Интерполяция функций

Математические модели многих проблем естествозна-
ния используют функции и операции, содержащие пре-
дельный переход. При расчетах мы можем использо-
вать лишь конечное число значений функции, поэтому
нужно построить приближенные дискретные аналоги
используемых операций.

Прошедший проверку временем и ставший стан-
дартным способ перехода к дискретным аналогам ос-
новных операций анализа состоит в следующем. Функ-
цию приближают либо полиномами, либо тригономет-
рическими суммами, либо сплайнами, используя при
этом лишь конечное число значений функции. И ос-
новные операции проводят над этими приближениями.

Для заданной непрерывной функции можно опре-
делить полином, значения которого совпадают со зна-
чениями выбранной функции в нескольких точках. Удо-
влетворяющий такому условию полином наименьшей
степени называется интерполяционным. Замена функ-
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ции ее интерполяционным полиномом используется при
приближенных вычислениях интегралов.

Наиболее употребительной является интерполяци-
онная формула, открытая Лагранжем в 1795 году, хо-
тя сама интерполяция использовалась задолго до него.
По-видимому, описание первой интерполяционной фор-
мулы принадлежит Ньютону (приведено в его труде
"Метод разностей", опубликованном в 1736 году).

Более общие интерполяционные формулы были най-
дены в 19 веке Коши, Эрмитом и другими математика-
ми. Наиболее трудные вопросы по оценкам погрешно-
сти при полиномиальной интерполяции были решены
лишь в 20 веке А. Лебегом, С.Н. Бернштейном, Д. Джек-
соном, С.Б. Стечкиным и рядом других математиков.
При этом существенно использовались фундаменталь-
ные результаты Вейерштрасса и П.Л. Чебышева.

Отметим также, что интерполяция представляет
собой лишь один из разделов обширной теории при-
ближения функций, развитие которой продолжается и
в настоящее время.

3.1 Полиномы Лагранжа

Пусть на отрезке [a, b] заданы точки x1, x2, . . . , xn. Пред-
полагаем, что xk 6= xj при k 6= j. Для непрерывной
функции f будем рассматривать следующую задачу.

Задача. Найти алгебраический полином Ln(f ;x)
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наименьшей степени и такой, что

Ln(f ;xj) = f (xj), j = 1, 2, . . . , n.

Функцию Ln(f ;x) называют интерполяционным по-
линомом Лагранжа, а точки xj (j = 1, . . . , n) — узла-
ми интерполяционного полинома Лагранжа или узлами
интерполяции.

Рассмотрим пример. Пусть функция g : [a, b] → R
обладает свойством

g(xn) = 1, g(xj) = 0 (j = 1, . . . , n− 1).

Понятно, что полином Ln(g;x) должен иметь сте-
пень ≥ n− 1, так как он должен делиться без остатка
на полином pn(x) :=

∏n−1
j=1 (x − xj). Поэтому полагаем

Ln(g;x) = cn pn(x), где константа cn = 1/pn(xn).

Теорема 3.1 Для любой функции f : [a, b] → R и уз-
лов x1, x2, . . . , xn интерполяционный полином Лагран-
жа Ln(f ;x) степени не выше n−1 существует и опре-
деляется единственным образом.

Доказательство. Если n = 1, то L1(f ;x) ≡ f (x1).
Пусть n ≥ 2. Надеясь на то, что существует по-

лином Лагранжа степени ≤ n − 1, искомый полином
можем записать в виде

Ln(f ;x) =
n∑
k=1

akx
k−1 = a1 + a2x + . . . anx

n−1.
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Коэффициенты этого полинома должны определяться
из условий:
Ln(f ;xj) = f (xj) (j = 1, 2, . . . , n)⇐⇒

⇐⇒



a1 + a2x1 + . . . + anx
n−1
1 = f (x1)

a1 + a2x2 + . . . + anx
n−1
2 = f (x2)

. . . . . . . . . . . . . . . . . .

a1 + a2xn + . . . + anx
n−1
n = f (xn)

.

Для нахождения неизвестных a1, a2, . . . an получаем си-
стему уравнений, определитель которой

∆n =

∣∣∣∣∣∣∣∣∣∣
1 x1 x2

1 . . . xn−1
1

1 x2 x2
2 . . . xn−1

2

. . . . . . . . . . . . . . .

1 xn x2
n . . . xn−1

n

∣∣∣∣∣∣∣∣∣∣
=
∏
i>j

(xi − xj)

является определителем Вандермонда и отличен от ну-
ля. Следовательно, система имеет единственное реше-
ние, которое можно определить по правилу Крамера

ak =
∆n,k

∆n
,

где ∆n,k — определитель матрицы, полученной из мат-
рицы Вандермонда заменой k-го столбца на столбец
свободных членов f (x1), f (x2), . . . , f (xn). Поэтому ин-
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терполяционный полином Лагранжа запишется в виде:

Ln(f ;x) =
n∑
k=1

∆n,k

∆n
· xk−1.

По построению Ln(f ;x) — полином степени ≤ n − 1 и
f (x) ≈ Ln(f ;x) вблизи узлов для f ∈ C[a, b].

Приведем второе доказательство единственности,
показывающее, в частности, что Ln(f ;x) ≡ f (x) для
любого полинома f степени не выше n− 1 .

Предположим, что для f ∈ C[a, b] имеется еще
один интерполяционный полиномQ(x) степени≤ n−1:

Q(x) =
n∑
k=1

bkx
k−1, Q(xj) = f (xj), j = 1, 2, . . . , n.

Рассмотрим разность

p(x) = Ln(f ;x)−Q(x) =
n∑
k=1

(ak − bk)xk−1.

Очевидно, p(x) — полином степени≤ n−1. Для любого
j = 1, . . . , n имеем:

p(xj) = Ln(f ;xj)−Q(xj) = f (xj)− f (xj) = 0.

Таким образом, получаем, что полином p(x) степени не
выше n− 1 имеет n различных корней x1, x2, . . . , xn.

Согласно основной теореме алгебры корней должно
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быть не больше n − 1 за исключением случая, когда
p(x) ≡ 0. Поэтому имеем

p(x) ≡ 0⇒ Ln(f ;x) ≡ Q(x).

Полученное противоречие и доказывает единственность.
В частности, справедливо

Следствие 3.1.1 Если Q(x) — алгебраический поли-
ном степени ≤ n− 1, то

Ln(Q;x) ≡ Q(x).

Представление Лагранжа для интерполяци-
онного полинома

Приведем представление для полинома Лагранжа
Ln(f ;x) в виде явной формулы, включающей узлы ин-
терполяции x1, x2, . . . , xn и значения функции f в этих
точках. Одновременно мы получим второе доказатель-
ство существования интерполяционного полинома. По-
требуются следующие полиномы степени n − 1: если
n = 1, то l1(x) ≡ 1, а при n ≥ 2 и k = 1, . . . , n

lk(x) =
n∏

j=1,j 6=k

x− xj
xk − xj

=

=
(x− x1) . . . (x− xk−1)(x− xk+1) . . . (x− xn)

(xk − x1) . . . (xk − xk−1)(xk − xk+1) . . . (xk − xn)
,

которые называются фундаментальными полино-
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мами Лагранжа. В узлах интерполяции получаем

lk(xj) = δkj =

{
1, если k = j;

0, если k 6= j.

Рассмотрим полином

Q(x) =
n∑
k=1

f (xk)lk(x).

Имеем: степень Q ≤ n− 1, кроме того,

Q(xj) =
n∑
k=1

f (xk)lk(xj) =
n∑
k=1

f (xk)δkj = f (xj)

для любого j = 1, . . . , n.

В силу единственности интерполяционного полино-
ма получаем Q(x) ≡ Ln(f ;x), следовательно,

Ln(f ;x) =
n∑
k=1

f (xk)lk(x).

Эта формула и есть основное представление интерпо-
ляционного полинома Лагранжа.

Часто удобнее пользоваться другой записью основ-
ного представления. Рассмотрим произведение

ωn(x) = (x− x1)(x− x2) . . . (x− xn) =
n∏
j=1

(x− xj).
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Легко видеть, что

lk(x) =
Ank(x)

Bnk
,

где

Ank(x) =
ωn(x)

x− xk
, Bnk =

n∏
j=1,j 6=k

(xk − xj) = ω′n(xk),

так как

ω′n(x) = (x−x2) . . . (x−xn)+(x−x1)(x−x3) . . . (x−xn)+

. . . + (x− x1)(x− x2) . . . (x− xn−1).

Следовательно, получаем видоизмененное, равно-
сильное основному, 3-е представление

Ln(f ;x) =
n∑
k=1

f (xk)
ωn(x)

(x− xk)ω′n(xk)
.

Таким образом, справедливо утверждение.

Теорема 3.2 Для любой функции f ∈ C[a, b] и задан-
ных узлов x1, x2, . . . , xn справедливо следующее пред-
ставление Лагранжа

Ln(f ;x) =
n∑
k=1

f (xk)lk(x) =
n∑
k=1

f (xk)
ωn(x)

(x− xk)ω′n(xk)
.
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Заметим, что при доказательстве этой теоремы и при
доказательстве теорем существования и единственно-
сти интерполяционного полинома непрерывность функ-
ции f никак не используется. Однако непрерывность
или гладкость функции f необходимы, как только мы
начинаем оценивать погрешность интерполяции.

3.2 О погрешности интерполяции

Будем рассматривать снова узлы x1, x2, . . . , xn ∈ [a, b].
Нас будет интересовать остаточный член интерпо-

ляции
rn(x) = f (x)− Ln(f ;x),

называемый также погрешностью интерполяции.

Теорема 3.3 Пусть f ∈ C(n−1)[a, b] и во всех точках
интервала (a, b) существует производная f (n)(x). То-
гда для любого x ∈ [a, b] существует точка ξ ∈ (a, b)

такая, что

rn(x) =
f (n)(ξ)

n!
ωn(x),

где ωn(x) =
∏n
k=1(x− xk).

Доказательство. Ясно, что x = xj — тривиаль-
ный случай. Так как в этом случае rn(xj) = 0 = ωn(xj),
т. е. доказываемое равенство выполняется автоматиче-
ски.
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Фиксируем x 6= xj, j = 1, . . . , n, x ∈ [a, b], и
рассмотрим вспомогательную функцию

ϕ(t) = f (t)− Ln(f ; t)− Cωn(t) a ≤ t ≤ b.

Постоянную C выбираем из условия ϕ(x) = 0, пользу-
ясь тем, что ωn(x) 6= 0, т. е. полагаем

C =
f (x)− Ln(f ;x)

ωn(x)
=
rn(x)

ωn(x)
.

Заметим теперь, что уравнение ϕ(t) = 0 имеет на от-
резке [a, b] не менее (n + 1) корня, так как{

f (xj)− Ln(f ;xj)− Cωn(xj) = 0, j = 1, 2, . . . , n

ϕ(x) = 0

}
.

По теореме Ролля между двумя нулями ϕ имеется ко-
рень уравнения ϕ′(t) = 0, следовательно, ϕ′(t) = 0 име-
ет не менее n корней. Если n > 1, продолжим этот
процесс. Получаем: ϕ′′(t) = 0 имеет ≥ (n − 1) корень.
Если (n−1) > 1, то продолжаем процесс. По индукции
находим, что уравнение ϕ(n)(t) = 0 имеет хотя бы один
корень ξ ∈ (a, b). Но тогда

ϕ(n)(ξ) = f (n)(ξ)− Cn! = 0,
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так как L(n)
n (f ;x) ≡ 0 и ω(n)

n (x) ≡ n!. Поэтому

rn(x)

ωn(x)
= C =

f (n)(ξ)

n!
,

что и требовалось показать.

Следствие 3.3.1 Если |f (n)(x)| ≤Mn = const для всех
x ∈ [a, b], то

|rn(x)| = |f (x)− Ln(f ;x)| ≤ Mn

n!
(b− a)n

для любого x ∈ [a, b].

Доказательство. Действительно, имеем

|rn(x)| ≤ Mn

n!
|ωn(x)|,

кроме того,

|ωn(x)| =
∣∣∣∣∣
n∏
k=1

(x− xk)
∣∣∣∣∣ ≤ (b− a)n.

Следствие 3.3.2 Пусть функция f имеет производ-
ные любого порядка. Обозначим

max
x∈[a,b]

|f (n)(x)| = Mn <∞.

Если
n
√
Mn

n
→ 0 при n→∞,
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то rn(x)→ 0 равномерно на [a, b] при n→∞.

Доказательство. Методом математической индук-
ции с использованием определения числа e легко полу-
чаем неравенство

n! >

(
n

e

)n
.

Поэтому для любого x ∈ [a, b]

|rn(x)| ≤ Mn

n!
(b− a)n ≤

(
n
√
Mn

n
e(b− a)

)n
→ 0

при n→∞. Здесь мы учли, что из условия

εn =
n
√
Mn

n
→ 0

следует сходимость εn e (b − a) → 0 при n → ∞, а
значит и {εn e (b− a)}n → 0. Таким образом,

max
x∈[a,b]

|rn(x)| := ‖rn‖C[a,b] ≤ {εn e (b− a)}n → 0

при n→∞.

Пример. Пусть f0(x) = e−x, x ∈ [0, 1]. Рассмот-
рим вопрос о числе узлов n, гарантирующих следующее
неравенство для погрешности: |rn(x)| < ε = 0, 01 для
всех x ∈ [0, 1].
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Простые выкладки

Mn = max
x∈[0,1]

∣∣∣∣dn(e−x)

dxn

∣∣∣∣ = max
x∈[0,1]

e−x = 1

и применение предыдущей теоремы

|rn(x)| ≤ Mn

n!
(1− 0)n =

1

n!

показывают, что неравенство

|rn(x)| < 0, 01

будет выполняться наверняка при n ≥ 5.

3.3 Полиномы Чебышева

Рассмотрим функции, определяемые формулами:

T0(t) = 1, T1(t) = t, Tn(t) = cos(n arccos t), n ≥ 2.

Как показывают результаты П.Л. Чебышева, эти
функции оказываются полиномами, наименее отклоня-
ющимися от нуля. Они называются полиномами Чебы-
шева первого рода, и для них справедлива следующая
рекуррентная формула:

Tn+1(t) = 2tTn(t)− Tn−1(t).

Лемма 3.1 Пусть n ∈ N. Функция Tn : [−1, 1] → R
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является полиномом степени n со старшим коэффи-
циентом 2n−1 и с нулями

t0k = cos

(
2k − 1

2n
π

)
, k = 1, 2, . . . , n,

т. е.

Tn(t) = 2n−1
n∏
k=1

(
t− cos

2k − 1

2n
π

)
,

причем максимум и минимум Tn(t) достигаются в
точках t∗k = cos kπn , Tn(t∗k) = (−1)k (k = 0, . . . , n).

Доказательство. Обозначим arccos t = α. Имеем

T1(t) = cos(arccos t) = t,

и
T2(t) = cos 2α = 2 cos2 α− 1 = 2t2 − 1.

Получим теперь рекуррентную формулу.
Пусть T1, T2, . . . , Tn известны, найдем

Tn+1(t) = cos[(n + 1)α] = cosnα cosα− sinnα sinα =

= Tn(t) · t− cos(n− 1)α− cos(n + 1)α

2
=

= tTn(t)− 1

2
Tn−1(t) +

1

2
Tn+1(t).

Таким образом,

Tn+1(t) = 2tTn(t)− Tn−1(t).
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Зная T1 = t, T2 = 2t2−1, мы можем найти T3, затем T4,
T5 и т.д. Рекуррентная формула показывает, что Tn(t)

— полином степени n со старшим членом 2n−1tn.
Найдем корни уравнения Tn(t) = 0, т. е. уравнения

cos(n arccos t) = 0. Имеем

n arccos t =
2k − 1

2
π, t0k = cos

(
2k − 1

2n
π

)
,

где k = 1, . . . , n. Зная старший член и все корни поли-
нома, получаем, что

Tn(t) = 2n−1
n∏
k=1

(
t− cos

2k − 1

2n
π

)
.

Очевидно, максимальное и минимальное значения

Tn(t) = cos(n arccos t)

равны±1. Точки экстремума легко определяются из со-
отношений n arccos t∗k = πk, Tn(t∗k) = cos(πk) = (−1)k,

где k = 0, 1, . . . , n, т. е. экстремумы достигаются в точ-
ках t∗k (k = 0, . . . , n). Лемма доказана полностью.

Теорема 3.4 (Теорема Чебышева) Для любого нату-
рального числа n имеет место формула

inf
t1,t2,...,tn∈[−1,1]

∥∥∥∥∥
n∏
k=1

(t− tk)
∥∥∥∥∥
C[−1,1]

=
1

2n−1
,
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причем инфимум достигается на узлах Чебышева

t0k = cos

(
2k − 1

2n
π

)
k = 1, . . . , n.

Доказательство. Полином

Tn(t)

2n−1
=

n∏
k=1

(
t− cos

2k − 1

2n
π

)
удовлетворяет условиям теоремы и норма

‖Tn(t)‖C[−1,1]

2n−1
=

1

2n−1
.

Нужно доказать, что это искомый инфимум.

Предположим обратное: существует полином

Qn(t) =
n∏
k=1

(t− tk) = tn + bn−1t
n−1 + . . . + b0

такой, что
‖Qn(t)‖C[−1,1] <

1

2n−1
.

Рассмотрим разность

q(t) =
Tn(t)

2n−1
−Qn(t) =

n∏
k=1

(t− t0k)−
n∏
k=1

(t− tk) =

= an−1t
n−1 + . . . + a0 − (bn−1t

n−1 + . . . + b0).

Видно, что q(t) — полином степени ≤ (n − 1). С дру-
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гой стороны, в точках экстремума полинома Чебышева
получаем

q(t∗k) =
(−1)k

2n−1
−Q(t∗k), |Qn(t∗k)| <

1

2n−1
.

Следовательно,

q(t∗0) =
1

2n−1
−Q(t∗0) > 0,

q(t∗1) =
−1

2n−1
−Q(t∗1) < 0,

q(t∗2) > 0, . . . .

Продолжая процесс, получаем, что полином q(t) меня-
ет знак не менее, чем n раз.

Отсюда следует, что q(t) имеет не менее n корней,
и эти корни τ1, τ2, . . . , τn лежат между точками t∗k из
интервала (−1, 1). Поскольку степень q(t) не выше, чем
(n − 1), то q(t) ≡ 0. Пришли к противоречию. Этим и
завершается доказательство.

Общая задача оптимального выбора узлов
Дано некоторое семейство

F ⊂ C[a, b].

Нужно найти величину

Vn(F ) = inf
x1,x2,...,xn∈[a,b]

sup
f∈F

max
a≤x≤b

|rn(x)|.

136



Иными словами, необходимо подобрать узлы x1, . . . , xn
на отрезке [a, b] так, чтобы полученная сетка узлов бы-
ла бы оптимальной для выбранного семейства F .

Рассмотрим эту задачу для следующего семейства
функций

W nM = {f ∈ C[a, b] : ∃f (m)(x) (x ∈ [a, b],

m = 1, . . . , n), |f (n)(x)| ≤M},

где M — некоторая положительная постоянная.
Оказывается, что можно найти Vn(W nM) с приме-

нением теоремы Чебышева.

Теорема 3.5 Имеет место формула

Vn(W nM) =
M

n!

(b− a)n

22n−1
,

причем оптимальными являются узлы Чебышева

xk =
a + b

2
+
b− a

2
cos

(
2k − 1

2n
π

)
, k = 1, 2, . . . , n.

Доказательство. Напомним: условие |f (n)(x)| ≤ M

влечет оценку

|rn(x)| ≤ M

n!
|ωn(x)|

для любого x ∈ [a, b], где ωn(x) = (x− x1) . . . (x− xn).
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Рассмотрим сначала специальный частный случай

f0(x) :=
M

n!
ωn(x).

Поскольку

f
(n)
0 (x) ≡ M

n!
n! = M,

то получаем, что f0 ∈ W nM . Очевидно, интерполяци-
онный полином Лагранжа по узлам x1, x2, . . . , xn для
функции f0(x) тождественно равен нулю. Поэтому

|r0n(x)| := |f0(x)− Ln(f0;x)| ≡ |f0(x)| = M

n!
· |ωn(x)|

для любого x ∈ [a, b].

Таким образом,

|rn(x)| ≤ M

n!
|ωn(x)| = |r0n(x)|.

Отсюда следует

sup
f∈W nM

max
x∈[a,b]

|rn(x)| = M

n!
max
x∈[a,b]

|ωn(x)|,

и нам необходимо минимизировать эту величину за счет
выбора узлов x1, x2, . . . , xn ∈ [a, b].

Сделаем замену переменной

x =
a + b

2
+
b− a

2
t, t ∈ [−1, 1], x ∈ [a, b].
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Тогда
x− xk =

b− a
2

(t− tk),

где
xk =

a + b

2
+
b− a

2
tk,

ωn(x) =
(b− a)n

2n

n∏
k=1

(t− tk).

Следовательно, искомая величина определяется фор-
мулой

Vn(W nM) =
M

n!

(b− a)n

2n
inf

t1,t2,...,tn∈[−1,1]

n∏
k=1

|t− tk|.

По теореме Чебышева для любого n искомый инфимум
равен 1

2n−1 и достигается для узлов

tk = cos
2k − 1

2n
π.

Поэтому

Vn(WnM) =
M

n!

(b− a)n

22n−1
.

Обратная замена переменных tk → xk дает

xk =
a + b

2
+
b− a

2
cos

2k − 1

2n
π, k = 1, . . . , n.

Этим и завершается доказательство теоремы.
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3.4 Лебеговы оценки погрешности

Оценки Лебега для остаточного члена зависят от двух
констант: от наилучшего равномерного приближения
En(f ) и константы Лебега Λn.

ВеличинаEn(f ), называемая наилучшим равномер-
ным приближением f ∈ C[a, b] алгебраическими по-
линомами степени ≤ n − 1, определяется следующим
образом

En(f ) = inf
a0,...,an−1∈R

∥∥∥∥∥f (x)−
n−1∑
k=0

akx
k

∥∥∥∥∥
C[a,b]

.

Для любой функции f ∈ C[a, b] введенная величи-
на En(f ) → 0 при n → ∞. Этот факт является про-
стым следствием одной теоремы Вейерштрасса, кото-
рую мы рассмотрим в следующем пункте.

3.4.1 Теорема Вейерштрасса

Теорема 3.6 Всякая непрерывная функция на конеч-
ном отрезке допускает равномерную аппроксимацию
с любой наперед заданной точностью алгебраически-
ми полиномами, т.е. для любой функции f ∈ C[a, b]

и для любого ε > 0 существует такой алгебраический
полином pn(x), что для всех x ∈ [a, b]

|f (x)− pn(x)| < ε.
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Доказательство. Кроме доказательства Вейерштрас-
са, имеется несколько новых доказательств этой тео-
ремы. Приведем доказательство Лебега, рассуждения
которого легко запоминаются.

Лебег выводит утверждение теоремы Вейерштрас-
са из трех простых фактов.

Шаг 1. Согласно теореме Кантора, непрерывная на
отрезке функция является равномерно непрерывной,
поэтому она может быть равномерно аппроксимирова-
на ломаными, т. е. непрерывными кусочно-линейными
функциями.

Шаг 2. Всякая ломаная из m звеньев представима
в виде

y = a0 +
m∑
j=1

aj|x− xj−1|,

где x0 = a < x1 < . . . < xm−1 < xm = b — абсцис-
сы вершин ломаной. Это утверждение устанавливает-
ся элементарными рассуждениями, так как указанное
представление задает непрерывную кусочно-линейную
функцию при любом выборе a0, a1, . . . , am, а эти коэф-
фициенты для заданной ломаной однозначно определя-
ются.

Действительно, если y = kjx + bj — уравнение ло-
маной на j-том отрезке [xj−1, xj], то коэффициенты

a1, a2, . . . , am
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явно определяются из системы линейных уравнений

a1 −
m∑
j=2

aj = k1,

s∑
j=1

aj −
m∑

j=s+1

aj = ks, s = 2, . . . ,m− 1,

m∑
j=1

aj = km.

Затем можно определить коэффициент a0 равенством

a0 = y(a)−
m∑
j=1

aj|a− xj−1|.

В силу первых двух шагов достаточно показать,
что функция |x−xj| равномерно аппроксимируется ал-
гебраическими полиномами на отрезке

[xj − (b− a), xj + (b− a)].

Заменой переменных x− xj = (b− a)t вопрос сводится
к следующему шагу.

Шаг 3. Функция |t| равномерно аппроксимируется
алгебраическими полиномами на отрезке [−1, 1]. Дей-
ствительно, имеем

|t| =
√

1− (1− t2) = (1− α)1/2, α = 1− t2 ∈ [0, 1].
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Ряд Тейлора

(1− α)1/2 = 1− 1

2
α−

∞∑
j=2

(2j − 3)!!

(2j)!!
αj

сходится равномерно на [−1, 1] по признаку Вейерштрас-
са, так как для всех α ∈ [−1, 1]

(2j − 3)!!

(2j)!!
|α|j ≤ (2j − 3)!!

(2j)!!
≤ 1

j
√
j
.

Последнее неравенство легко доказывается мето-
дом математической индукции, а ряд

∞∑
j=1

1

j
√
j
,

как известно, является сходящимся. Из равномерной
сходимости ряда Тейлора для функции (1 − α)1/2 сле-
дует, что разность

|t| −

1− 1

2
(1− t2)−

N∑
j=2

(2j − 3)!!

(2j)!!
(1− t2)j


равномерно стремится к 0 приN →∞. Таким образом,
функция |t| равномерно аппроксимируется на отрезке
[−1, 1] алгебраическими полиномами четной степени.

Этим и завершается доказательство.
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3.4.2 Оценки погрешности, поведение
остаточного члена при n→∞

Получим сначала формулу для погрешности rn без пред-
положения дифференцируемости функции f .

Теорема 3.7 Для любой f ∈ C[a, b] и n узлов интер-
поляции x1, . . . , xn (n ≥ 2)

rn(x) = f (x)− Ln(f ;x) =
n∑
k=1

[f (x)− f (xk)] lk(x),

где Ln(f ;x) — интерполяционный полином Лагранжа,
а

lk(x) =
ωn(x)

(x− xk)ω′n(xk)

— фундаментальный полином Лагранжа, k = 1, . . . , n.

Доказательство. Рассмотрим некоторый полином

Q(x) =
n∑
k=1

bkx
k−1

степени ≤ n− 1. Поскольку он совпадает со своим ин-
терполяционным полиномом Лагранжа Ln(Q;x), полу-
ченным интерполяцией по n точкам, будем иметь

Q(x) ≡ Ln(Q;x) =
n∑
k=1

Q(xk)lk(x).
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Применяя эту формулу к частному случаю Q(x) ≡ 1,
получаем следующее тождество для фундаментальных
полиномов Лагранжа:

1 =
n∑
k=1

lk(x).

Умножаем обе части тождества на f (x) и заносим этот
множитель под знак суммы. Будем иметь

f (x) =
n∑
k=1

f (x)lk(x).

С другой стороны,

Ln(f ;x) =
n∑
k=1

f (xk)lk(x).

Вычитая второе равенство из первого, получаем иско-
мую формулу. Таким образом, теорема доказана.

Определение 3.1 Функция

Λn(x) =
n∑
k=1

|lk(x)|

называется функцией Лебега для узлов

x1, x2, . . . , xn ∈ [a, b],

а число Λn = maxx∈[a,b] Λn(x) — константой Лебега.
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Имеем простые неравенства

1 ≤ Λn(x) ≤ Λn, ∀x ∈ [a, b].

Легко видеть, что первое неравенство является про-
стым следствием тождества

∑
lk(x) = 1, а второе нера-

венство — следствие определения Λn.

Теорема 3.8 Пусть f ∈ C[a, b]. Тогда справедливы сле-
дующие оценки Лебега:

|rn(x)| ≤ En(f )[1 + Λn(x)] ≤ 2Λn(x)En(f )

и
‖rn(x)‖C[a,b] ≤ 2Λn · En(f ).

Следовательно,
а) если x ∈ [a, b], Λn(x)En(f )→ 0 при n→∞, то

rn(x) = f (x)− Ln(f ;x)→ 0 при n→∞.

б) если ΛnEn(f ) → 0 при n → ∞, то равномерно
на отрезке [a, b]

rn(x)→ 0 при n→∞.

Доказательство. Запишем равенство

rn(x) = f (x)−Ln(f ;x) = f (x)−Q(x)+Q(x)−Ln(f ;x),
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где Q(x) =
∑n

k=1 akx
k−1 — произвольный полином сте-

пени ≤ n− 1. Следовательно,

Ln(Q;x) ≡ Q(x).

Поэтому

|rn(x)| ≤ |f (x)−Q(x)| +
∣∣∣∣∣
n∑
k=1

[f (xk)−Q(xk)]lk(x)

∣∣∣∣∣ ≤
≤ ‖f (x)−Q(x)‖C[a,b] + ‖f (x)−Q(x)‖C[a,b]

n∑
k=1

|lk(x)| =

= ‖f (x)−Q(x)‖C[a,b] (1 + Λn(x)).

В силу произвольности Q(x) отсюда следует

а)
|rn(x)| ≤ En(f )[1 + Λn(x)] ≤

≤ 2Λn(x)En(f )→ 0 при n→∞,

и, аналогично,

б)

‖rn(x)‖C[a,b] ≤ 2Λn · En(f )→ 0 при n→∞.

Таким образом, теорема Лебега доказана.

Замечания. Понятно, что сходимость или расхо-
димость интерполяционного процесса зависит как от
выбора последовательности точек интерполяции, т. е.
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последовательности сеток

Ωn = {xn1, xn2, . . . , xnn},

так и от гладкости интерполируемой функции.

Существуют примеры очень простых по виду функ-
ций, для которых интерполяционный процесс по сеткам
с равноотстоящими узлами расходится.

Пример 1 (пример С.Н. Бернштейна): последова-
тельность интерполяционных полиномов Ln(f ;x), по-
строенных по равноотстоящим узлам xnk = −1 + 2k/n,
k = 0, 1, . . . , n, для функции f (x) = |x| на отрезке
[−1, 1], не сходится к функции |x| при n → ∞ ни в
одной точке этого отрезка, кроме трех точек −1, 0, 1.

Пример 2 (пример Рунге (Runge C.)): последова-
тельность интерполяционных полиномов Ln(f ;x), по-
строенных по равноотстоящим узлам xnk = −1 + 2k/n,
k = 0, 1, . . . , n, для гладкой функции

f (x) =
1

25x2 + 1
, −1 ≤ x ≤ 1,

не сходится равномерно к f (x) на отрезке [−1, 1].

Как показывают эти примеры, наиболее простые
и естественные сетки с равноотстоящими узлами ока-
зываются неэффективными, т. е. приводят к расходя-
щемуся интерполяционному процессу даже для некото-
рых гладких функций. Но не следует думать, что сетки
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с равноотстоящими узлами занимают исключительное
положение при приближении непрерывных функций.
Пример Бернштейна является лишь усилением частно-
го случая следующей теоремы существования.

Теорема Фабера: для любой последовательности
сеток

Ωn = {xn1, xn2, . . . , xnn} ⊂ [a, b]

существует непрерывная на этом отрезке функция
f такая, что последовательность интерполяционных
полиномов Лагранжа Ln(f ;x) не сходится равномерно
к этой функции на отрезке [a, b] при n→∞.

Известно также, что для каждой непрерывной функ-
ции существует своя оптимальная последовательность
сеток. А именно, имеет место следующий положитель-
ный результат.

Теорема Марцинкевича: для любой функции f ,
непрерывной на отрезке [a, b], существует такая по-
следовательность сеток Ωn = Ωn(f ) ⊂ [a, b], для ко-
торой соответствующий интерполяционный процесс
сходится равномерно на отрезке [a, b] при n→∞.

Для гладких функций аналог теоремыФабера неве-
рен, и нет необходимости пользоваться теоремой Мар-
цинкевича, так как существуют универсальные для все-
го класса гладких функций оптимальные последова-
тельности сеток. К оптимальным относится, например,
последовательность сеток с узлами Чебышева. Имеет
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место следующая теорема В.И. Крылова, доказан-
ная им в 1956 г. (см. [10]).

Теорема 3.9 Для любой абсолютно непрерывной функ-
ции f : [a, b] → R её полиномы Лагража Ln(f ;x), по-
строенные на последовательности сеток с узлами Че-
бышева

xnk =
a + b

2
+
b− a

2
cos

(
2k − 1

2n
π

)
, k = 1, 2, . . . , n,

равномерно сходятся к f (x) на [a, b] при n→∞.

3.4.3 Константы Лебега

Для фиксированной сетки

Ωn = {xn1, xn2, . . . , xnn} ⊂ [a, b]

процесс интерполирования можно рассматривать как
применение линейного оператора Pn, действующего из
банахова пространства C[a, b] в себя и определенного
равенством (Pnf )(x) = Ln(f ;x). Очевидно, Pn является
линейным оператором, так как

Ln(f+g;x) = Ln(f ;x)+Ln(g;x), Ln(cf ;x) = cLn(f ;x) ,

(c = const), и, кроме того, Pn является оператором про-
ектирования, т. е.

P 2
nf := Pn(Pnf ) = Pnf.
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Теорема 3.10 Норма линейного оператора Pn, опреде-
ляемого равенством

(Pnf )(x) = Ln(f ;x), x ∈ [a, b],

равна константе Лебега, т. е.

||Pn|| = Λn := max
x∈[a,b]

Λn(x) := max
x∈[a,b]

n∑
k=1

|lk(x)|.

Доказательство. Из представления Лагранжа

(Pnf )(x) = Ln(f ;x) =
n∑
k=1

f (xk)lk(x)

вытекает, что

|(Pnf )(x)| ≤ max
xnk∈[a;b]

|f (xk)|
n∑
k=1

|lk(x)| ≤

≤ Λn(x)||f ||C[a,b].

Следовательно,

||Pn|| ≤ max
x∈[a,b]

Λn(x) = Λn.

С другой стороны, возьмем одну из точек x0, где
достигается максимум функции Лебега Λn(x). Очевид-
но, существует непрерывная на отрезке [a, b] функция
f0 такая, что

f0(xk) = sign lk(x0)
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для всех k = 1, 2, . . . , n и ||f0||C[a,b] = 1. Тогда

(Pnf0)(x0) = Ln(f0;x0) =
n∑
k=1

|lk(x0)| =

= Λn(x0) = Λn||f0||C[a,b],

что влечет неравенство

||Pn|| ≥ Λn,

завершающее доказательство теоремы.

Заменой переменных t = cx + d (c 6= 0) легко убе-
диться в том, что константа Лебега не зависит от длины
отрезка интерполирования, а зависит только от отно-
сительного расположения узлов. А именно, константа
Λn, вычисленная для отрезка [a, b] и сетки узлов

Ωn = {xn1, xn2, . . . , xnn} ⊂ [a, b],

совпадает с константой Λn, определенной для отрезка
[ca + d, cb + d] и сетки

Ω′n = {cxn1 + d, cxn2 + d, . . . , cxnn + d} ⊂ [ca+ d, cb+ d].

Понятно, что зависимость константы Лебега от числа
и взаимного расположения узлов имеет большое значе-
ние, так как через эту константу оценивается погреш-
ность интерполяции.
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Для больших значений числа узлов n определе-
ние точных значений константы Λn представляет со-
бой трудную задачу. Поэтому в следующей теореме мы
ограничимся двусторонними оценками Λn.

Теорема 3.11 Для равноотстоящих узлов при интер-
поляции алгебраическими полиномами константа Ле-
бега удовлетворяет неравенствам

2n−3

n2
< Λn < 2n−1.

Доказательство. Без ограничения общности рассмот-
рим отрезок [a, b] = [1, n], т. е. a = 1, b = n, с узлами
x1 = 1, x2 = 2, . . . , xn = n. Тогда

Λn = max
1≤x≤n

n∑
k=1

∏
j 6=k

∣∣∣∣x− jk − j

∣∣∣∣ =

= max
1≤x≤n

n∑
k=1

1

(n− k)!(k − 1)!

∏
j 6=k
|x− j|.

Для любого x ∈ [1, n] имеем оценку∏
j 6=k
|x− j| < (n− 1)!,

153



поэтому верхняя оценка легко следует из тождества
для биномиальных коэффициентов:

Λn <
n∑
k=1

(n− 1)!

(n− k)!(k − 1)!
= 2n−1.

Нижняя оценка для константы Лебега получается сле-
дующим образом. Имеем простые неравенства

Λn ≥ Λn(3/2) =
n∑
k=1

1

(n− k)!(k − 1)!

∏
j 6=k
|3/2− j|

и∏
j 6=k
|3/2− j| =

∏n
j=1 |3/2− j|
|k − 3/2|

≥ (n− 2)!

4n
>

(n− 1)!

4n2
.

Применение тождества для биномиальных коэффици-
ентов завершает доказательство.

Для узлов Чебышева

tnk = cos
π(2k + 1)

2n
, k = 0, 1, . . . , n− 1,

можем записать

Λn = max
−1≤t≤1

n−1∑
k=0

|Tn(t)|
|t− tnk||T ′n(tnk)|

=

= max
−1≤t≤1

n−1∑
k=0

| cos(n arccos t)|
√

1− t2nk
n |t− tnk|

.
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Ясно, что в этом случае получение оценок точных зна-
чений константы Λn представляет собой более трудную
задачу по сравнению со случаем равноотстоящих уз-
лов. Тем не менее, эти трудности были преодолены, и
имеет место следующая теорема С.Н. Бернштейна.

Теорема 3.12 Для узлов Чебышева константа Лебега
имеет логарифмический рост, в частности, можно
записать

Λn = O(lnn), n→∞.

В середине 20-го столетия усилиями ряда математи-
ков было доказано, что логарифмический рост для кон-
станты Лебега является минимальным из всех возмож-
ных: доказано существование постоянной c > 0 та-
кой, что Λn ≥ c lnn для любой сетки из n узлов.

Таким образом, узлы Чебышева относятся к семей-
ству оптимальных узлов, для которых константа Лебе-
га имеет логарифмический рост. Этот факт имеет не
только теоретическое, но и практическое значение, так
как узлы Чебышева для отрезка [a, b] определены явно
простыми формулами:

xnk =
a + b

2
+
b− a

2
cos

(
2k − 1

2n
π

)
, k = 1, 2, . . . , n.
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3.5 Формулы Ньютона
для интерполяционного полинома

Для f ∈ C[a, b] и точек x1, x2, . . . , xn ∈ [a, b] интерпо-
ляционный полином Ln(f ;x) по этим n узлам записы-
вается по формуле

Ln(f ;x) =
n∑
k=1

f (xk)lk(x),

где

lk(x) =
ωn(x)

(x− xk)ω′n(xk)
,

ωn(x) = (x− x1)(x− x2) . . . (x− xn). Если добавить но-
вый узел xn+1 и строить интерполяционный полином
по узлам x1, x1, . . . , xn, xn+1 ∈ [a, b], то получаем сле-
дующее представление Лагранжа

Ln+1(f ;x) =
n+1∑
k=1

f (xk)
ωn+1(x)

(x− xk)ω′n+1(xk)
,

где

ωn+1(x) = (x− x1)(x− x2) . . . (x− xn+1).

Ясно, что при добавлении нового узла приходится пе-
ресчитывать все слагаемые в представлении Лагранжа.
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3.5.1 Полиномы Ньютона

Формула для интерполяционного полинома, которая не
требует пересчета всех слагаемых при добавлении но-
вого узла, была известна еще Ньютону. Такая формула
называется формулой Ньютона для интерполяционно-
го полинома или интерполяционным полиномом Нью-
тона. Она получается следующим образом.

Для f ∈ C[a, b] и узлов x1, x2, . . . , xn ∈ [a, b] интер-
поляционный полином Ньютона имеет вид

Ln(f ;x) = A0 + A1(x− x1) + A2(x− x1)(x− x2)+

+ . . . + An−1(x− x1) . . . (x− xn−1),

т. е.

Ln(f ;x) =
n∑
j=1

Aj−1ωj−1(x),

где ω0(x) = 1 , ωk(x) = (x− x1) . . . (x− xk) при k ≥ 1.
Для определения неизвестных коэффициентов A0,

A1, A2, . . . , An−1 имеем n уравнений

Ln(f ;x1) = f (x1), . . . , Ln(f ;xn) = f (xn).

Легко показать, что Ak (k = 0, 1, . . . , n−1) однозначно
определяется этими уравнениями, зависит лишь от зна-
чений функции в точках x1, x2, . . . , xk, следовательно,
не меняется при добавлении нового узла xn+1.

Для первых двух коэффициентов вычисления весь-
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ма просты: из первых двух уравнений имеем

f (x1) = A0, f (x2) = A0 + A1(x2 − x1),

отсюда

f (x2)− f (x1) = A1(x2−x1) ⇒ A1 =
f (x2)− f (x1)

x2 − x1
.

Из третьего уравнения

f (x3) = A0 + A1(x3 − x1) + A2(x3 − x1)(x3 − x2)

простыми выкладками определяется A2:

f (x3)− f (x1)− f (x2)− f (x1)

x2 − x1
(x3 − x1) =

= A2(x3 − x1)(x3 − x2),

f (x3)−f (x1)− f (x2)− f (x1)

x2 − x1
(x3−x2)−f (x2) +f (x1) =

= A2(x3 − x1)(x3 − x2),

A2(x3 − x1) =
f (x3)− f (x2)

x3 − x2
− f (x2)− f (x1)

x2 − x1
.

По индукции легко получаем, что Ak однозначно опре-
деляется и зависит лишь от значений функции в точках
x1, x2, . . . , xk.
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3.5.2 Применение разделенных разностей

Выражения

f (x2)− f (x1)

x2 − x1
,
f (x3)− f (x2)

x3 − x2

называются разделенными разностями 1-го порядка и
обозначаются через f (x1;x2) и f (x2;x3), соответствен-
но. Разделенные разности высоких порядков определя-
ются индуктивно. А именно, разделенная разность 2-го
порядка f (x1;x2;x3) задается формулой

f (x1;x2;x3) =
f (x2;x3)− f (x1;x2)

x3 − x1
,

а разделенная разность f (x1;x2; . . . ;xk) порядка k − 1

определяется так:

f (x1;x2; . . . ;xk) =
f (x2;x3; . . . ;xk)− f (x1;x2; . . . ;xk−1)

xk − x1
.

Для полноты картины значения f в узлах, т. е. числа
f (x1), f (x2), . . . , f (xn) называют разделенными разно-
стями порядка 0.

Теорема 3.13 Справедлива следующая формула

f (x1;x2; . . . ;xk) =
k∑
j=1

f (xj)

ω′k(xj)
= (3.1)
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=
k∑
j=1

f (xj)
k∏

i=1,i 6=j

1

xj − xi
,

где

ωk(x) =
k∏
j=1

(x− xj).

Доказательство. Утверждение тривиально при k = 1.
Для случая k = 2

f (x1;x2) =
f (x2)− f (x1)

x2 − x1
=

=
f (x1)

x1 − x2
+

f (x2)

x2 − x1
=

2∑
j=1

f (xj)

ω′2(xj)
.

Применим метод математической индукции. Предполо-
жим, что формула верна до порядка k − 1 и выведем
ее для разделенных разностей порядка k. Можем запи-
сать: f (x1;x2; . . . ;xk+1) =

=
f (x2;x3; . . . ;xk+1)− f (x1;x2; . . . ;xk)

xk+1 − x1
,

тогда по предположению индукции f (x1;x2; . . . ;xk+1) =

=
1

xk+1 − x1

k+1∑
j=2

f (xj)
k+1∏

i=2,i 6=j

1

xj − xi
−
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− 1

xk+1 − x1

k∑
j=1

f (xj)
k∏

i=1,i 6=j

1

xj − xi
.

Значения f (x1) и f (xk+1) входят лишь в одну из сумм
и коэффициенты при них вычисляются просто. Коэф-
фициент при f (x1) равен

− 1

xk+1 − x1

k∏
i=2

1

x1 − xi
=

k+1∏
i=2

1

x1 − xi
=

1

ω′k+1(x1)
,

и коэффициент при f (xk+1) дается формулой

1

xk+1 − x1

k∏
i=2

1

xk+1 − xi
=

k∏
i=1

1

xk+1 − xi
=

1

ω′k+1(xk+1)
.

Коэффициент при f (xm) для случая 2 ≤ m ≤ k

также нетрудно вычисляется и равен

1

xk+1 − x1

 k+1∏
i=2,i 6=m

1

xm − xi
−

k∏
i=1,i 6=m

1

xm − xi

 =

=
1

xk+1 − x1

(
1

xm − xk+1
− 1

xm − x1

) k∏
i=2,i 6=m

1

xm − xi
=

=
1

(xm − xk+1)(xm − x1)

k∏
i=2,i 6=m

1

xm − xi
=
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=
k+1∏

i=1,i 6=m

1

xm − xi
=

1

ω′k+1(xm)
.

Таким образом, коэффициенты при f (xm) имеют тре-
буемую форму для всех допустимых значений m, этим
и завершается доказательство теоремы.

В качестве следствий теоремы получаем следую-
щие свойства разделенных разностей.

Свойство 1. Разделенная разность является ли-
нейным функционалом от f , т. е. для любых постоян-
ных C1 и C2

(C1 f + C2 g)(x1, x2, . . . , xn) =

= C1 f (x1;x2; . . . ;xn) + C2 g(x1;x2; . . . ;xn).

Свойство 2. Разделенная разность является сим-
метричной функцией своих аргументов, т. е. инвари-
антна относительно перестановки аргументов, напри-
мер, f (x1;x2) = f (x2;x1).

Как уже отмечалось выше, в формуле

Ln(f ;x) = A0 + A1(x− x1) + A2(x− x1)(x− x2) + . . .

+An−1(x− x1)(x− x2) . . . (x− xn−1) =
n∑
k=1

Ak−1 ωk−1(x)
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для функции f ∈ C[a, b] и узлов x1, . . . , xn первые три
коэффициента имеют вид

A0 = f (x1), A1 = f (x1;x2), A2 = f (x1;x2;x3).

Покажем, что для любого k, 1 ≤ k ≤ n,

Ak−1 = f (x1;x2; . . . ;xk).

Теорема 3.14 Интерполяционный полином для функ-
ции f ∈ C[a, b] по узлам x1, x2, . . . , xn можно пред-
ставить формулой Ньютона

Ln(f ;x) =
n∑
k=1

f (x1;x2; . . . ;xk) ωk−1(x).

Доказательство. Через Lm(f ;x) обозначим интерпо-
ляционный полином Лагранжа, построенный по узлам
x1, x2, . . . , xm, 1 ≤ m ≤ n. Согласно представлению
Лагранжа, имеем: L1(f ;x) = f (x1),

Lm−1(f ;x) =
m−1∑
j=1

f (xj)
m−1∏

i=1,i 6=j

x− xi
xj − xi

(m ≥ 2).

В силу простого равенства

Ln(f ;x) = f (x1) +
n∑

m=2

[Lm(f ;x)− Lm−1(f ;x)],
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достаточно показать, что разность

p(x) = Lm(f ;x)− Lm−1(f ;x)

равна f (x1;x2; . . . ;xm) ωm−1(x). С одной стороны, эта
разность является полиномом степени не выше m − 1

и обращается в нуль в точках x1, x2, . . . , xm−1. Поэтому
p(x) = Am−1ωm−1(x), где Am−1 — некоторая постоян-
ная.

С другой стороны, p(xm) =

= Lm(f ;xm)− Lm−1(f ;xm) = f (xm)− Lm−1(f ;xm)] =

= f (xm)−
m−1∑
j=1

f (xj)
m−1∏

i=1,i 6=j

xm − xi
xj − xi

=

= f (xm) +
m−1∑
j=1

f (xj)
xm − xj
xj − xm

m−1∏
i=1,i 6=j

xm − xi
xj − xi

=

= A

f (xm)
m−1∏
i=1

1

xm − xi
+

m−1∑
j=1

f (xj)
m∏

i=1,i 6=j

1

xj − xi

 ,
где A =

∏m−1
i=1 (xm−xi). Согласно предыдущей теореме

выражение в квадратных скобках равно разделенной
разности f (x1;x2; . . . ;xm). Таким образом,

Am−1ωm−1(xm) = p(xm) = ωm−1(xm)f (x1;x2; . . . ;xm).
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Следовательно, Am−1 = f (x1;x2; . . . ;xm), что и требо-
валось доказать.

Из доказанной теоремы непосредственно следует,
что при добавлении к узлам x1, x2, . . . , xn нового узла
xn+1 будем иметь

Ln+1(f ;x) = Ln(f ;x) + f (x1;x2; . . . ;xn;xn+1)ωn(x),

т. е. приходится вычислять только одно дополнитель-
ное слагаемое.

Из последней формулы можно получить полезное
тождество. Учитывая равенство Ln+1(f ;xn+1) = f (xn+1)

и пользуясь формальной заменой xn+1 = x, будем иметь

f (x) ≡ Ln(f ;x) + f (x1;x2; . . . ;xn;x)ωn(x).

Приведем еще одно следствие. Речь идет о свой-
ствах разделенных разностей высоких порядков для
полиномов.

Свойство 3. Если Q — полином степени n, то раз-
деленные разности порядка (n + 1) и выше для этого
полинома Q равны 0.

Действительно, пусть m ≥ n + 1, тогда имеем:
Q(x) ≡ Lm(Q;x) и

m∑
k=1

f (x1;x2; . . . ;xk) ωk−1(x) = Q(x).
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Из условия совпадения степеней полиномов в этом
равенстве получаем, что

f (x1;x2; . . . ;xm) = 0

при m ≥ n + 2.

3.5.3 Применение конечных разностей

В этом пункте мы запишем формулу Ньютона для ин-
терполяционного полинома с заменой разделенных раз-
ностей на конечные разности.

Рассмотрим узлы x1, . . . , xn ∈ [a, b]. Для функции
f ∈ C[a, b], обозначим

yk = f (xk), k = 1, 2, . . . , n.

По определению, конечная разность 1-го порядка
равна

∆1yk = yk+1 − yk = ∆yk

(как и при определении дифференциалов функций при-
нято отождествлять ∆1 и ∆).

Конечная разность 2-го порядка ∆2yk = ∆1(∆1yk) =

= ∆(yk+1− yk) = yk+2− yk+1− (yk+1− yk) выражается
формулой

∆2yk = yk+2 − 2yk+1 + yk,
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и конечная разность 3-го порядка − формулой

∆3yk = ∆(∆2yk) = yk+3−2yk+2+yk+1−yk+2+2yk+1−yk =

= yk+3 − 3yk+2 + 3yk+1 − yk.

Индуктивно определяем конечную разность порядкаm.
Получаем

∆myk = ∆(∆m−1yk) =
m∑
j=0

(−1)jCj
myk+m−j,

где Cj
m — биномиальные коэффициенты.

На отрезке [a, b] возьмем равноотстоящие узлы

a ≤ x1, x2 = x1 + h, . . . , xn = x1 + (n− 1)h ≤ b,

с шагом h > 0 и поменяем разделенные разности на
конечные разности в формуле

Ln(f ;x) =
n∑
k=1

f (x1;x2; . . . ;xk)ωk−1(x).

Имеем: f (x1) = y1,

f (x1, x2) =
f (x2)− f (x1)

x2 − x1
=
y2 − y1

h
=

∆1y1

h
,

f (x1;x2;x3) =
f (x2, x3)− f (x1, x2)

x3 − x1
=

∆y2

h −
∆y1

h

2h
=

∆2y1

2h2
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и по индукции

f (x1;x2; . . . ;xk) =
∆k−1y1

(k − 1)!hk−1
.

С учетом естественного соглашения ∆0y1 = y1, получа-
ем формулу

Ln(f ;x) =
n∑
k=1

∆k−1y1 ωk−1(x)

(k − 1)!hk−1
=

n−1∑
k=0

∆ky1

k!hk
ωk(x).

Эта формула приобретает универсальный вид

Ln(f ;x) = y1 +
n−1∑
k=1

∆ky1

k!
t(t− 1) . . . (t− k + 1)

при следующей замене переменных

x = x1 + ht, 0 ≤ t ≤ n− 1.

Выведенная формула называется формулой Ньютона
для интерполирования вперед. Это название имеет есте-
ственное объяснение.

Напомним прежде всего, что при выводе основно-
го представления Лагранжа (или Ньютона) для интер-
поляционного полинома не было требований на взаим-
ное расположение узлов, кроме условия: xk 6= xj при
k 6= j. Далее, если интерполяционные полиномы ис-
пользуются для приближенного определения значений
функции, заданной таблично, то наибольший вклад в
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значение Ln(f ;x) в фиксированной точке x вносят уз-
лы, ближайшие к точке x. Поэтому полученная выше
формула с узлами

xk = x1 + kh, (h > 0, k = 0, 1, . . . , n− 1)

считается полезной для интерполирования в начале таб-
лицы.

Если интерполируется значение функции в конце
таблицы, то применяют другие формулы. Для шага
h > 0 берутся узлы

x1, x1 − h, x1 − 2h, x1 − 3h, . . .

и снова можно пользоваться формулой Ньютона через
разделенные разности.

При интерполировании в середине таблицы в каче-
стве первых узлов выгодно брать узлы, ближайшие к
точке x и удовлетворяющие, например, неравенствам
x < x2k, x > x2k−1.

Подобные идеи являются классическими и плодо-
творно реализованы рядом математиков. Читатель най-
дет замечательные формулы Гаусса, Бесселя, Стирлин-
га и других классиков для интерполяционного полино-
ма в ряде книг, например, в учебнике И.С. Березина и
Н.П. Жидкова (см. [4], том 1, стр.125-142).
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3.6 Кратная интерполяция

При построении интерполяционного полинома Лагран-
жа мы требовали совпадения значений функции со зна-
чениями полинома в узлах. Понятно, что если допол-
нительно требовать совпадения значений и некоторых
производных в узлах, то интерполяционный полином
будет лучше приближать функцию.

Наиболее простым является следующий частный
случай. Рассмотрим узлы x1, x2, . . . , xn ∈ [a, b] и непре-
рывно дифференцируемую функцию f на этом отрезке.

Интерполяционный полином Hn(f ;x) ищется как
полином наименьшей степени, удовлетворяющий сле-
дующим условиям

Hn(f ;x1) = f (x1), . . . , Hn(f ;xn) = f (xn);

H ′n(f ;x1) = f ′(x1), . . . , H ′n(f ;xn) = f ′(xn).

Для определенияHn(f ;x) получаем 2n уравнений. Есте-
ственно искать его как полином степени 2n− 1:

Hn(f ;x) = a0 + a1x + . . . + a2n−1x
2n−1.

Оказывается, что такой полином, называемый интер-
поляционным полиномом Эрмита-Фейера, существует
и находится единственным образом. Мы получим этот
факт из более общего утверждения.
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3.6.1 Полиномы Эрмита

Пусть f — непрерывная, достаточное число раз диф-
ференцируемая функция на отрезке [a, b]. Заданы узлы
интерполяции

x1, x2, . . . , xn ∈ [a, b]

и их кратности (натуральные числа)

a1, a2, . . . , an.

Требуется найти полином наименьшей степени H(x),
называемый интерполяционным полиномом Эрмита, по
следующим условиям:

в каждой узловой точке xj (j = 1, 2, . . . , n) должны
выполняться равенства

H(k)(xj) = f (k)(xj) (3.2)

для всех
k = 0, 1, . . . , aj − 1.

Очевидно, для записи системы уравнений (3.2) доста-
точно, чтобы функция f была бы непрерывно диффе-
ренцируемой (aj− 1)-раз в некоторой окрестности точ-
ки xj, где j = 1, 2, . . . , n.

Число уравнений для определения H(x) равно

m = a1 + a2 + . . . + an,
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поэтому естественно искать полиномH(x) как полином
степени ≤ m− 1.

Теорема 3.15 Интерполяционный полином Эрмита
степени ≤ m − 1 существует и определяется един-
ственным образом, причем его можно представить в
следующей форме

H(x) = P1(x) + (x− x1)a1P2(x)+

+(x− x1)a1(x− x2)a2P3(x) + . . . (3.3)

+(x− x1)a1(x− x2)a2 . . . (x− xn−1)an−1Pn(x),

где Pj(x) — полином степени ≤ aj − 1.

Доказательство. Покажем сначала, что для каждого
полинома Q(x) степени не выше m − 1 справедливо
представление формулой (3.3) с указанными оценками
на степени полиномов Pk. Действительно, имеем

Q(x) = (x−x1)a1(x−x2)a2 . . . (x−xn−1)an−1Pn(x) +q(x),

степень q(x) ≤ a1+a2+ . . .+an−1−1, а степень Pn(x) ≤
m − 1 − (a1 + a2 + . . . + an−1) = an − 1. Далее, можем
записать

q(x) = (x− x1)a1 . . . (x− xn−2)an−2Pn−1(x) + q1(x),

где степень Pn−1 не превосходит an−1− 1. Продолжаем
процесс и в итоге получаем представление (3.3).

172



Поэтому полином Эрмита степени ≤ m− 1 можно
искать в виде (3.3). Остается доказать, что полиномы
P1, P2, . . . , Pn в этом представлении определяются по-
следовательно из условий интерполирования.

Полином P1 однозначно определяется из условий
интерполирования в точке x1. Действительно, так как

H(x)− P1(x) = (x− x1)a1Q1(x),

где Q1(x) — некоторый полином, то

[(x− x1)a1Q1(x)](k) |x=x1
= 0 для k = 0, 1, . . . , a1 − 1.

Поэтому

[H(x)− P1(x)](k) |x=x1
= 0 для k = 0, 1, 2, . . . , a1 − 1,

а значит

P
(k)
1 (x1) = H(k)(x1) = f (k)(x1)

для k = 0, 1, . . . , a1−1. Степень полинома P1(x) не пре-
восходит a1−1, поэтому P (k)

1 (x) = 0 для k ≥ a1. Этими
условиями P1 определяется в полной мере. Например,
можно воспользоваться формулой Тейлора

P1(x) = b0 +
b1

1!
(x− x1) + . . . +

ba1−1

(a1 − 1)!
(x− x1)a1−1.

Зная P1 и условия интерполяции в точке x2, определяем
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P2(x). Из (3.3) следует

H(x)− P1(x)

(x− x1)a1
− P2(x) = (x− x2)a2Q2(x),

где Q2(x) — некоторый полином, поэтому производная
функции

(x− x2)a2Q(x)

до порядка (a2 − 1) в точке x2 обращается в нуль, т. е.[
H(x)− P1(x)

(x− x1)a1
− P2(x)

](k)
∣∣∣∣∣
x=x2

= 0

для k = 0, 1, . . . , a2 − 1. Отсюда следует

P
(k)
2 (x2) =

[
H(x)− P1(x)

(x− x1)a1

](k)
∣∣∣∣∣
x=x2

для k = 0, 1, . . . , a2 − 1. Значения функции P1 и ее
производных в точке x2 известны, а числа

H(x2), H ′(x2), . . . , H(a2−1)(x2)

заданы условиями интерполяции

H(x2) = f (x2), . . . , H(a2−1)(x2) = f (a2−1)(x2).

Кроме того, P2(x) — полином степени ≤ a2−1, поэтому
P

(k)
2 (x) ≡ 0 для k ≥ a2. По формуле Тейлора можем

найти P2.
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Продолжая процесс, по индукции находим все Pk
(k = 1, 2, . . . , n) по той же схеме, причем Pk определя-
ется единственным образом условиями интерполяции в
точке xk. Этим и завершается доказательство теоремы.

Приведем прямое доказательство единственности
H(x) в форме (3.3). Предположим, что существует H̃(x)

— полином степени ≤ m − 1, удовлетворяющий всем
условиям интерполирования по Эрмиту. Рассмотрим раз-
ность

q(x) = H(x)− H̃(x).

Степень q(x) не превосходит m− 1, но уравнение

q(x) = 0

имеет n корней суммарной кратностиm, т. е. q(x) мож-
но представить в виде

q(x) = (x− x1)a1 . . . (x− xn)anq1(x),

где q1(x) — некоторый полином. Если q1 не обращается
тождественно в нуль, то степень полинома q(x) не ниже
a1 +a2 + . . .+an = m, что невозможно. Следовательно,
q1(x) ≡ q(x) ≡ 0. Этим и завершается доказательство
единственности.

Получим теперь формулу для остаточного члена
при интерполяции с кратными узлами для функции
f ∈ Cm[a, b].
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Теорема 3.16 Пусть m = a1 + a2 + . . .+ an. Если f ∈
Cm[a, b], то существует точка ξ ∈ (a, b) такая, что

r(x) = f (x)−H(x) =
f (m)(ξ)

m!
Ω(x),

где Ω(x) = (x− x1)a1(x− x2)a2 . . . (x− xn)an.

Доказательство аналогично доказательству формулы
для остаточного члена интерполяционного полинома
Лагранжа.

Достаточно рассмотреть случай, когда x 6= xj. Пусть

ϕ(t) = f (t)−H(t)− C Ω(t), a ≤ t ≤ b.

Для фиксированной точки x из [a, b], x 6= xj, постоян-
ная C определяется из условия ϕ(x) = 0, т.е.

C =
r(x)

Ω(x)
.

В точках x, x1, x2, . . . , xn функция ϕ(t) обращается в
нуль кратности a1, a2, . . . , an, соответственно. По тео-
реме Ролля ϕ′(t) = 0 в некоторых промежуточных точ-
ках ξ1, ξ2, . . . , ξn ∈ (a, b). Кроме того, если aj ≥ 2,
то ϕ′(xj) = 0, причем xj будет для производной нулем
порядка aj−1. Таким образом, функция ϕ′(t) имеет ну-
ли суммарной кратностиm. Аналогично получаем, что
суммарная кратность нулей второй производной функ-
ции ϕ(t) равна m − 1. Продолжаем процесс. В итоге
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получаем, что ϕ(m)(ξ) = 0 по крайней мере для одной
точки ξ ∈ (a, b). Тогда

0 = ϕ(m)(ξ) = f (m)(ξ)−H(m)(ξ)− CΩ(m)(ξ),

следовательно, Cm! = f (m)(ξ). Поэтому

f (m)(ξ)

m!
= C =

r(x)

Ω(x)
,

этим и завершается доказательство.

Выделим два частных случая полиномов Эрмита.

1) Пусть кратности всех узлов равны единице. То-
гда мы должны получить, что H(x) = Ln(f ;x), и в
этом легко убедиться. Действительно, в силу равенств
a1 = a2 = . . . = an = 1 все полиномы Pk в представ-
лении (3.3) имеют нулевую степень, т. е. являются кон-
стантами. Поэтому формула (3.3) сводится к формуле
Ньютона для интерполяционного полинома Лагранжа
с коэффициентами Pk = Ak−1 = f (x1;x2; . . . ;xk).

2) Пусть n = 1, m = a1 ≥ 2. Тогда в представлении
(3.3) необходимо положить Pk(x) ≡ 0 при k ≥ 2. Из
доказательства теоремы следует, что

P1(x) = f (x1) +
f ′(x1)

1!
(x− x1) +

f ′′(x1)

2!
(x− x1)2 + . . .

+
f (m−1)(x1)

m!
(x− x1)m−1.
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Очевидно, эта формула в сочетании с полученной выше
формулой для остаточного члена при интерполяции с
кратными узлами равносильна формуле Тейлора для
функции f ∈ Cm[a, b] с остаточным членом в форме
Лагранжа.

3.6.2 Полиномы Эрмита-Фейера

Пусть n ≥ 2 и все узлы имеют одинаковую кратность,
равную двум, т. е. a1 = a2 = . . . = an = 2. Тогда
m = 2n. В этом случае мы получаем интерполяци-
онный полином H(x) = Hn(f ;x) Эрмита-Фейера, для
которого можно получить другое явное представление
типа формулы Лагранжа для Ln(f ;x).

Мы будем пользоваться стандартными обозначени-
ями lk(x) для фундаментальных полиномов Лагранжа.
Напомним, что

lk(x) =
ωn(x)

(x− xk)ω′(xk)
,

где
ωn(x) = (x− x1)(x− x2) . . . (x− xn).

Теорема 3.17 Справедлива следующая формула для по-
линома Эрмита-Фейера:

Hn(f ;x) =
n∑
k=1

yk l
2
k(x) [1− ck(x− xk)]+
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+
n∑
k=1

y′k l
2
k(x) (x− xk), (3.4)

где
yk = f (xk), y

′
k = f ′(xk), ck =

ω′′n(xk)

ω′n(xk)
.

Доказательство. Легко проверить, что степень поли-
нома, представленного формулой (3.4), не превосходит
2n−1, так как степени квадратов фундаментальных по-
линомов Лагранжа равны 2n− 2. С учетом единствен-
ности полинома кратной интерполяции нам достаточно
проверить выполнение условий

f (x1) = Hn(f ;x1), . . . , f (xn) = Hn(f ;xn);

f ′(x1) = H ′n(f ;x1), . . . , f ′(xn) = H ′n(f ;xn).

Поскольку

lk(xj) = δkj =

{
1, если k = j,

0, если k 6= j,

для каждого j = 1, 2, . . . , n, будем иметь

Hn(f ;xj) = yj 12[1− cj · 0] + y′j · 12 · 0 = yj,

так как в суммах остаются лишь слагаемые с индексами
k = j.

Теперь проверим равенства для производных, т. е.
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H ′n(xj) = y′j. Имеем: H ′n(f ;x) =
∑n

k=1 l
2
k(x)(y′k − ykck)+

+
n∑
k=1

2lk(x)l′k(x){yk + (y′k − ykck) (x− xk)},

отсюда следует

H ′n(f ;xj) = y′j − yj cj + 2l′j(xj) yj.

Пользуясь определением производной и правилом Ло-
питаля, найдем величины 2l′j(xj):

2l′j(xj) = 2 lim
x→xj

l′j(x) = 2 lim
x→xj

ω′n(x)(x− xj)− ωn(x)

(x− xj)2ω′n(xj)
=

= 2 lim
x→xj

ω′′n(x)(x− xj) + ω′n(x)− ω′n(x)

2(x− xj)ω′n(xj)
=

=
ω′′n(xj)

ω′n(xj)
= cj.

Следовательно,

H ′n(f ;xj) = y′j + [2l′j(xj)− cj] yj = y′j,

что и требовалось доказать.
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3.7 Тригонометрическая интерполяция

Рассмотрим 2π-периодическую функцию f ∈ C(R) с
вещественными значениями, сетку с 2n + 1 узлами

x0, x1, . . . , x2n ∈ [0, 2π],

удовлетворяющими условиям

0 < |xi − xj| < 2π, i 6= j.

Выражение

a0

2
+

n∑
k=1

ak cos kx + bk sin kx

будем называть тригонометрическим полиномом степе-
ни n, если a2

n + b2
n 6= 0.

Естественной является следующая задача: постро-
ить тригонометрический полином Tn(f ;x) степени не
выше n, удовлетворяющий условиям

Tn(f ;x0) = f (x0), . . . , Tn(f ;x2n) = f (x2n).

Таким образом, для определения неизвестных коэффи-
циентов a0, a1, b1, . . . , an, bn имеем систему линейных
алгебраических уравнений

Tn(f ;xj) = f (xj) (j = 0, . . . , 2n)
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порядка 2n+1. Можно показать, что определитель мат-
рицы

1/2 cosx0 sinx0 . . . cosnx0 sinnx0

1/2 cosx1 sinx1 . . . cosnx1 sinnx1

· · · · · · · · · · · · · · · · · ·
1/2 cosx2n sinx2n . . . cosnx2n sinnx2n

 (3.5)

отличен от нуля, поэтому интерполяционный тригоно-
метрический полином определится единственным обра-
зом.

Но мы выбираем другой, более плодотворный путь
доказательства. А именно, предъявим аналог формулы
Лагранжа для Tn(f ;x) и проверим лишь выполнение
условий интерполирования и единственности.

3.7.1 Аналог формулы Лагранжа

Нам потребуются фундаментальные тригонометриче-
ские полиномы Лагранжа tk(x), заданные формулами

tk(x) =

∏2n
j=0,j 6=k sin

x−xj
2∏2n

j=0,j 6=k sin
xk−xj

2

, k = 0, 1, . . . , 2n.

Понятно, что обозначение tk(x) взято для простоты вме-
сто требуемого громоздкого обозначения

tk(x, x0, x1, . . . , x2n).
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Теорема 3.18 Для каждой непрерывной 2π-периоди-
ческой функции f ее тригонометрический интерпо-
ляционный полином степени не выше n существует и
определяется единственным образом, причем его мож-
но представить в форме Лагранжа

Tn(f ;x) =
2n∑
k=0

f (xk)tk(x).

Доказательство. Шаг 1. Так как

tk(xj) = δkj =

{
0, j 6= k

1, j = k
,

равенства значений функции и Tn(f ;x) в узлах полу-
чаются легко:

Tn(f ;xj) =
2n∑
k=0

f (xk)δkj = f (xj)δjj = f (xj).

Шаг 2. Нам нужно убедиться в том, что функция

2n∑
k=0

f (xk)tk(x)

— тригонометрический полином степени не выше n.
Очевидно, достаточно показать, что tk(x) являются три-
гонометрическими полиномами степени не выше n. Этот
факт доказывается методом математической индукции
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с применением формул тригонометрии. Функцию tk(x)

можно представить в следующем виде

tk(x) = C
2n∏

j=0,j 6=k
sin

x− xj
2

(k = 0, 1, . . . , 2n),

где C — величина, не зависящая от x. Так как произве-
дение содержит 2n сомножителей при любом k, то наша
задача сводится к следующей: требуется доказать, что
функция вида

gn(x) =
2n∏
j=1

sin
x− tj

2

является тригонометрическими полиномами степени не
выше n. Имеем: g1(x) =

= sin
x− t1

2
sin

x− t2
2

=

=
1

2

[
cos

t2 − t1
2
− cos

2x− t1 − t2
2

]
=

=
1

2

[
cos

t2 − t1
2
− cosx cos

t1 + t2
2
− sinx sin

t1 + t2
2

]
.

Таким образом, g1(x) можно представить в виде

g1(x) = a0 + a1 cosx + b1 sinx,

где постоянные a0, a1, b1 явно выражаются через t1, t2.
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Пусть утверждение верно для n = m. Тогда

gm+1(x) = gn(x) · sin x− t2m+1

2
sin

x− t2m+2

2
.

По аналогии с g1 произведение двух последних множи-
телей приводится к виду c0 +c1 cosx+d1 sinx. Поэтому
можем записать: gm+1(x) =

= (c0+c1 cosx+d1 sinx)

a0

2
+

m∑
j=1

aj cos jx + bj sin jx

 .
Перемножая и преобразуя произведения синусов и ко-
синусов в суммы, легко убеждаемся в том, что gm+1(x)

— тригонометрический полином степени не вышеm+1.

Шаг 3. Докажем единственность Tn(f ;x). Предпо-
ложим, что существует другой интерполяционный три-
гонометрический полином Tn(x) степени не выше n.
Рассмотрим разность q(x) = Tn(f ;x) − Tn(x), которая
также является тригонометрическим полиномом степе-
ни ≤ n и обращается в нуль в узлах сетки:

q(xj) = Tn(f ;xj)− Tn(xj) = f (xj)− f (xj) = 0.

Отсюда будет следовать q(x) ≡ 0. Действительно, в
формуле

q(x) =
a0

2
+

n∑
k=1

ak cos kx + bk sin kx
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можно заменить независимую переменную x ∈ [0, 2π]

на комплексную переменную z = eix, где i — мнимая
единица. С учетом равенства z = 1/z и формул Эйлера
получаем

cos kx =
zk + zk

2
=
zk + 1/zk

2
=
zn+k + zn−k

2zn
,

sin kx =
zk − zk

2i
=
zk − 1/zk

2i
= −iz

n+k − zn−k

2zn
,

поэтому

q(x) =
a0z

n +
∑n

k=1[ak(z
n+k + zn−k)− bki(zn+k − zn−k)]

2zn
.

Числитель последней дроби равен нулю тождественно,
так как он является алгебраическим полиномом степе-
ни ≤ 2n относительно переменной z = eix и обращается
в нуль в 2n + 1 точке z = eixj(j = 0, . . . , 2n). Следова-
тельно, q(x) ≡ 0.

Замечание. Нетрудно видеть, что справедлив сле-
дующий аналог теоремы Лебега для оценки погрешно-
сти в точке x ∈ [0, 2π]:

|rn(x)| := |f (x)− Tn(f ;x)| ≤ 2E(T )
n (f ) Λ(T )

n (x),

где величина E
(T )
n (f ) — наилучшее равномерное при-

ближение функции f тригонометрическими полино-
мами степени ≤ n и Λ

(T )
n (x) — тригонометрическая
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функция Лебега, определенная равенством

Λ(T )
n (x) =

2n∑
k=0

|tk(x)|, x ∈ [0, 2π].

3.7.2 Случай равноотстоящих узлов

Рассмотрим равноотстоящие узлы

x0 = 0, x1 = h, x2 = 2h, . . . , x2n = 2nh =
4nπ

2n + 1

с шагом h = 2π
2n+1.

В этом случае формулы для фундаментальных три-
гонометрических полиномов значительно упрощаются.
Более того, можно найти явные формулы для коэффи-
циентов ak и bk для тригонометрического интерполяци-
онного полинома

Tn(f ;x) =
a0

2
+

n∑
m=1

am cosmx + bm sinmx.

Нам потребуется известная функция из теории триго-
нометрических рядов Фурье, а именно, ядро Дирихле

Dn(t) =
1

2
+ cos t + . . . + cosnt ≡

sin(n + 1
2)t

2 sin t
2

.

Теорема 3.19 Для каждой непрерывной 2π-периоди-
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ческой функции f и равноотстоящих узлов

xk =
2π

2n + 1
k, k = 0, 1, . . . , 2n,

справедлива формула

Tn(f ;x) =
2

2n + 1

2n∑
k=0

f (xk)Dn(x− xk),

т. е. tk(x) =
2

2n + 1
Dn(x− xk),

а коэффициенты Фурье для тригонометрического по-
линома Tn(f ;x) определяются формулами

am =
2

2n + 1

2n∑
k=0

f (xk) cosmxk, m = 0, 1, . . . , n,

bm =
2

2n + 1

2n∑
k=0

f (xk) sinmxk, m = 1, . . . , n.

Доказательство. Пусть

τk(x) =
2

2n + 1
Dn(x− xk).

Представление для Tn(f ;x) посредством ядра Дирихле
немедленно следует из предыдущей теоремы, если мы
покажем, что τk(x) равен фундаментальному тригоно-
метрическому полиному Лагранжа tk(x). В силу тео-
ремы единственности тригонометрического интерполя-
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ционного полинома равенство τk(x) = tk(x) будет вер-
но для любого k = 0, 1, 2, . . . , 2n, если τk(x) являются
тригонометрическими полиномами степени не выше n
и, кроме того, имеют место равенства

τk(xj) = δkj =

{
1, k = j,

0, k 6= j.

Пользуясь первой формулой для ядра Дирихле

Dn(x− xk) =
1

2
+ cos(x− xk) + . . . + cosn(x− xk)

и формулами элементарной математики

cosm(x− xk) = cosmxk · cosmx + sinmxk · sinmx,

мы легко убеждаемся, что τk(x) — тригонометрический
полином степени ≤ n, так как Dn содержит слагаемые
cosm(x− xk) с m ≤ n.

Для вычисления τk(xj) удобнее пользоваться вто-
рой формулой ядра Дирихле, в силу которой

τk(x) =
1

2n + 1
·

sin(n + 1
2)(x− xk)

sin x−xk
2

.

Для j 6= k непосредственно получаем

τk(xj) =
1

2n + 1
·

sin
[

2n+1
2 ·

2π
2n+1(j − k)

]
sin 2π

2n+1(j − k)
= 0,
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а τk(xk) определяется как предел τk(x) при x → xk.
Привлекая первый замечательный предел, легко полу-
чаем:

τk(xk) = lim
x→xk

1

2n + 1
·

2n+1
2 (x− xk)

x−xk
2

= 1.

Нам остается получить формулы для коэффициенты
am, bm. С этой целью запишем полученное представле-
ние для Tn(f ;x) посредством ядра Дирихле с заменой
этого ядра соответствующей суммой косинусов. Имеем

Tn(f ;x) =
2

2n + 1

2n∑
k=0

f (xk)

(
1

2
+

n∑
m=1

cosm(x− xk)
)

=

=
1

2n + 1

2n∑
k=0

f (xk)+

+
2

2n + 1

n∑
m=1

2n∑
k=0

f (xk)[cosmxk cosmx + sinmxk sinmx].

Не зависящее от переменной x слагаемое в этой сумме
равно

1

2n + 1

2n∑
k=0

f (xk),

а коэффициенты при cosmx и sinmx равны, соответ-
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ственно, выражениям

2

2n + 1

2n∑
k=0

f (xk) cosmxk,
2

2n + 1

2n∑
k=0

f (xk) sinmxk,

что и требовалось доказать.

Замечание. Так как

h = ∆xk = xk − xk−1 =
2π

2n + 1
,

то можем записать коэффициенты am и bm в виде сле-
дующих сумм

am =
1

π

2n∑
k=0

f (xk) cosmxk ·∆xk,

bm =
1

π

2n∑
k=0

f (xk) sinmxk ·∆xk.

Тогда нетрудно заметить, что коэффициенты Фурье три-
гонометрического интерполяционного полинома для рав-
ноотстоящих узлов являются интегральными суммами
для коэффициентов Фурье самой функции f (x). Сле-
довательно, для n→∞

am →
1

π

∫ 2π

0
f (x) cosmxdx,

bm →
1

π

∫ 2π

0
f (x) sinmxdx.
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3.8 Сплайн-интерполяция

Как мы видели выше, вопрос о равномерной сходимо-
сти интерполяционных полиномов к интерполируемой
функции при неограниченном росте числа точек ин-
терполяции является сложным. Во-первых, наилучшее
равномерное приближение En(f ) должно иметь "хоро-
шие" свойства. Во-вторых, в общем случае успеха мож-
но добиться лишь специальным подбором узлов.

Было обнаружено, что вопросы сходимости значи-
тельно упрощаются, если в качестве приближающих
функций используются кусочно-полиномиальные функ-
ции. Такие функции, удовлетворяющие некоторым до-
полнительным требованиям, называются сплайнами.

Теория сплайн-интерполяции бурно развивается с
сороковых годов 20-го столетия. Мы рассмотрим лишь
основы этой богатой теории.

Можно отметить, что сплайны возникли уже на за-
ре математического анализа в работах Лейбница и осо-
бенно в трудах Эйлера при разработке прямых методов
вариационного исчисления.

Английское слово "сплайн" переводится как рейка.
Оно стало математическим термином по праву: инже-
неры и чертежники издавна использовали гибкие рей-
ки для ручной интерполяции функций, заданных зна-
чениями на конечном числе точек.
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3.8.1 Определение сплайнов степени m

Перейдем к точным определениям. Непрерывная функ-
ция

g : [a, b]→ R

называется полиномиальным сплайном, если существу-
ет разбиение

a = x0 < x1 < x2 < . . . < xn = b

такое, что на каждом частичном отрезке [xk−1, xk] функ-
ция

g |[xk−1,xk]:= gk : [xk−1, xk]→ R.

является некоторым полиномом определенной степени.

Определение 3.2 Пусть f ∈ C[a, b], и пусть заданы
узлы

a = x0 < x1 < x2 < . . . < xn = b, n ∈ N.

Говорят, что функция g(x) = Smn (f ;x) является для
f интерполяционным сплайном степени m ≥ 1, если
выполняются условия:

1) g непрерывна на [a, b], а на каждом частичном
отрезке [xk−1, xk]

g(x) = gk(x),

где gk(x) — некоторый полином степени ≤ m, т. е.
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имеет вид

gk(x) =
m∑
j=0

akjx
j;

2) для каждого узла xj (j = 0, . . . , n)

g(xj) = f (xj);

3) если m ≥ 2, то g ∈ C(m−1)[a, b].

Отметим, что в специальной литературе, где рас-
сматриваются более общие вопросы, определенные на-
ми сплайны называются сплайнами порядка m и де-
фекта 1.

Сплайны предоставляют удобный аппарат прибли-
жения функций конечной гладкости. Мы рассмотрим
подробнее лишь наиболее употребительные на практи-
ке сплайны первой степени (m = 1) и кубические сплай-
ны (m = 3).

При исследовании порядка приближения нам по-
требуется понятие модуля непрерывности для функции
f ∈ C[a, b]. Напомним определение и некоторые свой-
ства. Модуль непрерывности ω(f, δ) определяется сле-
дующим образом: для фиксированного положительно-
го числа δ ∈ (0, b− a]

ω(f, δ) := sup
x′,x′′∈[a,b],|x′−x′′|≤δ

|f (x′)− f (x′′)|.
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Из определения непосредственно следует, что модуль
непрерывности является монотонно неубывающей функ-
цией переменной δ, δ ∈ (0, b − a]. Кроме того, условие
f ∈ C[a, b] равносильно равенству

lim
δ→0

ω(f ; δ) = 0

в силу теоремы Кантора о равномерной непрерывности
функции, непрерывной на отрезке.

Принято выделять подпространства непрерывных
функций посредством фиксации свойства модуля непре-
рывности. Одним из наиболее употребительных под-
пространств является класс Lipα (Липшиц-альфа), где
α ∈ (0, 1] — фиксированное число.

По определению, f ∈ Lipα означает существова-
ние некоторой постоянной M > 0 такой, что для всех
x′, x′′ ∈ [a, b] имеет место неравенство

|f (x′)− f (x′′)| ≤M |x′ − x′′|α.

Очевидно, условие f ∈ Lipα равносильно неравен-
ству

ω(f ; δ) ≤Mδα

с некоторой постояннойM > 0. Отметим также, что ес-
ли f ∈ C1[a, b], то f ∈ Lip 1, но обратное утверждение,
вообще говоря, неверно.
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Действительно, для любого отрезка [x′, x′′] ⊂ [a, b]

по формуле Лагранжа о конечных приращениях можно
записать: ∃ξ ∈ (x′, x′′) такое, что

f (x′′)− f (x′) = f ′(ξ)(x′′ − x′),

поэтому
|f (x′′)− f (x′)| ≤M |x′′ − x′|

с постоянной

M = max
x∈[a,b]

|f ′(x)| <∞.

С другой стороны, функция f (x) = |x|, x ∈ [−1, 1],
не имеет производной в точке нуль, т. е. не является
непрерывно дифференцируемой, но она удовлетворяет
условию Липшица с постоянной M = 1, так как

|f (x′′)− f (x′)| = ||x′′| − |x′|| ≤ |x′′ − x′|.

3.8.2 Сплайны первой степени

Рассмотрим сплайн первой степени g(x) = S1
n(f ;x) для

функции

f ∈ C[a, b], a = x0 < . . . < xn = b.

По определению интерполяционного сплайна g ∈ C[a, b],
g(xk) = f (xk), k = 0, 1, . . . , n, кроме того, на любом
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частичном отрезке [xk−1, xk]

g(x) = gk(x) = akx + bk.

Таким образом, речь идет об аппроксимации f ∈ C[a, b]

непрерывными, кусочно-линейными функциями.

Существование и единственность интерполяцион-
ного сплайна 1-ой степени получаются тривиально. Дей-
ствительно, нахождение gk(x) = akx+bk геометрически
сводится к построению отрезка прямой, проходящей че-
рез 2 точки с координатами (xk−1, f (xk−1)), (xk, f (xk)).

Кроме того, мы можем интерпретировать

gk(x) = akx + bk

как интерполяционный полином Лагранжа, построен-
ный по двум узлам xk−1, xk. По доказанному ранее, та-
кой полином существует, определяется единственным
образом и может быть представлен по формуле Лагран-
жа на отрезке [xk−1, xk] в явном виде как

g(x) = gk(x) = f (xk−1)
x− xk

xk−1 − xk
+ f (xk)

x− xk−1

xk − xk−1
.

Равенства g(xk) = f (xk) и g(xk−1) = f (xk−1) очевид-
ны. Рассмотрим аппроксимационные свойства сплай-
нов первой степени. Отметим прежде всего представ-
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ление типа Лагранжа

S1
n(f ;x) =

n∑
j=0

f (xj) sj(x),

где sj(x) — фундаментальные сплайны первой степе-
ни со стандартным свойством sj(xk) = δkj. Мы можем
написать их в явном виде. Для крайних узлов

s0(x) =

x1−x
x1−a при a ≤ x ≤ x1,

0 при x1 ≤ x ≤ b;

sn(x) =

0 при a ≤ x ≤ xn−1,
x−xn−1

b−xn−1
при xn−1 ≤ x ≤ b;

и при любом 1 ≤ j ≤ n− 1, т. е. для внутренних узлов,

sj(x) =



0 при a ≤ x ≤ xj−1,
x−xj−1

xj−xj−1
при xj−1 ≤ x ≤ xj,

xj+1−x
xj+1−xj при xj ≤ x ≤ xj+1,

0 при xj+1 ≤ x ≤ b.

Норма оператора S1
n : C[a, b] → C[a, b] легко вычисля-

ется и равна 1 при любом n, так как
n∑
j=0

|sj(x)| ≡
n∑
j=0

sj(x) ≡ 1.
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В силу ограниченности нормы оператор S1
n должен об-

ладать хорошими аппроксимационными свойствами.
Мы получим оценки погрешности интерполяции с

использованием модуля непрерывности интерполируе-
мой функции или ее производной, а также диаметра
разбиения x0 = a < x1 < x2 < . . . < xn = b, определя-
емого стандартно как

δn = max
k=1,...,n

|xk − xk−1|.

Теорема 3.20 Для каждой функции f ∈ C[a, b] ее ин-
терполяционный сплайн S1

n(f ;x), построенный по сет-
ке x0 = a < x1 < x2 < . . . < xn = b с диаметром
разбиения δn, обладает следующими свойствами:

1)
∥∥f (x)− S1

n(f ;x)
∥∥
C[a,b] ≤ ω(f, δn);

2) S1
n(f ;x) ⇒ f (x) при δn → 0.

Доказательство. Утверждение 2) следует из 1) в си-
лу свойств модуля непрерывности. Поэтому достаточно
доказать 1).

Пусть x ∈ [a, b], тогда x попадает в один из ча-
стичных отрезков, т. е. x ∈ [xk−1, xk] для некоторого k.
Тогда

f (x)−S1
n(f ;x) = f (x)−gk(x) = f (x)

xk − x + x− xk−1

xk − xk−1
−
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−f (xk−1)(xk − x)

xk − xk−1
− f (xk)(x− xk−1)

xk − xk−1
=

= [f (x)− f (xk−1)]
xk − x

xk − xk−1
+ [f (x)− f (xk)]

x− xk−1

xk − xk−1
.

Из соотношений

0 ≤ x−xk−1 ≤ xk−xk−1 ≤ δn, 0 ≤ xk−x ≤ xk−xk−1 ≤ δn

следует
|f (x)− f (xk−1)| ≤ ω(f, δn),

|f (x)− f (xk)| ≤ ω(f, δn).

Таким образом, приходим к соотношениям

|f (x)− Sn(f ;x)| ≤ ω(f ; δn)
x− xk−1

xk − xk−1
+

+ω(f ; δn)
xk − x

xk − xk−1
= ω(f ; δn).

Теорема доказана.
Отметим простое следствие теоремы.
Если α ∈ (0, 1] и f ∈ Lipα, то существует по-

стоянная M такая, что ω(f, δn) ≤Mδαn . Поэтому

‖f (x)− Sn(f ;x)‖C[a,b] = O(δαn).

Для непрерывно дифференцируемых функций по-
грешность интерполяции допускает более сильную оцен-
ку.
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Теорема 3.21 Пусть f ∈ C1[a, b], S1
n(f ;x) — ее ин-

терполяционный сплайн 1-ой степени, построенный
по узлам x0 = a < x1 < x2 < . . . < xn = b с диа-
метром δn. Тогда∥∥f (x)− S1

n(f ;x)
∥∥
C[a,b] ≤

δn
4
ω(f ′, δn).

Доказательство. Как и в теореме 3.20 получаем фор-
мулы

f (x)− S1
n(f ;x) = f (x)− gk(x) =

= [f (x)− f (xk−1)]
xk − x

xk − xk−1
+ [f (x)− f (xk)]

x− xk−1

xk − xk−1

для x ∈ [xk−1, xk]. По формуле Лагранжа о конечных
приращениях существуют ξ ∈ (xk−1, x) и η ∈ (x, xk)

такие, что

f (x)− f (xk−1) = f ′(ξ)(x− xk−1),

f (x)− f (xk) = −f ′(η)(xk − x).

Следовательно,

f (x)− S1
n(f ;x) = [f ′(ξ)− f ′(η)]

(xk − x)(x− xk−1)

xk − xk−1
.

Оценим сверху модуль правой части. Из соотношений

|ξ − η| ≤ xk − xk−1 ≤ δn
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и определения модуля непрерывности следует неравен-
ство

|f ′(ξ)− f ′(η)| ≤ ω(f ′, δn),

которое вместе с элементарным неравенством

(xk − x)(x− xk−1)

xk − xk−1
≤ (xk − xk−1)

4
≤ δn

4

влечет искомый факт:

‖f (x)− S1
n(f ;x)‖C[a;b] ≤ ω(f ′, δn)

δn
4
.

Можно выделить 2 важных следствия доказанной
теоремы.

Следствие 3.21.1 Если α ∈ (0, 1] и f ′ ∈ Lipα, то

‖f (x)− S1
n(f ;x)‖C[a,b] = O(δ1+α

n ).

Следствие 3.21.2 Для любой функции f ∈ C2[a, b]

‖f (x)− S1
n(f ;x)‖C[a,b] = O(δ2

n).

В частности, если интерполяционный полином постро-
ен по равноотстоящим узлам с шагом h = δn = b−a

n ,
то

‖f (x)− S1
n(f ;x)‖C[a,b] = O

(
1

n2

)
.

Отметим так называемое "свойство насыщаемости"
сплайна первой степени, которое заключается в следу-
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ющем: дальнейшее увеличение порядка гладкости ин-
терполируемой функции, например, требование

f ∈ Cr[a, b], r ≥ 3,

не приводит к лучшим оценкам погрешности аппрокси-
мации, чем оценка O(δ2

n) для дважды непрерывно диф-
ференцируемых функций.

Невозможность дальнейшего повышения порядка
малости погрешности за счет порядка гладкости интер-
полируемой функции можно демонстрировать на про-
стом примере.

Пример. Рассмотрим сколь угодно гладкую функ-
цию f0(x) = x2 на отрезке [−1, 1] и сетку с равноотсто-
ящими узлами

xk = −1 + kh, h = 2/n, k = 0, 1, . . . , n.

Пусть n — нечетное число. Тогда один из частичных
отрезков имеет вид [−h/2, h/2], и на этом отрезке, оче-
видно, S1

n(f0, x) ≡ h2/4. Поэтому

‖f0(x)− S1
n(f ;x)‖C[a;b] ≥ |f0(0)− S1

n(f ; 0)| = h2/4.

Если n— четное число, то полученная оценка снизу для
погрешности интерполяции также верна (покажите!).

Замечание. Обратите внимание, что в предыду-
щих рассуждениях речь идет об оценках погрешности,
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гарантированных для всех функций из заданных клас-
сов функций. Понятно, что для конкретной функции
аппроксимация может быть намного лучше. Например,
если взять непрерывную, кусочно-линейную функцию,
то погрешность тождественно равна нулю при подхо-
дящем выборе сетки.

Рассмотрим теперь вариационное свойство сплай-
нов первой степени. Нам потребуется пространство Со-
болева W 1

2 [a, b], определяемое как пространство абсо-
лютно непрерывных функций F : [a, b] → R, для ко-
торых существует интеграл

∫ b
a F

′2(x)dx и норма опре-
делена равенством

‖F‖W 1
2

= ‖F‖C[a,b] + ‖F ′‖L2[a,b].

Известно, что W 1
2 [a, b] — полное линейное нормирован-

ное (т. е. банахово) пространство. Производная функ-
ции F понимается как обобщенная производная в смыс-
ле Соболева, т. е. существует некоторая интегрируемая
в смысле Лебега функция F ′, удовлетворяющая равен-
ству ∫ b

a
F (x)ϕ′(x) dx = −

∫ b

a
F ′(x)ϕ(x) dx

для любой пробной функции ϕ ∈ C1[a, b] такой, что
ϕ(a) = ϕ(b) = 0. Пространство W 1

2 [a, b] содержит в се-
бе все непрерывные, кусочно-гладкие функции, опреде-
ленные на отрезке [a, b], в частности, сплайны S1

n(F ;x).
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Пусть f : [a, b] → R — заданная непрерывная
функция, и

a = x0 < x1 < . . . < xn = b

— некоторая фиксированная сетка.
Рассмотрим задачу минимизации функционала

Φ(F ) =

∫ b

a
F
′2(x) dx

при следующих условиях:
1) F ∈ W 1

2 [a, b],
2) имеют место равенства F (xk) = f (xk) для всех

k = 0, . . . , n.
Очевидно, сплайн g(x) = S1

n(f ;x) является одной
из функций, удовлетворяющей обоим условиям.

Теорема 3.22 Для любой функции F , удовлетворяю-
щей условиям 1) и 2), имеет место неравенство

∫ b

a
F
′2(x) dx ≥

∫ b

a

(
dS1

n(f ;x)

dx

)2

dx,

где равенство достигается тогда и только тогда, ко-
гда F (x) ≡ S1

n(f ;x).

Доказательство. Пусть g(x) = S1
n(f ;x). Имеем

Φ(F − g) =

∫ b

a
(F ′− g′)2dx =

∫ b

a
(F

′2− 2F ′g′+ g
′2)dx =
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=

∫ b

a
F
′2dx−

∫ b

a
g
′2dx− 2

∫ b

a
(F ′g′ − g′2)dx.

Вычисления показывают, что третий интеграл равен
нулю. Действительно, пользуясь аддитивностью инте-
грала и формулой интегрирования по частям, получаем

A =

∫ b

a
g′(x)[F ′(x)− g′(x)]dx =

=
n∑
k=1

∫ xk

xk−1

g′(x)d[F (x)− g(x)].

Так как
g′(x) =

f (xk)− f (xk−1)

xk − xk−1
= Ck

не зависит от x, то

A =
n∑
k=1

Ck

∫ xk

xk−1

d[F (x)− g(x)] = 0

в силу того, что ∫ xk

xk−1

d[F (x)− g(x)] =

= [F (xk)− g(xk)]− [F (xk−1)− g(xk−1)] = 0.

Таким образом, мы доказали, что∫ b

a
F
′2(x)dx =

∫ b

a
g
′2(x)dx + Φ(F − g) ≥

∫ b

a
g
′2(x)dx.
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Следовательно, с учетом обозначения g(x) = S1
n(f ;x)

min Φ(F ) = Φ(S1
n(f ;x)).

Докажем теперь единственность экстремальной функ-
ции. Предположим, что существует еще одна экстре-
мальная функция F1. Но тогда∫ b

a
g
′2(x)dx =

∫ b

a
F
′2
1 dx =

∫ b

a
g
′2(x)dx + Φ(F1 − g),

отсюда следует

Φ(F1 − g) =

∫ b

a
(F ′1 − g′)2dx = 0,

значит F ′1(x) = g′(x) почти всюду на [a, b], отсюда

F1(x) = g(x) + Const ≡ S1
n(f ;x) + Const.

Константа равна нулю в силу равенств F1(xk) = g(xk),
поэтому F1(x) ≡ S1

n(f ;x), что и требовалось доказать.

3.8.3 Кубические сплайны

Для заданной функции f ∈ C[a, b] и узлов a = x0 <

x1 < x2 < . . . < xn = b сплайн третьей степени, т. е.
кубический сплайн

g(x) = S3
n(f ;x)
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определяется тремя условиями:
I) на каждом отрезке [xk−1, xk] (k = 1, 2, . . . , n)

g(x) = gk(x) = ak0 + ak1x + ak2x
2 + ak3x

3

— полином степени ≤ 3;
II) для каждого k = 0, 1, . . . , n

g(xk) = f (xk);

III) g ∈ C2[a, b], т. е. g, g′, g′′ непрерывны на [a, b].
Это условие фактически сводится к дважды гладкой
склейке на внутренних узловых точках полиномов gk
из соседних частичных отрезков: для каждого

k = 1, 2, . . . , n− 1

должны выполняться равенства

gk(xk) = gk+1(xk), g
′
k(xk) = g′k+1(xk), g

′′
k(xk) = g′′k+1(xk).

Условиями I—III кубический сплайн определяется
не единственным образом, поскольку число неизвест-
ных коэффициентов akj равно 4n, а число уравнений
для их определения равно 4n − 2. А именно, n + 1

уравнение дано условиями интерполирования и 3(n−1)

уравнений предоставлены условиями дважды гладкой
склейки на внутренних узловых точках.

Таким образом, нужны еще 2 условия. Дополни-
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тельные условия вида g′(a) = g′(b), g′′(a) = g′′(b) обыч-
но применяются для периодических функций с перио-
дом T = b− a.

Для непериодических функций наиболее употреби-
тельными являются так называемые естественные ку-
бические сплайны, они определяются присоединением
следующих дополнительных условий:

g′′(a) = g′′(b) = 0.

Теорема 3.23 Для каждой функции f ∈ C[a, b] ее есте-
ственный кубический сплайн g(x) = S3

n(f ;x), постро-
енный по сетке x0 = a < x1 < x2 < . . . < xn = b,
существует и определяется единственным образом.

Доказательство. Матрица системы из 4n линей-
ных алгебраических уравнений для прямого определе-
ния неизвестных коэффициентов akj оказывается гро-
моздкой. Поэтому используется такой "трюк". В до-
полнение к числам y0 = g′′(x0) = 0, yn = g′′(xn) = 0

вводятся неизвестные заранее параметры (моменты):

y1 = g′′(x1), y2 = g′′(x2), . . . , yn−1 = g′′(xn−1).

Покажем, что по этим параметрам однозначно опре-
деляются gk(x), а сами числа yk (k = 1, 2, . . . , n − 1)
находятся как решение несложной системы линейных
алгебраических уравнений порядка n− 1.
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На каждом частичном отрезке [xk−1, xk] функция
g′′(x) ≡ g′′k(x) является линейной, поэтому

g′′(x) = (1−t)yk−1+tyk, t =
x− xk−1

∆xk
, ∆xk = xk−xk−1.

Интегрированием по переменной t с учетом равенства
dx = ∆xkdt получаем

g′(x) = g′(xk−1) +
∆xk

2
(1− (1− t)2)yk−1 +

∆xk
2
t2yk,

g(x) = g(xk−1) + ∆xktg
′(xk−1)+

+
(∆xk)

2

6
(3t + (1− t)3 − 1)yk−1 +

(∆xk)
2

6
t3yk.

Полагая t = 1 в выражении для g(x) и учитывая ра-
венства g(xk−1) = f (xk−1), g(xk) = f (xk), находим

g′(xk−1) =
f (xk)− f (xk−1)

∆xk
− ∆xk

3
yk−1 −

∆xk
6
yk.

Подставляя это значение g′(xk−1) в выражение для g′(x)

и полагая t = 1 , получаем

g′(xk) =
f (xk)− f (xk−1)

∆xk
+

∆xk
6
yk−1 +

∆xk
3
yk.

Равенства g′k(xk) = g′k+1(xk) (k = 1, 2, . . . , n− 1),
т. е. условия непрерывной склейки первых производ-
ных, приводят к линейной системе для моментов yk

210



(k = 1, 2, . . . , n− 1):

f (xk)− f (xk−1)

∆xk
+

∆xk
6
yk−1 +

∆xk
3
yk =

=
f (xk+1)− f (xk)

∆xk+1
− ∆xk+1

3
yk −

∆xk+1

6
yk+1

или, что то же самое, к системе

∆xk yk−1 + 2 (∆xk + ∆xk+1) yk + ∆xk+1 yk+1 = bk,

где k = 1, 2, . . . , n− 1, y0 = yn = 0, а свободные члены
даны равенствами

bk = 6
f (xk+1)− f (xk)

∆xk+1
− 6

f (xk)− f (xk−1)

∆xk
.

Нетрудно показать, что полученная система однознач-
но разрешима: матрица системы относится к типу "трех-
диагональной с диагональным преобладанием".

Отметим также, что кубический сплайн можно по-
строить иным выбором вспомогательных параметров, а
именно, исходя из величин zk = g′(xk) (k = 0, 1, . . . , n).
При таком подходе получается формула (докажите!)

gk(x) = (1− t)2(1 + 2t)f (xk−1) + t2(3− 2t)f (xk)+

+t(1− t)∆xk [(1− t) zk−1 − t zk],

и система для определения параметров zk также ока-
зывается трехдиагональной.
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Опишем теперь кратко вариационное свойство есте-
ственных сплайнов. Пусть f : [a, b] → R — заданная
непрерывная функция, и a = x0 < x1 < . . . < xn = b

— некоторая фиксированная сетка. Рассмотрим задачу
минимизации функционала энергии

E(F ) =

∫ b

a
F
′′2(x) dx

при следующих условиях:
1) F ∈ W 2

2 [a, b] = {F ∈ C[a, b]: существует обоб-
щенная производная F ′′ и F ′′ ∈ L2[a, b]};

2) F (xk) = f (xk), где k = 0, . . . , n.
Очевидно, кубический сплайн g(x) = S3

n(f ;x) яв-
ляется одной из функций, удовлетворяющей обоим усло-
виям.

Теорема 3.24 Для любой функции F , удовлетворяю-
щей условиям 1) и 2),

∫ b

a
F
′′2(x) dx ≥

∫ b

a

(
d 2S3

n(f ;x)

dx2

)2

dx,

где равенство достигается тогда и только тогда, ко-
гда F (x) ≡ S3

n(f ;x) — естественный кубический сплайн.

Доказательство аналогично доказательству теоремы
3.22. В силу равенства

F
′′2 − g′′2 = (F

′′ − g′′)2 + 2g
′′
(F

′′ − g′′),
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можем написать

E(F )− E(g) = E(F − g) + 2

∫ b

a
g
′′
(F

′′ − g′′) dx.

Интеграл от функции 2g
′′
(F

′′ − g′′) для g(x) = S3
n(f ;x)

равен нулю, в чем легко убедиться интегрированием по
частям.

3.9 Задачи и упражнения

1. Пользуясь точными значениями sin 0, sin π
6 , sin π

2

и интерполяционным полиномом Лагранжа, найдите
приближенное значение sin π

7 и дайте оценку погреш-
ности.

2. Пользуясь полиномом Лагранжа, найдите при-
ближенное значение log 70 и дайте оценку погрешности
в двух случаях: заданы a) log 1, log 10; b) log 1, log 10,
log 100.

3. Найдите приближенное значение arctg 1
2 и дайте

оценку погрешности.
4. Для полиномов Чебышева первого рода докажи-

те тождество:

1− xt
1− 2xt + x2

=
∞∑
n=0

xnTn(t), |x| < 1, |t| ≤ 1.

5. Покажите, что для любого n ≥ 1 полином Че-
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бышева Tn(t) удовлетворяет следующему дифференци-
альному уравнению

(1− t2)T ′′n (t)− tT ′n(t) + n2Tn(t) = 0.

6. Для функции f (x) = sinπx и узлов

{0, 1/4, 1/3, 1/2}

запишите интерполяционный полином Ньютона.

7. Пусть f (x) = 3x3 + 2x2 + x + 1, и заданы узлы
x1 = 1, x2 = 2, x3 = 3, x4 = 4. Найдите разделенную
разность f (x1, x2, x3, x4) и конечную разность ∆3f1.

8. Найдите интерполяционный полином в форме
Ньютона для функции f (x) = x4 и узлов {0, 1, 2, 3}.

9. Для функции f (x) = x4 и двух узлов {0, 1} за-
пишите интерполяционный полином Эрмита-Фейера.

10. Аппроксимируйте полином Чебышева T3(x) на
отрезке [−1, 1] интерполяционным полиномом Эрмита
с одним узлом x0 = 0 кратности 3. Дайте оценку по-
грешности приближения.

11. Рассмотрите полином Лагранжа для равноот-
стоящих узлов x0, x1, . . . , xn, где a = x0, b = xn и

x1 − x0 = x2 − x1 = . . . = xn − xn−1 = h =
b− a
n

.
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Преобразуйте интерполяционный полином

Ln+1(f ;x) =
n∑
k=0

f (xk)lk(x)

степени ≤ n с помощью замены переменной

t =
x− a
h

(x = a + ht).

Покажите, что для выбранной сетки из равноотстоя-
щих узлов x0, x1, . . . , xn имеет место формула

Ln+1(f ;x) =
(−1)nt(t− 1) . . . (t− n)

n!

n∑
k=0

f (xk)
(−1)kCk

n

(t− k)
,

где
Ck
n =

n!

k!(n− k)!

— биномиальные коэффициенты.
12. Найдите разность между интерполяционным по-

линомом Лагранжа по узлам x0 = a, x1 = c = (a+b)/2,
x2 = b и интерполяционным полиномом Эрмита по тем
же узлам, но разной кратности: x0, x2 — простые узлы,
а x1 — узел кратности 2.

13. Функцию f (x) = esinx аппроксимируйте триго-
нометрическим интерполяционным полиномом по уз-
лам xk = 2πk

3 , k = 0, 1, 2.
14. Функцию f (x) = x2 аппроксимируйте на от-

резке [0, 1] сплайном первой степени с выбором узлов:
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xk = kh, h = 1/n, k = 0, 1, . . . , n. Дайте оценку по-
грешности приближения.

15. При доказательстве теоремы Вейерштрасса по
методу Лебега нам встретилась система линейных ал-
гебраических уравнений

a1 −
m∑
j=2

aj = k1,

s∑
j=1

aj −
m∑

j=s+1

aj = ks, s = 2, . . . ,m− 1,

m∑
j=1

aj = km

относительно неизвестных aj. Покажите, что решение
этой системы можно записать в явном виде.

16. Вы знакомы с доказательством существования
и единственности естественного кубического сплайна
g(x) = S3

n(x; f ), a ≤ x ≤ b, определяемого дополни-
тельными условиями: g′′(a) = g′′(b) = 0. Докажите два
аналога этой теоремы, когда дополнительные условия
имеют вид

g′′(a) = α, g′′(b) = β

или
g′(a) = α, g′(b) = β,

где α и β — заданные числа.
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Глава 4

Наилучшие приближения

Пусть F — линейное нормированное пространство над
полем вещественных чисел. Рассмотрим некоторую си-
стему {l1, l2, . . . , ln} линейно-независимых элементов из
F . Их линейные комбинации, т. е. элементы вида

fn =
n∑
k=1

αklk (αk ∈ R)

образуют замкнутое подпространство Fn = {fn}. Для
любого f ∈ F ставится задача минимизации функцио-
нала Φ : Rn → R, определенного равенством

Φ(α1, . . . , αn) =

∥∥∥∥∥f −
n∑
k=1

αklk

∥∥∥∥∥
F

.

Инфимум этой нормы, т. е. неотрицательная величина

En(f ) = inf
α1,...,αn

Φ(α1, . . . , αn)
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называется наилучшим приближением f ∈ F (элемен-
тами fn ∈ Fn ⊂ F ). Существование и единственность
наилучшего приближения легко следуют из определе-
ния и классических теорем анализа. Остается откры-
тым лишь вопрос о нахождении этой величины.

Далее, если существует элемент

f 0
n =

n∑
k=1

α0
k lk ∈ Fn,

на котором достигается этот инфимум, то его называют
элементом наилучшего приближения. Возникают есте-
ственные вопросы:

1) существует ли элемент наилучшего приближе-
ния f 0

n;

2) определяется ли единственным образом;

3) каков алгоритм практического построения f 0
n.

Забегая вперед, укажем, что существование эле-
мента наилучшего приближения имеет место при са-
мых общих предположениях.

Для единственности и алгоритма построения эле-
мента наилучшего приближения необходимы дополни-
тельные предположения о структуре пространства F .

Вопрос 3) мы рассмотрим в двух случаях, когда
пространство F является гильбертовым или F — бана-
хово пространство C[a, b].

218



4.1 НП в пространствах с нормой

Докажем сначала теорему существования.

Теорема 4.1 Пусть F — линейное нормированное
пространство над полем вещественных чисел. Тогда
для любого f ∈ F существует элемент наилучшего
приближения f 0

n ∈ Fn.

Доказательство. Если f ∈ Fn, то ясно, что f 0
n = f и

En(f ) = 0. Таким образом, этот случай является про-
стым.

Рассмотрим нетривиальный случай, когда

f /∈ Fn, En(f ) = inf{‖f − fn‖, fn ∈ Fn} > 0.

По определению инфимума существует последователь-
ность um ∈ Fn (m ∈ N) такая, что

‖f − um‖ ≤ En(f ) +
1

m
.

Применяя неравенство треугольника, получаем

‖um‖ ≤ ‖um − f‖ + ‖f‖ ≤ En(f ) + 1 + ‖f‖,

т. е. последовательность um ограничена. Поскольку в
конечномерном пространстве Fn из любой ограничен-
ной последовательности можно выделить сходящуюся
подпоследовательность, то существует, в частности, под-
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последовательность umk
такая, что

lim
k→∞

umk
= u0 ∈ Fn.

Переходя к пределу при k →∞ в неравенстве

En(f ) ≤ ‖f − umk
‖ ≤ En(f ) +

1

mk

будем иметь
En(f ) = ‖f − u0‖.

Так как u0 ∈ Fn, элемент f 0
n = u0 является элементом

наилучшего приближения по определению.
Для формулировки теоремы единственности нам

потребуется следующее важное определение.

Определение 4.1 Норма пространства F называет-
ся строго выпуклой, если для каждой пары линейно-
независимых элементов f, g ∈ F выполнено строгое
неравенство треугольника:

‖f + g‖ < ‖f‖ + ‖g‖.

Ясно, что строгую выпуклость нормы по-иному можно
охарактеризовать следующим свойством (равносильным
приведенному определению):

если ‖f + g‖ = ‖f‖ + ‖g‖, то существует число
λ ≥ 0 такое, что либо f = λg , либо g = λf .
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Строгая выпуклость нормы оказывается достаточ-
ным (хотя и не необходимым) условием единственности
элемента наилучшего приближения.

Теорема 4.2 Пусть F — линейное нормированное
пространство со строго выпуклой нормой. Тогда для
каждого f ∈ F элемент наилучшего приближения
определяется единственным образом.

Доказательство. Если f ∈ Fn, то En(f ) = 0 и,
очевидно, элемент наилучшего приближения совпада-
ет с f , т. е. определяется единственным образом. Для
нетривиального случая докажем единственность от про-
тивного. А именно, предположим обратное:

существуют f ∈ F \ Fn, f 0
n ∈ Fn и f 1

n ∈ Fn такие,
что f 0

n 6= f 1
n и

En(f ) = ‖f − f 0
n‖ = ‖f − f 1

n‖.

Для среднего арифметического

g =
f 0
n + f 1

n

2

элементов f 0
n и f 1

n имеем: g ∈ Fn и

En(f ) ≤ ‖f − g‖ =

∥∥∥∥∥f − f 0
n + f 1

n

2

∥∥∥∥∥ =

=
‖f − f 0

n + f − f 1
n‖

2
≤
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≤ ‖f − f
0
n‖ + ‖f − f 1

n‖
2

= En(f ).

Отсюда следует, что ‖f − g‖ = En(f ) и ‖f − f 0
n + f −

f 1
n‖ = ‖f − f 0

n‖ + ‖f − f 1
n‖.

Первое из этих равенств означает, что среднее ариф-
метическое элементов f 0

n и f 1
n также является элемен-

том наилучшего приближения. А из второго равенства
в силу строгой выпуклости нормы следует, что элемен-
ты f−f 0

n и f−f 1
n являются линейно-зависимыми. Сле-

довательно, существует число λ такое, что либо f −
f 0
n = λ(f − f 1

n), либо f − f 1
n = λ(f − f 0

n).
Рассмотрим два случая: λ = 1 и λ 6= 1. Если λ = 1,

то f−f 0
n = f−f 1

n, т.е. f 0
n = f 1

n, Получили противоречие.
Пусть теперь λ 6= 1. Тогда f (1− λ) = f 0

n − λf 1
n или

f (1 − λ) = f 1
n − λf 0

n. Поделив на 1 − λ, получаем, что
f ∈ Fn как линейная комбинация элементов f 0

n и f 1
n,

что противоречит выбору f .
Этим и завершается доказательство.
Примеры пространств со строго выпуклыми

нормами
1) Норма в любом гильбертовом пространстве яв-

ляется строго выпуклой.
Доказательство. Если элементы f, g ∈ F гиль-

бертова пространства F являются линейно-независи-
мыми, то для их скалярного произведения имеет место
строгое неравенство Коши |(f, g)| < ‖f‖·‖g‖. С учетом
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этого получаем

‖f +g‖2 = (f +g, f +g) = ‖f‖2 +‖g‖2 +(f, g)+(g, f ) <

< ‖f‖2 + ‖g‖2 + 2‖f‖ · ‖g‖ = (‖f‖ + ‖g‖)2.

2) Для любого p ∈ (1,∞) строго выпуклую норму
имеет пространство Лебега Lpρ(a, b) (ρ(x) > 0 п. в. на
[a, b]) с нормой

‖f‖ =

(∫ b

a
ρ(x)|f (x)|pdx

)1/p

.

Для случая p = 2 это пространство является гиль-
бертовым. Для остальных значений параметра утвер-
ждение следует из того, что для линейно-независимых
функций известные интегральные неравенства Гельде-
ра и Минковского являются строгими.

Популярные банаховы пространства, нормы
в которых не являются строго выпуклыми

1) Норма пространства C[a, b] не является строго
выпуклой.

Достаточно рассмотреть случай, когда [a, b] = [0, 1].
Возьмем два линейно-независимые элементы этого про-
странства: f (x) = 1 и g(x) = x. Имеем

‖f + g‖C[0,1] = max
x∈[0,1]

(1 + x) = 2,
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‖f‖C[0,1] = 1, ‖g‖ = max
x∈[0,1]

x = 1,

следовательно,

‖f + g‖C[0,1] = ‖f‖C[0,1] + ‖g‖C[0,1].

2) Норма пространства Лебега L1 также не яв-
ляется строго выпуклой.

Действительно, для любой пары функции f (x) ≥ 0

и g(x) ≥ 0 из этого пространства

‖f + g‖L1 =

∫ b

a
f (x) dx +

∫ b

a
g(x) dx = ‖f‖L1 + ‖g‖L1

в силу линейности интеграла. Легко выбрать f и g

линейно-независимыми. Можно, например, взять

f (x) = 1, g(x) = x2.

Утверждение распространяется и на случай весо-
вых пространств L1

ρ[a, b] с нормой

‖f‖ =

∫ b

a
ρ(x)|f (x)|dx

и с весом ρ(x) > 0 почти всюду на [a, b].
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4.2 Случай гильбертова пространства

Пусть F — гильбертово пространство, l1, l2, . . . , ln — си-
стема линейно-независимых элементов из F .

Ясно, что для любого f ∈ F элемент наилучшего
приближения f 0

n существует и определяется единствен-
ным образом, так как норма гильбертова пространства
является строго выпуклой.

Оказывается, что в случае гильбертова простран-
ства легко вычислить наилучшее приближение En(f ) и
найти явно f 0

n.
Поскольку любая система линейно-независимых эле-

ментов l1, l2, . . . , ln может быть преобразована в орто-
нормированную применением процесса ортогонализа-
ции Грама-Шмидта и этот процесс описывается явны-
ми формулами, то нам необходимо в первую очередь
рассматривать наилучшие приближения элементами ор-
тонормированной системы.

Теорема 4.3 Пусть F — гильбертово пространство,
система {l1, l2, . . . , ln} ⊂ F является ортонормиро-
ванной. Тогда для любого f ∈ F наилучшее приближе-
ние по этой системе определяется формулой

En(f ) =

√√√√‖f‖2 −
n∑
k=1

|c0
k|2,
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а элемент наилучшего приближения f 0
n — формулой

f 0
n =

n∑
k=1

c0
klk,

где числа c0
k определяются равенствами c0

k = (f, lk) и
называются коэффициентами Фурье.

Доказательство. Пусть Fn — подпространство, натя-
нутое на систему {l1, l2, . . . , ln} ⊂ F . Рассмотрим про-
извольный элемент

fn =
n∑
k=1

αklk

этого подпространства. Пользуясь определением нор-
мы в гильбертовом пространстве, можем записать

‖f−fn‖2 = (f−fn, f−fn) = (f−
n∑
k=1

αklk, f−
n∑
k=1

αklk) =

= (f, f )−
n∑
k=1

(f, αklk)−
n∑
k=1

(αklk, f )+
n∑
k=1

n∑
j=1

(αklk, αjlj).

Простыми выкладками, с учетом обозначения (f, lk) =

c0
k, получаем

‖f − fn‖2 = ‖f‖2 −
n∑
k=1

(αkc
0
k + αkc0

k)+
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+
n∑
k=1

(|αk|2 + |c0
k|2)−

n∑
k=1

c0
kc

0
k =

= ‖f‖2 −
n∑
k=1

|c0
k|2 +

n∑
k=1

|αk − c0
k|2.

Отсюда следует, что

‖f − fn‖2 ≥ ‖f‖2 −
n∑
k=1

|c0
k|2,

причем это неравенство превращается в равенство то-
гда и только тогда, когда

n∑
k=1

|αk − c0
k|2 = 0,

т. е. когда αk = c0
k для всех k = 1, 2, . . . , n. В силу

произвольности fn ∈ Fn немедленно получаем

(En(f ))2 = ‖f‖2 −
n∑
k=1

|c0
k|2 = ‖f −

n∑
k=1

c0
klk‖2.

Эти равенства показывают, в частности, что элемент

f 0
n =

n∑
k=1

c0
klk

является элементом наилучшего приближения.
Теорема доказана.
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Теорема 4.4 Пусть F–гильбертово пространство. Ес-
ли l1, l2, . . . , ln линейно-независимы, то элемент наи-
лучшего приближения f 0

n для любого f ∈ F определя-
ется по формуле

f 0
n =

n∑
k=1

α0
klk,

где α0
k (k = 1, 2, . . . , n) — решение системы уравнений

n∑
k=1

αk(lk, lj) = (f, lj), j = 1, 2, . . . , n.

Доказательство. Применяя процесс ортогонали-
зации Грама-Шмидта, получаем ортонормированную
систему g1, g2, . . . , gn.

Ясно, что элементы наилучшего приближения по
исходной системе l1, l2, . . . , ln и по ортонормированной
системе g1, g2, . . . , gn совпадают. Поэтому элемент наи-
лучшего приближения для f ∈ F по системе l1, l2, . . . , ln
имеет вид

f 0
n =

n∑
k=1

c0
kgk,

где c0
k = (f, gk) − коэффициенты Фурье. Поскольку

gj =
n∑
k=1

αkjlk
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с некоторыми коэффициентами αkj, то элемент наилуч-
шего приближения может быть представлен в виде

f 0
n =

n∑
k=1

αklk.

Равенства c0
k = (f, gk) = (f 0

n, gk) означают, что элемент
f−f 0

n ортогонален всем gk, а значит и всем lk. Поэтому
(f−f 0

n, lk) = 0 или, что то же самое, (f, lk) = (f 0
n, lk) для

всех k = 1, 2, . . . , n. Умножая скалярно обе части выра-
жения для f 0

n на lj, с учетом равенства (f, lj) = (f 0
n, lj)

получаем систему линейных алгебраических уравнений
n∑
k=1

αk(lk, lj) = (f, lj) (j = 1, 2, . . . , n)

для определения неизвестных коэффициентов αk.

В силу существования и единственности элемента
наилучшего приближения полученная система должна
быть однозначно разрешимой. Итак, определитель этой
системы, называемый определителем Грама, отличен
от нуля, т. е.

∆n = det((lk, lj)) 6= 0.

И решение системы имеет вид

α0
k =

∆
(k)
n

∆n
,
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следовательно, мы можем найти элемент наилучшего
приближения по формуле

f 0
n =

n∑
k=1

∆
(k)
n

∆n
lk.

Этим и завершается доказательство теоремы.

4.3 Примеры

Приведем несколько примеров применения доказанных
теорем о наилучших применениях.

Пример 1. Наилучшее приближение тригономет-
рическими полиномами можно построить следующим
образом.

В гильбертовом пространстве F = L2(0, 2π) со ска-
лярным произведением

(f, g) =
1

2π

∫ 2π

0
f (x)g(x)dx

рассмотрим ортогональную систему

{e−irx, . . . , e−ix, 1, eix, . . . , eirx}.

Элемент наилучшего приближения для любого

f ∈ L2(0, 2π)
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по указанной системе определяется формулой

f 0
n(x) =

r∑
k=−r

α0
ke
ikx,

где

α0
k =

1

2π

∫ 2π

0
f (x)e−ikxdx.

Пример 2. Наилучшее приближение алгебраиче-
скими полиномами степени ≤ n в пространстве L2

ρ с
весом ρ (ρ(x) > 0 почти всюду на [a, b]).

В этом случае естественно рассмотреть систему

1, x, x2, . . . , xn.

Соответствующая ортонормированная система являет-
ся системой ортогональных (с весом ρ(x)) полиномов

P0(x), P1(x), . . . , Pn(x).

Элемент наилучшего приближения для любой функ-
ции f ∈ L2

ρ(a, b) представим в виде

f 0
n =

n∑
k=0

c0
kPk(x),

где

c0
k = (f, Pk) =

∫ b

a
ρ(x)f (x)Pk(x)dx.

Если система ортогональных полиномом Pk(x) неиз-
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вестна, то полином наилучшего приближения ищется в
виде

f 0
n =

n∑
k=0

α0
kx

k,

неизвестные коэффициенты определяются решением си-
стемы линейных алгебраических уравнений

n∑
k=0

akjα
0
k = bj, j = 1, 2, . . . , n,

где

akj =

∫ b

a
ρ(x)xk+jdx, bj =

∫ b

a
ρ(x)f (x)xjdx.

Примеры 3.1 и 3.2 (Случай среднеквадратичных
приближений на дискретном множестве точек).

На [a, b] возьмем точки x1, x2, . . . , xn (xj 6= xk при
j 6= k). Рассмотрим определенные на этих узлах функ-
ции f : {x1, . . . , xn} → R. Множество всех таких функ-
ций образуют конечномерное пространство F = {f} со
скалярным произведением

(f, g) =
n∑
l=1

f (xl)g(xl)

и нормой

‖f‖ =

√√√√ n∑
l=1

|f (xl)|2.
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Далее, в F рассмотрим систему линейно-незави-
симых функций

l1(x), l2(x), . . . , lm(x).

Понятно, что должно выполняться неравенство

n ≥ m.

Для любой функции f ∈ F рассмотрим задачу ми-
нимизации квадратичного функционала

Φ(α1, α2, . . . , αm) =
n∑
l=1

|f (xl)− fm(xl)|2

на функциях вида

fm(x) =
m∑
k=1

αklk(x).

Такую задачу можно попытаться исследовать ме-
тодами классического дифференциального исчисления,
взяв за отправную точку систему необходимых условий
экстремума:

∂Φ

∂αj
= 0, j = 1, . . . ,m.

Но нам проще интерпретировать эту задачу как
частный случай задачи о наилучшем приближении в
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гильбертовом пространстве.

Пример 3.1. Алгебраические полиномы наилуч-
шего среднеквадратичного приближения на дискрет-
ном множестве точек получаются так. Для узлов

x1, x2, . . . , xn ∈ [a, b]

и линейно-независимой системы

1, x, x2, . . . , xm−1 (т. е. lk(x) = xk−1)

элемент наилучшего приближения можно представить
в виде

f 0
m =

m∑
k=1

α0
kx

k−1.

Согласно общей теории, неизвестные коэффициен-
ты определяются из системы линейных алгебраических
уравнений

m∑
k=1

αk(lk, lj) = (f, lj), j = 1, . . . ,m,

где

(lk, lj) =
n∑
l=1

xk+j−2
l , (f, lj) =

n∑
k=1

f (xl)x
j−1
l .

Пример 3.2. Рассмотрим теперь среднеквадратич-
ное приближение тригонометрическими полиномами на
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дискретном множестве точек.

Для n узлов

xk =
2kπ

n
, k = 0, . . . , n− 1,

рассмотрим пространство функций

f : {xl}n−1
l=0 → C

со скалярным произведением

(f, g) =
1

n

n−1∑
l=0

f (xl)g(xl).

Система функций eijx, j = 0, 1, . . . ,m− 1 ( n ≥ m) яв-
ляется ортонормированной в этом пространстве. Дей-
ствительно, имеем

(lk, lj) =
1

n

n−1∑
l=0

eikxle−ijxl =
1

n

n−1∑
l=0

ei(k−j)
2π
n l.

Поэтому, если k = j, то

(lk, lk) =
1

n

n−1∑
l=0

·1 = 1;

если же k 6= j, то с учетом формул

u = ei(k−j)
2π
n 6= 1, un = 1,
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получаем

(lk, lj)n =
n−1∑
l=0

ul =
un − 1

u− 1
=
e2πi(k−j) − 1

u− 1
= 0.

Согласно общей теории элемент наилучшего прибли-
жения является отрезком ряда Фурье для заданного
элемента f , т. е.

f 0
m =

m−1∑
k=0

α0
ke
ikx,

где

α0
k = (f, eikx) =

1

n

n−1∑
l=0

f (xl) · e−ikxl.

4.4 О чебышевском альтернансе

Рассмотрим подробнее задачу о наилучших приближе-
ниях алгебраическими полиномами в банаховом про-
странстве C[a, b] над полем вещественных чисел. Более
точно, для любой функции f ∈ C[a, b] рассматривает-
ся величина — наилучшее приближение f в метрике
C[a, b] алгебраическими полиномами степени ≤ n:

En(f ) = inf
Pn
‖f − Pn‖C[a,b],

где
Pn(x) = a0 + a1x + . . . + anx

n
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— полиномы степени ≤ n с вещественными коэффици-
ентами.

Поскольку C[a, b] — линейное нормированное про-
странство, то согласно общей теории существует хотя
бы один полином наилучшего равномерного приближе-
ния, т. е. существует

P 0
n(x) = a0

0 + a0
1x + . . . + a0

nx
n

такой, что
En(f ) = ‖f − P 0

n‖C[a,b].

Норма пространства C[a, b] не является строго вы-
пуклой, поэтому необходим иной подход для доказа-
тельства единственности полинома наилучшего равно-
мерного приближения P 0

n(x).
Наилучшие равномерные приближения непрерыв-

ных функций алгебраическими полиномами описыва-
ются теоремами П.Л. Чебышева. Но прежде всего мы
напомним классическую теорему Вейерштрасса.

Теорема 4.5 Для любой функции f ∈ C[a, b] и любого
ε > 0 существует алгебраический полином P (x) та-
кой, что

‖f − P‖C[a,b] < ε.

Из определения наилучшего приближения непосред-
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ственно следует, что En(f ) ≥ 0 для любого n и

E0(f ) ≥ E1(f ) ≥ . . . ≥ En(f ) ≥ . . . (n ≥ 1).

Легко доказывается и следующее утверждение.

Теорема 4.6 Для любой функции f ∈ C[a, b]

lim
n→∞

En(f ) = 0.

Доказательство. Пусть f ∈ C[a, b], зададимся
произвольным ε > 0. По теореме Вейерштрасса суще-
ствует полином P степени n0 такой, что ‖f−P‖C[a,b] <

ε. Следовательно, для всех номеров n ≥ n0 с учетом
определения наилучшего приближения как инфимума
будем иметь

En(f ) ≤ En0
(f ) ≤ ‖f − P‖C[a,b] < ε.

Теорема доказана.
С целью подготовки к пониманию основной теоре-

мы этого параграфа — теоремы о чебышевском аль-
тернансе — рассмотрим задачу нахождения наилучше-
го приближения в простейших случаях, когда n равно
нулю или единице.

Пусть n = 0, для непостоянной функции f ∈ C[a, b]

необходимо найти постоянную a0
0, реализующую следу-
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ющий минимум

min
a0

‖f − a0‖C[a,b] = E0(f ).

Геометрически очевидно

P 0
0 (x) = a0

0 =
M + m

2
, E0(f ) =

M −m
2

,

где

M = max
a≤x≤b

f (x) = f (x1), m = min
a≤x≤b

f (x) = f (x2).

Ясно, что существуют по крайней мере 2 различ-
ных точки x1, x2 ∈ [a, b] такие, что для остаточного
члена r0(x) = P 0

0 (x)− f (x) справедливы равенства

r0(x1) = −E0(f ), r0(x2) = +E0(f ).

Если n = 1, то наилучшее приближение

E1(f ) = min
a0,a1

‖f − (a0 + a1x)‖C[a,b]

легко определяется геометрически для случая, когда f
— выпуклая функция. Имеем

P 0
1 (x) = a0

0 + a0
1x, a0

1 =
f (b)− f (a)

b− a
,

а постоянная a0
0 такова, что для r0(x) = P 0

0 (x) − f (x)
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справедливы равенства

r0(xj) = α(−1)jE1f, α = ±1, j = 1, 2, 3,

где x1 = a, x2 ∈ (a, b), x3 = b.
Оказывается верным естественное обобщение этих

примеров для любых n ∈ N: если P 0
n — полином наи-

лучшего равномерного приближения для f ∈ C[a, b],
то существует не менее n + 2 точек

x1 < x2 < x3 < . . . < xn+2, xk ∈ [a, b],

таких, что

P 0
n(xj)− f (xj) = α(−1)j ·En(f ), j = 1, 2, . . . , n+ 2,

где α = сonst, причем либо α = 1, либо α = −1.

Теорема 4.7 (о чебышевском альтернансе) Для любой
функции f ∈ C[a, b] полином Pn(x) степени ≤ n явля-
ется полиномом наилучшего равномерного приближе-
ния f тогда и только тогда, когда на [a, b] существу-
ет не менее n + 2 точек

x1 < x2 < x3 < . . . < xn+2

таких, что для любого j = 1, 2, . . . , n + 2

Pn(xj)− f (xj) = α(−1)j‖Pn − f‖C[a,b], (4.1)
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где α = сonst, причем либо α = 1, либо α = −1.

Доказательство. Необходимость. Пусть P 0
n(x) — по-

лином наилучшего равномерного приближения.
Легко видеть, что для функции

rn(x) = P 0
n(x)− f (x)

должны существовать по крайней мере 2 точки x1 и x2

такие, что rn(xj) = α(−1)j · En(f ).
Предположим, что условие альтернанса Чебышева

выполняется самое большее на m точках, причем m ≤
n + 1, т. е. на [a, b] существует лишь m ≤ n + 1 точек

x1 < x2 < x3 < . . . < xm

таких, что

rn(xj) = α(−1)jEn(f ), j = 1, 2, . . . ,m.

Подчеркнем, что число m выбрано максимальным из
всех возможных.

Замкнутое множество

S = {x ∈ [a, b] : |rn(x)| = En(f )}

представим в виде

S =
m⋃
j=1

Sj,
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где замкнутые множества Sj определены следующим
образом:

S1 = {x ∈ [a, x2) : rn(x) = rn(x1)},

Sj = {x ∈ (xj−1, xj+1) : rn(x) = rn(xj)}, 2 ≤ j ≤ m−1,

Sm = {x ∈ (xm−1, b] : rn(x) = rn(xm)}.

Легко проверить (с учетом максимальности m), что
определения множеств Sj корректны и эти множества
не пусты, так как xj ∈ Sj и, кроме того,

ak+1 := min{x : x ∈ Sk+1} > max{x : x ∈ Sk} =: bk

для всех k = 1, 2, . . . ,m− 1. Следовательно, существу-
ют точки

ξ1 < ξ2 < . . . < ξm−1,

удовлетворяющие условиям

bk < ξk < ak+1 (k = 1, 2, . . . ,m− 1).

Рассмотрим полином

sm−1(x) = λ(x− ξ1)(x− ξ2) . . . (x− ξm−1),

выбрав знак постоянной λ из условия совпадения зна-
ков rn(x1) и sm−1(x1). Тогда rn(x)sm−1(x) > 0 для лю-
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бого x ∈ S, и для достаточно малого |λ| > 0

‖rn − sm−1‖C[a,b] = ‖P 0
n − sm−1 − f‖C[a,b] < En(f ),

а это противоречит тому, что P 0
n — полином наилучше-

го равномерного приближения.
Докажем теперь от противного достаточность усло-

вия (4.1). Предположим, что Pn удовлетворяет (4.1), но
не является полиномом наилучшего равномерного при-
ближения. Возьмем полином наилучшего равномерно-
го приближения P 0

n и рассмотрим разность

qn(x) = Pn(x)− P 0
n(x).

По определению наилучшего приближения

‖Pn − f‖C[a,b] > ‖P 0
n − f‖C[a,b] = En(f ),

в частности, во всех узловых точках

|Pn(xj)− f (xj)| > En(f ) ≥ |P 0
n(xj)− f (xj)|.

Поэтому значение разности Pn(x)− P 0
n(x), т. е.

qn(x) = [Pn(x)− f (x)] + [f (x)− P 0
n(x)],

в любой узловой точке xj не равно нулю и имеет тот
же знак, что и

A(xj) = Pn(xj)− f (xj) = α(−1)j‖Pn − f‖C[a,b].
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Таким образом, знаки qn(xj) чередуются, следователь-
но, полином qn(x) обращается в нуль в некоторых точ-
ках y1, . . . , yn+1 таких, что

x1 < y1 < x2 < y2 < . . . < yn+1 < xn+2.

Поскольку qn(x) является полиномом степени не выше
n и обращается в нуль в n+ 1 точке, то qn(x) ≡ 0, т. е.
Pn(x) ≡ P 0

n(x). Пришли к противоречию.
Этим и завершается доказательство.
Теорема об альтернансе позволяет установить един-

ственность полинома наилучшего равномерного при-
ближения.

Теорема 4.8 Для любой функции f ∈ C[a, b] и любого
n полином наилучшего равномерного приближения P 0

n

определяется единственным образом.

Доказательство. Предположим обратное: пусть
имеются два различных полинома наилучшего равно-
мерного приближения P 1

n(x) и P 0
n(x). Тогда для любого

x ∈ [a, b] можем написать неравенства:

−En(f ) ≤ f (x)− P 0
n(x) ≤ En(f ),

−En(f ) ≤ f (x)− P 1
n(x) ≤ En(f ).

Сложим эти неравенства и поделим на 2. В результате
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получим

−En(f ) ≤ f (x)− P 0
n(x) + P 1

n(x)

2
≤ En(f ),

следовательно, функция

Q(x) =
P 0
n(x) + P 1

n(x)

2

также является полиномом наилучшего равномерного
приближения. По теореме 4.7 о чебышевском альтер-
нансе, примененной к этой функции, на отрезке [a, b]

существуют точки

x1 < x2 < x3 < . . . < xn+2

такие, что

Q(xj)− f (xj) = α(−1)j‖Q− f‖ = α(−1)jEn(f ),

где j = 1, 2, . . . , n + 2, (α = 1, либо α = −1). Записав
эти равенства в узловых точках в виде

2[Q(xj)− f (xj)] = P 0
n(xj)− f (xj) + P 1

n(xj)− f (xj) =

= 2α(−1)j En(f ),

мы обнаруживаем, что они возможны лишь в том слу-
чае, когда

P 0
n(xj)− f (xj) = P 1

n(xj)− f (xj) = α(−1)jEn(f ).
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Как следствие получаем, что

P 0
n(xj) = P 1

n(xj) для j = 1, 2, . . . , n + 2.

Отсюда немедленно следует

P 0
n(x) ≡ P 1

n(x),

так как степени этих полиномов не превосходят n. По-
лучили противоречие, завершающее доказательство.

Следствие 4.8.1 Пусть f ∈ C[−a, a], a > 0.
1) Если f — четная функция, то ее полином наи-

лучшего равномерного приближения P 0
n также явля-

ется четным.
2) Если f нечетна, то P 0

n также нечетный.

Доказательство. Пусть P 0
n(x) — полином наилучшего

равномерного приближения f ∈ C[−a, a].
1) Пусть f — четная функция, т. е. f (x) = f (−x)

для любого x ∈ [−a; a]. Тогда для всех t = −x ∈ [−a, a]

|P 0
n(−x)− f (x)| =

= |P 0
n(−x)− f (−x)| = |P 0

n(t)− f (t)| ≤ En(f ).

Следовательно, P 0
n(−x) также является полиномом наи-

лучшего равномерного приближения. В силу теоремы
единственности

P 0
n(−x) = P 0

n(x), для любого x ∈ [−a, a].
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2) Для нечетной функции f имеем

| − P 0
n(−x)− f (x)| = | − P 0

n(−x) + f (−x)| =

= |f (t)− P 0
n(t)| ≤ En(f ) ∀x = −t ∈ [−a, a].

Следовательно, −P 0
n(−x) — полином наилучшего рав-

номерного приближения. В силу теоремы единственно-
сти получаем

−P 0
n(−x) = P 0

n(x).

Опишем теперь задачу, показывающую связь поли-
номов Чебышева первого рода с теоремой о чебышев-
ском альтернансе.

Задача Чебышева. Найти P 0
n−1(x) — полином наи-

лучшего равномерного приближения степени ≤ n − 1

для функции f (x) = xn, x ∈ [−1, 1].

Введем в рассмотрение функцию

P̃n(x) =
Tn(x)

2n−1
,

где Tn(x) = cos(n arccosx) − полином Чебышева перво-
го рода. Покажем, что искомый полином определяется
по формуле: P 0

n−1(x) = xn − P̃n(x).

Для этого достаточно проверить условие альтер-
нанса Чебышева. Поскольку рассматривается задача
для полиномов степени ≤ n − 1, это условие должно
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выполняться в n + 1 точке. Пусть

xk = cos
kπ

n
, k = 0, 1, . . . , n.

Имеем: xnk − P 0
n−1(xk) =

=
Tn(xk)

2n−1
=

cos kπ

2n−1
=

(−1)k

2n−1
‖ cos(n arccosx)‖C[−1,1].

Тогда по теореме Чебышева об альтернансе искомый
полином наилучшего равномерного приближения дает-
ся формулой

P 0
n−1(x) = xn − Tn(x)

2n−1
.

Следствие 4.8.2 Для любого полинома Pn−1(x) сте-
пени не выше, чем n− 1

‖xn + Pn−1(x)‖C[−1;1] ≥
1

2n−1
.

В заключение отметим, что заменой переменной
x = cos θ, 0 ≤ θ ≤ π, система полиномов Чебыше-
ва первого рода

{Tn(x)}∞n=0

преобразуется в тригонометрическую систему косину-
сов

{1, cos θ, cos 2θ, . . .}, 0 ≤ θ ≤ π.
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С учетом этого легко показать, что {Tn(x)}∞n=0 —
полная ортогональная система в L2

ρ с весовой функцией

ρ(x) =
1√

1− x2
.

Доказательство. Замена переменной x = cos θ в инте-
грале показывает, что ортогональность полиномов Че-
бышева первого рода∫ 1

−1

Tk(x)Tj(x)√
1− x2

dx = 0, k 6= j,

равносильна хорошо известным равенствам∫ π

0
cos kθ cos jθ dθ =

1

2

∫ π

−π
cos kθ cos jθ dθ = 0, k 6= j.

А полнота {Tn(x)}∞n=0 вытекает из полноты тригоно-
метрической системы косинусов в пространстве L2[0; π].

Задачи и упражнения
1. Для функции f (x) = x3 постройте полином наи-

лучшего равномерного приближения степени n на от-
резке [0, 1] для n = 0, 1, 2, 3.

2. Для функции f (x) = x3 постройте полином наи-
лучшего приближения первой и второй степени в про-
странстве L2[0, 1].

3. Пусть функция f (x) = x3 задана в точках 1, 2, 3.
Найдите полином наилучшего среднеквадратичного при-
ближения.
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Глава 5

Квадратурные формулы

Для каждой непрерывной функции f : [a, b]→ R инте-
грал Римана ∫ b

a
f (x) dx

сколь угодно точно аппроксимируется интегральными
суммами вида

n∑
k=1

f (xk)∆xk.

Но интегральные суммы могут сходиться к значению
интеграла очень медленно. Поэтому разработаны ори-
гинальные, эффективные методы численного интегри-
рования. Важное место среди них занимают классиче-
ские квадратурные формулы.

Как это принято в теории меры Жордана симво-
лом < a, b > мы будем обозначать промежуток от a до
b, чтобы охватить одним символом 4 возможных вари-
анта: [a, b], (a, b], [a, b), (a, b).
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Пусть f ∈ C < a, b >, заданы узлы

x1, . . . , xn ∈< a, b > .

Будем рассматривать задачу приближенного вычисле-
ния интеграла ∫ b

a
ρ(x)f (x) dx,

где ρ = ρ(x) — фиксированная весовая функция. Пред-
полагаем, что

ρ(x) ∈ L1[a, b], ρ(x) ≥ 0,

∫ b

a
ρ(x) dx > 0.

Квадратурной принято называть формулу вида∫ b

a
ρ(x)f (x) dx ≈

n∑
k=1

Akf (xk), (5.1)

где Ak — некоторые вещественные числа. Предполага-
ется, что коэффициенты Ak не зависят от f . Точки xk
в формуле (5.1) принято называть узлами.

Определение 5.1 Пусть M — некоторое семейство
функций, непрерывных на промежутке < a, b >. Гово-
рят, что квадратурная формула (5.1) точна на мно-
жестве M , если для каждой функции F ∈M∫ b

a
ρ(x)F (x) dx =

n∑
k=1

AkF (xk),

251



т. е. приближенное равенство превращается в обыч-
ное. В частности, говорят, что квадратурная форму-
ла (5.1) точна на множестве алгебраических полино-
мов степени ≤ m, если имеют место равенства∫ b

a
ρ(x)xj dx =

n∑
k=1

Akx
j
k

для любого j = 0, 1, . . . ,m.

Сам термин "квадратура" восходит к древнегреческой
цивилизации. А именно, античными математиками был
поставлен вопрос о квадратуре круга (т. е. вопрос о воз-
можности построения с помощью линейки и циркуля
квадрата, равновеликого кругу по площади). А вычис-
ление площадей, как вы хорошо знаете, равносильно
интегрированию подходящих функций.

Простейшие квадратурные формулы для вычисле-
ния интегралов создавались и использовались уже во
времена Ньютона и Лейбница.

Прием, лежащий в основе всех классических квад-
ратурных формул, состоит в замене подынтегральной
функции некоторым ее приближением (например, ин-
терполяционным полиномом или сплайном).

252



5.1 Применение полиномов Лагранжа

Пусть f ∈ C < a, b >, рассмотрим интерполяцион-
ный полином Лагранжа Ln(f ;x), построенный по сетке
узлов {x1, x2, . . . , xn} ⊂ < a, b >. Заменяя подынте-
гральную функцию ее интерполяционным полиномом
в форме Лагранжа, получаем приближенную формулу∫ b

a
ρ(x)f (x) dx ≈

∫ b

a
ρ(x)Ln(f ;x) dx =

=

∫ b

a
ρ(x)

n∑
k=1

f (xk)lk(x) dx =
n∑
k=1

pkf (xk),

где

pk =

∫ b

a
ρ(x)lk(x) dx,

или, что то же самое,

pk =

∫ b

a
ρ(x)

ωn(x)

(x− xk)ω′n(xk)
dx,

где
ωn(x) = (x− x1)(x− x2) . . . (x− xn).

Полученная таким образом квадратурная формула∫ b

a
ρ(x)f (x) dx ≈

n∑
k=1

pkf (xk)

называется интерполяционной квадратурной формулой.
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Теорема 5.1 Квадратурная формула (5.1) с коэффи-
циентами Ak является точной для любого алгебраи-
ческого полинома степени ≤ n−1 тогда и только то-
гда, когда она совпадает с интерполяционной квадра-
турной формулой, т. е. когда имеет место равенство
Ak = pk для всех k = 1, 2, . . . , n.

Доказательство. Предположим, что (5.1) точна
для каждого полинома степени ≤ n − 1. Тогда эта
формула должна быть точной для всех фундаменталь-
ных полиномов Лагранжа lj(x), поскольку они являют-
ся полиномами степени n− 1. Таким образом, для всех
j = 1, . . . , n, должны выполняться равенства∫ b

a
ρ(x)lj(x) dx =

n∑
k=1

Aklj(xk) =
n∑
k=1

Akδkj = Aj.

С другой стороны,

pj =

∫ b

a
ρ(x)lj(x) dx

по определению интерполяционной квадратурной фор-
мулы. Следовательно, Aj = pj для всех j = 1, . . . , n.

Обратное утверждение о том, что интерполяцион-
ная квадратурная формула является точной для каж-
дого полинома степени ≤ n−1, является тривиальным.
Действительно, если F — полином степени ≤ n− 1, то
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Ln(F ;x) ≡ F (x), поэтому∫ b

a
ρ(x)F (x) dx =

∫ b

a
ρ(x)Ln(F ;x) dx =

=

∫ b

a
ρ(x)

n∑
k=1

F (xk) lk(x) dx =

=
n∑
k=1

F (xk)

∫ b

a
ρ(x) lk(x) dx =

n∑
k=1

pk F (xk).

Теорема доказана.
Погрешность интерполяционной квадратурной фор-

мулы

Rn(f ) =

∫ b

a
ρ(x)f (x) dx−

n∑
k=1

pkf (xk)

может быть эффективно оценена для f ∈ Cn[a, b], где
n — число узлов сетки.

Теорема 5.2 Пусть ωn(x) = (x − x1) . . . (x − xn), и
пусть n ≥ 1. Если f ∈ Cn[a, b], то существует точка
η ∈ [a, b] такая, что для погрешности интерполяци-
онной квадратурной формулы справедлива оценка

|Rn(f )| ≤ |f
(n)(η)|
n!

∫ b

a
ρ(x)|ωn(x)| dx.

А в частном случае, когда n = 2, x1 = a, x2 = b,
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имеет место равенство

R2(f ) =
f ′′(η)

2

∫ b

a
ρ(x)ω2(x) dx.

Доказательство. Имеем

Rn(f ) =

∫ b

a
ρ(x)[f (x)− Ln(f ;x)]dx =

∫ b

a
ρ(x)rn(x) dx.

Как было установлено для остаточного члена интерпо-
ляции, существует точка ξ = ξ(x) ∈ (a, b) такая, что

rn(x) =
f (n)(ξ(x))

n!
ωn(x).

Следовательно,

Rn(f ) =
1

n!

∫ b

a
ρ(x) f (n)(ξ(x)) ωn(x) dx.

Отсюда получаем

|Rn(f )| ≤ 1

n!

∫ b

a
ρ(x) |f (n)(ξ(x))| |ωn(x)| dx.

Утверждение теоремы получается теперь по теореме о
среднем для интегралов с учетом непрерывности f (n).
В частном случае мы пользуемся знакопостоянством
ω2(x) = (x− a)(x− b) и применяем теорему о среднем
до перехода к абсолютным величинам. Этим и завер-
шается доказательство теоремы.
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Для равномерной сетки шага h = (b−a)/n с узлами

a = x0, x1 = a + h, . . . , xn = a + nh = b

интерполяционную квадратурную формулу принято на-
зывать формулой Ньютона-Котеса.

Поскольку число узлов равно (n + 1), то в этом
случае интерполяционная квадратурная формула име-
ет вид ∫ b

a
ρ(x) f (x) dx ≈

n∑
k=0

ck f (a + kh),

где

ck =

∫ b

a
ρ(x)

ωn+1(x)

(x− xk)ω′n+1(xk)
dx,

ωn+1(x) = (x− x0)(x− x1) . . . (x− xn).

В этих формулах сделаем замену x = a + ht, 0 ≤
t ≤ n. Простые вычисления приводят к следующей
универсальной формуле

ck =
(−1)n−kh

k!(n− k)!

∫ n

0
ρ(a + ht)

t(t− 1) . . . (t− n)

t− k
dt.

Отметим важное свойство коэффициентов ck в фор-
муле Ньютона-Котеса. Поскольку квадратурная фор-
мула Ньютона-Котеса точна для функции f (x) ≡ 1, то
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имеем
n∑
k=0

ck =

∫ b

a
ρ(x) dx.

Отсюда следует, что если все коэффициенты ck ≥
0, то все они ограничены числом, не зависящим от n,
поэтому погрешность квадратурной формулы не пре-
восходит по порядку погрешности при вычислении функ-
ции. Такая устойчивость в вычислениях может быть
нарушена, если коэффициенты ck имеют разные зна-
ки, так как оценка погрешности зависит от суммы

n∑
k=0

|ck|,

а эта сумма может неограниченно возрастать с ростом
числа n.

5.2 Базовые квадратурные формулы

На практике поступают следующим образом: разбива-
ют промежуток интегрирования на несколько частич-
ных промежутков и на каждом из них применяют ин-
терполяционную квадратурную формулу с небольшим
числом узлов.

Получаемые на этом пути формулы называются
составными квадратурными формулами.

Отметим, что популярные приближенные форму-
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лы прямоугольников и трапеций, а также формула
Симпсона являются составными квадратурными фор-
мулами.

5.2.1 Формула трапеций

Рассмотрим сначала малую формулу трапеций для при-
ближенного вычисления интеграла

∫ b
a f (x) dx. Приме-

ним формулу Ньютона-Котеса на отрезке [a, b] для сет-
ки с узлами x0 = a, x1 = b. Имеем∫ b

a
f (x) dx ≈ c0f (a) + c1f (b),

где

c0 =

∫ b

a

x− b
a− b

dx =
b− a

2
, c1 =

∫ b

a

a− x
b− a

dx =
b− a

2
.

Получаем приближенную формулу∫ b

a
f (x) dx ≈ b− a

2
[f (a) + f (b)],

которую принято называть малой формулой трапе-
ций, так как правая часть представляет собой площадь
трапеции с вершинами в точках (a, 0), (b, 0), (a, f (a)),
(b, f (b)). Большая формула трапеций строится так:
сегмент [a, b] делим на n ≥ 2 равных частей точками

a = x0, x1 = a + h, . . . , xk = a + kh, . . . , xn = b,
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и представляем искомый интеграл в виде суммы:∫ b

a
f (x) dx =

n∑
k=1

∫ xk

xk−1

f (x) dx.

Применяя на каждом частичном отрезке малую фор-
мулу трапеций, находим∫ b

a
f (x) dx ≈

n∑
k=1

xk − xk−1

2
[f (xk−1 + f (xk)] =

=
b− a
n

[
f (a) + f (b)

2
+ f (x1) + f (x2) + . . . + f (xn−1)

]
.

Обозначив

fk = f (xk), h = (b− a)/n,

мы можем записать большую формулу трапеций в
традиционной форме∫ b

a
f (x) dx ≈ b− a

n

[
f0 + fn

2
+ f1 + f2 + . . . + fn−1

]
.

Из общей теоремы об оценке погрешности интерполя-
ционных квадратурных формул вытекает следующее
утверждение: если f ∈ C2[a, b], то для малой формулы
трапеций существует точка η ∈ [a, b] такая, что погреш-
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ность

R2(f ) =

∫ b

a
f (x) dx− b− a

2
[f (a) + f (b)]

определяется формулой

R2(f ) =
f ′′(η)

2

∫ b

a
(x− a)(x− b)dx = −f

′′(η)

12
(b− a)3.

Оценка погрешности Rn(f ) =

=

∫ b

a
f (x) dx− b− a

n

[
f0 + fn

2
+ f1 + f2 + . . . + fn−1

]
большой формулы трапеций дается в следующей тео-
реме.

Теорема 5.3 Если f ∈ C2[a, b], то существует точка
η ∈ [a, b] такая, что погрешность большой формулы
трапеций равна

Rn(f ) = −(b− a)3

12n2
f ′′(η) = O

(
1

n2

)
.

Доказательство. Для произвольного частичного от-
резка погрешность малой формулы трапеций опреде-
ляется формулой

−f
′′(ηk)

12
(xk − xk−1)3, ηk ∈ [xk−1, xk].
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Поэтому

Rn(f ) =
n∑
k=1

[
−f

′′(ηk)

12
(xk − xk−1)3

]
=

= −(b− a)3

12n2
·
(

1

n

n∑
k=1

f ′′(ηk)

)
.

Среднее арифметическое чисел f ′′(ηk) лежит между ми-
нимальным и максимальным значениями второй про-
изводной. Отсюда следует, что

1

n

∑
f ′′(ηk) = f ′′(η)

для некоторой точки η ∈ [a, b]. Этим и завершается
доказательство.

Следующий простой пример явно показывает невоз-
можность дальнейшего повышения порядка погрешно-
сти O(1/n2) для формулы трапеций за счет повышения
порядка гладкости интегрируемой функции.

Пример. Рассмотрим на отрезке [0, 1] сколь угод-
но гладкую функцию f (x) = x2. Возьмем сетку узлов
xk = kh, k = 0, 1, . . . , n, с шагом h = 1/n. Пользуясь
известной формулой

12 + 22 + 32 + . . . + (n− 1)2 =
(n− 1)n(2n− 1)

6
,
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легко вычисляем погрешность формулы трапеций для
интеграла

∫ 1
0 x

2 dx:∫ 1

0
x2 dx− 1

n

[
1

2
+

1

n2
+

22

n2
+ . . . +

(n− 1)2

n2

]
= − 1

6n2
.

Можно получить оценки погрешности формулы тра-
пеций и в случае, когда на функцию накладываются
менее жесткие ограничения, чем f ∈ C2[a, b]. Для это-
го удобнее пользоваться иной трактовкой большой фор-
мулы трапеций, а именно, геометрически очевидной фор-
мулой ∫ b

a
f (x) dx ≈

∫ b

a
S1
n(f ;x) dx,

где S1
n(f ;x) — сплайн 1-ой степени. Тогда погрешность

формулы трапеций определяется равенством

Rn(f ) =

∫ b

a
rn(x) dx,

где rn(x) = f (x) − S1
n(f ;x). Понятно, что оценки по-

грешности Rn(f ) без труда следуют из известных нера-
венств для rn(x).

Поскольку в формуле трапеций используется рав-
номерная сетка, то диаметр разбиения равен шагу сет-
ки, т. е. δn = h = (b− a)/n. Опишем кратко несколько
новых оценок погрешности Rn(f ) для формулы трапе-
ций.
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1) Пусть f ∈ C[a, b], тогда

|rn(x)| ≤ ω

(
f,
b− a
n

)
,

поэтому погрешность формулы трапеций можно оце-
нить следующим образом

|Rn(f )| ≤ ω

(
f,
b− a
n

)
·
∫ b

a
dx ≤ (b− a) ω

(
f,
b− a
n

)
.

В частности, если α ∈ (0, 1], функция f ∈ Lipα с по-
стояннойM , то погрешность формулы трапеций можно
оценить так:

|Rn(f )| ≤ M(b− a)1+α

nα
= O

(
1

nα

)
.

2) Пусть α ∈ (0, 1], функция f ′ ∈ Lipα с постоян-
ной M1. Тогда с учетом неравенства

|rn(x)| ≤ b− a
4n

ω

(
f ′;

b− a
n

)
,

получаем следующую оценку для погрешности форму-
лы трапеций:

|Rn(f )| ≤ b− a
4n
·M1(b− a)α

nα
· (b− a) =

=
(b− a)2+αM1

4n1+α
= O

(
1

n1+α

)
.
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5.2.2 Формулы прямоугольников

Малая формула прямоугольников для f ∈ C[a, b] име-
ет вид:

∫ b
a f (x) dx ≈ (b− a)f (ξ), ξ ∈ [a, b]. Она полу-

чается из интерполяционной квадратурной формулы в
случае, когда полином Лагранжа строится для одной
узловой точки x1 = ξ. Наиболее употребительными яв-
ляются три случая, когда ξ = a или ξ = b, т. е. берутся
левый или правый концы промежутка интегрирования,
или же

ξ = c = (a + b)/2,

т. е. выбирается средняя точка.

Таким образом, принято различать три различных
малых формул прямоугольников. А именно, рассмат-
ривают малые формулы левых прямоугольников∫ b

a
f (x) dx ≈ (b− a)f (a)

или правых прямоугольников∫ b

a
f (x) dx ≈ (b− a)f (b),

а также малую формулу средних прямоугольников∫ b

a
f (x) dx ≈ (b− a)f (c).
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Пусть

h =
b− a
n

, n ≥ 2, xk = a + kh, k = 0, . . . , n,

и обозначим

f (xk) = fk, f

(
xk + xk−1

2

)
= fk−1

2
.

Большие формулы прямоугольников получаем как со-
ставные ∫ b

a
f (x) dx =

n∑
k=1

∫ xk

xk−1

f (x) dx,

т. е. получаем суммированием малых формул для ча-
стичных отрезков. Таким образом возникают большая
формула левых прямоугольников∫ b

a
f (x) dx ≈ b− a

n
[f0 + f1 + . . . + fn−1],

большая формула правых прямоугольников∫ b

a
f (x) dx ≈ b− a

n
[f1 + f2 + . . . + fn],

и наконец, большая формула средних прямоугольников∫ b

a
f (x) dx ≈ b− a

n
[f1/2 + f3/2 + . . . + fn−1/2].

Правые части во всех трех формулах прямоуголь-
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ников представляют собой интегральную сумму, поэто-
му мы можем утверждать следующее: если f инте-
грируема в смысле Римана на отрезке [a, b], то по-
грешность приближения для всех трех формул пря-
моугольников стремится к нулю при n→∞.

Зная модуль непрерывности подынтегральной функ-
ции, мы можем получить порядковые оценки погреш-
ности Rn(f ) для формул прямоугольников.

Теорема 5.4 Если f ∈ C1[a, b] или даже f ∈ Lip 1, то

Rn(f ) = O

(
1

n

)
для всех трех формул прямоугольников.

Доказательство. Имеем

Rn(f ) =
n∑
k=1

∫ xk

xk−1

[f (x)− f (ξk)]dx,

где

ξk =


xk−1 для случая левых прямоугольников,
xk для случая правых прямоугольников,
xk−1/2 для случая средних прямоугольников.

Имеет место неравенство

|f (x)− f (ξk)| ≤ ω

(
f ;
b− a
n

)
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для каждого x ∈ [xk−1, xk], поэтому

|Rn(f )| ≤
n∑
k=1

ω

(
f ;
b− a
n

)∫ xk

xk−1

dx =

= ω

(
f ;
b− a
n

)
(b− a).

Отсюда легко следует утверждение теоремы.
Как показывает следующий пример, для формул

левых или правых прямоугольников усилить эту тео-
рему невозможно.

Пример. Рассмотрим функцию f (x) = x на отрез-
ке [0, 1]. Точное значение интеграла

∫ 1
0 x dx равно 1/2,

приближенное значение по формуле левых прямоуголь-
ников

1

n

n∑
k=1

f (xk−1) =
1

n

(
1

n
+

2

n
+ . . . +

n− 1

n

)
=

1

2
− 1

2n
,

и по формуле правых прямоугольников

1

n

n∑
k=1

f (xk) =
1

n

(
1

n
+

2

n
+ . . . +

n

n

)
=

1

2
+

1

2n
.

Если f ∈ C2[a, b], то погрешность для формулы сред-
них прямоугольников допускает улучшенную оценку. В
случае f ∈ C2[a, b] для формулы средних прямоуголь-
ников справедлив удивительный факт: оценка погреш-
ности по порядку оказывается такой же, какой она яв-
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ляется для формулы трапеций.

Теорема 5.5 Если f ∈ C2[a, b], то погрешность для
формулы средних прямоугольников можно оценить сле-
дующим образом: существует точка η такая, что

Rn(f ) =
f ′′(η)

24n2
(b− a)3 = O

(
1

n2

)
.

Доказательство. Рассмотрим сначала случай малой
формулы средних прямоугольников. Имеем

R1(f ) =

∫ b

a
f (x) dx− f (c)(b− a) =

∫ b

a
[f (x)− f (c)]dx.

Поскольку f ∈ C2[a, b], то существует ξ = ξ(x) ∈ (a, b)

такая, что

f (x) = f (c) +
f ′(c)

1!
(x− c) +

f ′′(ξ)

2!
(x− c)2.

Интегрируя и применяя теорему о среднем, получаем

R1(f ) = f ′(c)

∫ b

a
(x− c)dx +

f ′′(η)

2!

∫ b

a
(x− c)2dx =

=
f ′′(η)

24
(b− a)3.

Эффект средней точки проявился на этом этапе тем,
что

∫ b
a (x− c) dx = 0. Общий случай получается сумми-

рованием и применением стандартных рассуждений об
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арифметических средних по цепочке равенств:

Rn(f ) =
n∑
k=1

∫ xk

xk−1

[f (x)− f (xk−1/2)]dx =

=
(b− a)3

24n2

[
1

n

n∑
k=1

f ′′(ηk)

]
=

(b− a)3

24n2
f ′′(ηcp) = O

(
1

n2

)
.

Таким образом, теорема доказана.

5.2.3 Формула Симпсона

Стандартный путь построения формулы Симпсона со-
стоит в замене подынтегральных функций параболиче-
скими сплайнами, т. е. сплайнами второй степени.

Малая квадратурная формула Симпсона для функ-
ции f ∈ C[a, b] строится по трем узлам:

x1 = a, x2 = c :=
a + b

2
, x3 = b.

Пусть L3(f ;x) — интерполяционный полином Лагран-
жа. Будем искать его в форме Ньютона

L3(f ;x) = A + B(x− a) + C(x− a)(x− b).

Приближенное равенство∫ b

a
f (x) dx ≈

∫ b

a
L3(f ;x) dx
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будем называть малой формулой Симпсона.

Имеем: A = f (a) в силу условия L3(f ; a) = f (a).
Далее, равенство L3(f ; b) = f (b) приводит к уравнению
f (b) = f (a) + B(b − a) для определения B, а затем
из условия L3(f ; c) = f (c) можно найти постоянную
C. Непосредственные вычисления (мы их пропускаем)
коэффициентов A, B, C и суммы интегралов

A

∫ b

a
dx + B

∫ b

a
(x− a) dx + C

∫ b

a
(x− a)(x− b) dx

приводят к малой формуле Симпсона в привычной фор-
ме: ∫ b

a
f (x) dx ≈ b− a

6
[f (a) + 4f (c) + f (b)] .

Оценим теперь погрешность малой формулы Симпсона
при условии f ∈ C3[a, b]. Пользуясь оценкой погрешно-
сти интерполяционных квадратурных формул, получа-
ем

|R3(x)| ≤ |f
′′′(η)|
3!

∫ b

a
|(x− a)(x− b)(x− c)|dx =

=
|f ′′′(η)|

192
(b− a)4,

где η ∈ [a, b].

Большая формула Симпсона составляется из
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малых. Полагаем

h =
b− a
n

, n ≥ 2, xk = a + kh, k = 0, 1, . . . , n,

записываем равенство∫ b

a
f (x) dx =

n∑
k=1

∫ xk

k−1
f (x) dx

и применяем малую формулу Симпсона на каждом из
частичных отрезков. Так как xk − xk−1 = (b− a)/n, то
итоговая формула

∫ b
a f (x) dx ≈

≈
n∑
k=1

xk − xk−1

6

[
f (xk−1) + 4f

(
xk−1 − xk

2

)
+ f (xk)

]
с учетом обозначений

fk = f (xk), fk−1
2

= f

(
xk−1 + xk

2

)
имеет вид

3n

b− a

∫ b

a
f (x) dx ≈

≈ f0 + fn
2

+ 2(f1/2 + . . . + fn−1/2) + f1 + . . . + fn−1.

Это и есть классическая формула Симпсона.

Суммируя погрешности малых формул для частич-
ных отрезков, получаем погрешность большой форму-

272



лы Симпсона: существуют точки

ηk ∈ [xk−1, xk], η ∈ [a, b]

такие, что

|Rn(f )| ≤ (b− a)4

192n3
·
(

1

n

n∑
k=1

|f ′′′(ηk)|
)

=

=
(b− a)4

192n3
|f ′′′(η)| = O

(
1

n3

)
.

Формуле Симпсона можно дать другую интерпрета-
цию, позволяющую получить наилучшие оценки по-
грешности для этой квадратурной формулы при усло-
вии f ∈ C4[a, b]. Снова рассмотрим узлы

x1 = a, x2 = c :=
a + b

2
, x3 = b.

Пусть H4(f ;x) — интерполяционный полином Эрмита,
построенный по условиям:

H4(f ; a) = f (a), H4(f ; b) = f (b),

H4(f ; c) = f (c), H ′4(f ; c) = f ′(c).

Существует единственный интерполяционный полином
H4(f ;x) степени ≤ 3 вида: H4(f ;x) =

= A+B(x−a)+C(x−a)(x−b)+D(x−a)(x−b)(x−c) =
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= L3(f ;x) + D(x− a)(x− b)(x− c).

Несмотря на то, что H4(f ;x) 6≡ L3(f ;x) при D 6= 0,
приближенное равенство∫ b

a
f (x) dx ≈

∫ b

a
H3(f ;x) dx

совпадает с малой формулой Симпсона при любом D,
поскольку c = (a + b)/2 и как следствие∫ b

a
(x− a)(x− b)

(
x− a + b

2

)
dx = 0.

Оценим теперь погрешность малой формулы Симпсона
при условии f ∈ C4[a, b]. Как было показано при рас-
смотрении интерполяционных полиномов Эрмита, су-
ществует ξ ∈ (a, b) такая, что

r(x) = f (x)−H4(f ;x) =
f (4)(ξ)

4!
(x− a)(x− b)(x− c)2.

Поэтому погрешность малой формулы Симпсона пред-
ставима в виде

R3(x) =

∫ b

a
r(x) dx =

=
f (4)(η)

4!

∫ b

a
(x− a)(x− b)(x− c)2dx = −f

(4)(η)

2880
(b− a)5,

где η ∈ [a, b], а постоянная 2880 — результат вычисле-
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ния произведения 6! · 4. Суммируя погрешности малых
формул для частичных отрезков, получаем погрешность
большой формулы Симпсона: если f ∈ C4[a, b], то су-
ществуют точки ηk ∈ [xk−1, xk] и η ∈ [a, b] такие, что

Rn(f ) = −(b− a)5

2880n4
·
(

1

n

n∑
k=1

f (4)(ηk)

)
=

= −(b− a)5

2880n4
f (4)(η) = O

(
1

n4

)
.

Обратим внимание на одно из важных следствий этой
оценки погрешности: формулы Симпсона точны для
любого полинома степени, меньшей или равной трем.
Действительно, четвертая производная полинома сте-
пени ≤ 3 тождественно равна нулю, а значит, равна
нулю и погрешность формулы Симпсона для него.

В заключение отметим, что имеет место утвержде-
ние. Пусть r = 1, 2, 3 или 4 и f ∈ Cr[a, b]. Тогда для
погрешности формулы Симпсона справедлива формула

Rn(f ) = O

(
1

nr

)
.

При r = 3 или 4 этот факт доказан выше. При r = 1 или
2 такое утверждение было доказано выше для форму-
лы трапеций и для формулы средних прямоугольников,
что влечет доказываемое утверждение и для формулы
Симпсона в силу следующего наблюдения.
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Напомним сначала формулы трапеций и средних
прямоугольников:

∫ b
a f (x) dx ≈

≈ Φt(f ;n) :=
b− a
n

[
f0 + fn

2
+ f1 + f2 + . . . + fn−1

]
,

∫ b

a
f (x) dx ≈ Φmr(f ;n) :=

b− a
n

[f1/2 + f3/2 . . .+ fn−1/2].

Очевидно, формула Симпсона имеет вид∫ b

a
f (x) dx ≈ Φt(f ;n) + 2Φmr(f ;n)

3
.

Это дает нам возможность легко запомнить формулу
Симпсона: если взять треть формулы трапеций, две
третьих формулы средних прямоугольников и просум-
мировать, то получим формулу Симпсона. Аналогич-
ное утверждение верно и для погрешности формулы
Симпсона. В частности, для f ∈ C2[a, b] погрешность
формулы Симпсона можно оценить следующим обра-
зом: существуют точки η1, η2 ∈ [a, b] такие, что

Rn(f ) =
−f ′′(η1) + f ′′(η2)

36n2
(b− a)3 = O

(
1

n2

)
.

5.3 Квадратурные формулы Гаусса

До сих пор мы рассматривали квадратурные форму-
лы с произвольными узлами. При любом выборе узлов
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интерполяционная квадратурная формула∫ b

a
ρ(x)f (x) dx ≈

n∑
k=1

Ak f (xk) (5.2)

с коэффициентами

Ak = pk :=

∫ b

a
ρ(x)

ωn(x) dx

(x− xk)ω′n(xk)
(5.3)

является точной для полиномов степени не выше n−1.
Гаусс предложил выбирать узлы xk специальным обра-
зом, чтобы эта формула оказалась точной на полино-
мах наибольшей степени. Он доказал, что интерполя-
ционная квадратурная формула∫ 1

−1
f (x) dx ≈

n∑
k=1

pk f (xk)

будет точной для любого полинома степени не выше
2n − 1, если узлы xk ∈ [−1, 1] являются нулями поли-
нома Лежандра степени n. Оказалось, что идея Гаусса
легко распространяется и на общий случай, т. е. узлы
можно выбрать таким образом, что∫ b

a
ρ(x)xmdx =

n∑
k=1

pk x
m
k (5.4)

для любого m = 0, 1, . . . , 2n− 1.

Интерполяционные квадратурные формулы, точ-
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ные на полиномах степени не выше 2n − 1, называют-
ся квадратурными формулами Гаусса или квадратур-
ными формулами наивысшего алгебраического
порядка точности. Слово "наивысшего" здесь не яв-
ляется случайным, так как

ни при каком выборе узлов x1, . . . , xn и коэффици-
ентов Ak квадратурная формула вида (5.2) не может
быть точной для всех полиномов степени 2n.

Доказательство. Предположим противное. Если су-
ществует квадратурная формула вида (5.2), точная на
полиномах степени 2n, то для функции

f (x) = ω2
n(x), ωn(x) =

n∏
j=1

(x− xj),

являющейся полиномом степени 2n, мы получаем про-
тиворечивое соотношение

0 <

∫ b

a
ρ(x)ω2

n(x) dx =
n∑
k=1

Akω
2
n(xk) = 0.

5.3.1 Структура формул Гаусса

Полиномы P и Q будем называть ортогональными с
весом ρ(x), если∫ b

a
ρ(x)P (x)Q(x)dx = 0.
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Напомним: всюду в дальнейшем предполагаем, что ве-
совая функция является интегрируемой и удовлетворя-
ет условиям

ρ(x) ≥ 0,

∫ b

a
ρ(x) dx > 0.

Теорема 5.6 Квадратурная формула (5.2) точна для
любого полинома степени ≤ 2n − 1 тогда и только
тогда, когда выполняются следующие два условия:

1) ωn(x) =
∏n
k=1(x− xk) ортогонален с весом ρ(x)

любому полиному q(x) степени ≤ n− 1, т. е.∫ b

a
ρ(x)ωn(x)q(x)dx = 0;

2) квадратурная формула является интерполяци-
онной, т. е. ее коэффициенты Ak выражаются форму-
лой (5.3).

Доказательство. Необходимость. Пусть квадратур-
ная формула является точной для любого полинома
степени ≤ 2n − 1. Поскольку 2n − 1 ≥ n − 1, то фор-
мула должна быть интерполяционной, следовательно,
условие 2) выполнено.

Проверим условие 1). Возьмем полином q(x) сте-
пени ≤ n − 1. Тогда полином Q(x) = q(x)ωn(x) имеет
степень ≤ 2n − 1, поэтому условие точности дает ра-
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венство∫ b

a
ρ(x)q(x)ωn(x)dx =

n∑
k=1

Ak q(xk) ωn(xk) = 0.

Значит, ωn(x) удовлетворяет условию 1).
Достаточность. Пусть условия 1) и 2) выполне-

ны. Рассмотрим произвольный полином Q(x) степени
≤ 2n− 1. Его можно представить в виде

Q(x) = q(x)ωn(x) + r(x),

где q и r — полиномы степени ≤ n− 1. Но тогда∫ b

a
ρ(x)Q(x)dx =

∫ b

a
ρ(x)q(x)ωn(x)dx +

∫ b

a
ρ(x)r(x)dx,

причем первое слагаемое в правой части этого равен-
ства равно нулю в силу условия 1). Поэтому с учетом
условия 2) и равенств Q(xk) = r(xk) получаем∫ b

a
ρ(x)Q(x)dx =

∫ b

a
ρ(x)r(x)dx =

=
n∑
k=1

Ak r(xk) =
n∑
k=1

AkQ(xk),

что и требовалось доказать.
Далее мы покажем, что существует единственная

сетка узлов x1, x2, . . . , xn, для которой ωn(x) удовлетво-
ряет условию 1) этой теоремы. Окончательное утвер-
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ждение вытекает из двух последующих теорем.

Теорема 5.7 Для любого натурального числа n суще-
ствует полином Pn(x) степени n, ортогональный с
весом ρ(x) любому полиному степени ≤ n− 1.

Первое доказательство. Для искомого полинома

Pn(x) = b0 + b1x + . . . + bn−1x
n−1 + xn

требуемое условие ортогональности можно записать в
виде равенств: −

∫ b
a ρ(x)xn+j dx =

=

∫ b

a
ρ(x) (b0 + b1x + . . . + bn−1x

n−1)xj dx

для всех j = 0, 1, . . . , n − 1. Очевидно, эти интеграль-
ные равенства представляют собой систему линейных
алгебраических уравнений относительно неизвестных
коэффициентов b0, b1, . . . , bn−1. Достаточно показать,
что соответствующая однородная система уравнений∫ b

a
ρ(x) (a0 + . . . + an−1x

n−1)xj dx = 0, (5.5)

где j = 0, 1, . . . , n− 1, имеет единственное решение

a0 = a1 = . . . = an−1 = 0.

С этой целью умножим j-тое уравнение (5.5) на aj и
просуммируем по j = 0, 1, . . . , n − 1. Будем иметь ра-
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венства
n−1∑
j=0

aj

∫ b

a
xj ρ(x)

n−1∑
k=0

akx
k dx =

=

∫ b

a
ρ(x)

n−1∑
j=0

n−1∑
k=0

ak aj x
k xj dx =

=

∫ b

a
ρ(x)

∣∣∣∣∣
n−1∑
k=0

ak x
k

∣∣∣∣∣
2

dx = 0.

Отсюда с учетом неотрицательности подынтегральной
функции следует, что для почти всех x ∈ [a, b]

ρ(x)

∣∣∣∣∣
n−1∑
k=0

ak x
k

∣∣∣∣∣
2

= 0.

Если хотя бы один из коэффициентов ak отличен от ну-
ля, то полином a0 + a1x + . . . + an−1x

n−1 может быть
равным нулю лишь в конечном числе точек. Но тогда
получили бы ρ(x) = 0 почти всюду на промежутке ин-
тегрирования, а значит∫ b

a
ρ(x) dx = 0,

что противоречит требованиям на весовую функцию.

Второе доказательство. Над полем веществен-
ных чисел рассмотрим линейное пространство

Hn((a, b), ρ)
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алгебраических полиномов степени ≤ n с веществен-
ными коэффициентами, со скалярным произведением

(F,G) =

∫ b

a
ρ(x)F (x)G(x)dx (F,G ∈ Hn((a, b), ρ))

и соответствующей нормой

‖F‖ =

√∫ b

a
ρ(x)|F (x)|2dx.

В этом пространстве система элементов

{1, x, x2, . . . , xn}

является линейно-независимой. Действительно, если эта
система была бы линейно-зависимой, то найдутся веще-
ственные числа a0, a1, . . . , an такие, что хотя бы один из
коэффициентов ak отличен от нуля, но полином

a0 + a1x + . . . + an−1x
n−1

равен нулю как элемент L2((a, b), ρ), т. е.

∫ b

a
ρ(x)

∣∣∣∣∣
n∑
k=0

ak x
k

∣∣∣∣∣
2

dx = 0,

что невозможно.
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Применяя процесс ортогонализации Грама-Шмидта
к линейно-независимой системе

{1, x, x2, . . . , xn},

получаем ортонормированную систему

{P0(x), P1(x), . . . , Pn(x)}.

По построению Pn(x) является линейной комбинацией
элементов {1, x, x2, . . . , xn}, в которую входит с нену-
левым коэффициентом элемент xn, и ортогонален эле-
ментам {1, x, x2, . . . , xn−1}. Таким образом, Pn(x) — по-
лином степени n с вещественными коэффициентами,
ортогональный с весом ρ(x) всем полиномам степени
≤ n− 1.

Этим и завершается доказательство.
Процесс ортогонализации Грама-Шмидта приводит

к полиному Pn(x) со старшим членом вида c xn, c 6= 0.
Поэтому в дальнейшем полагаем

Pn(x) = cωn(x) = c(x− x1) . . . (x− xn).

Но для того, чтобы иметь возможность использовать
нули ортогонального полинома Pn(x) в качестве узлов
квадратурной формулы, нам нужно доказать следую-
щее утверждение.

Теорема 5.8 Все нули ортогонального полинома Pn ве-
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щественны, просты (т. е. нет кратных корней) и ле-
жат в интервале (a, b).

Доказательство. Пусть ξ — вещественный нуль поли-
нома Pn(x). Тогда функция

q(x) =
Pn(x)

x− ξ
является отличным от тождественного нуля полиномом
степени n − 1 с вещественными коэффициентами, по-
этому

0 =

∫ b

a
ρ(x)q(x)Pn(x)dx =

∫ b

a
ρ(x)|q(x)|2(x− ξ)dx,

отсюда

ξ =

∫ b
a xρ(x)|q(x)|2dx∫ b
a ρ(x)|q(x)|2dx

∈ (a, b).

Если n = 1, то P1(x) = c(x − ξ), где c, ξ — ве-
щественные числа, c 6= 0, и доказательство заверше-
но. В общем случае, когда n ≥ 2, остается показать,
что уравнение Pn(x) = 0 не имеет ни комплексных, ни
кратных корней.

Предположим, что Pn(ξ) = 0, где ξ = ξ1+iξ2 — ком-
плексное число (т. е. ξ2 6= 0). Поскольку Pn(x) — поли-
ном с вещественными коэффициентами, то комплексно
сопряженное число ξ = ξ1− iξ2 также является корнем
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уравнения Pn(x) = 0 и

(x− ξ)q(x) = Pn(x) = Pn(x) = (x− ξ)q(x).

Поэтому из условия ортогональности Pn(x) степенным
функциям xj (j = 0, 1, . . . , n− 1) получаем

0 = (q, Pn) =

∫ b

a
ρ(x)q(x)(x− ξ)q(x) dx =

=

∫ b

a
ρ(x)|q(x)|2(x− ξ) dx,

и, как следствие, равенство

ξ =

∫ b
a xρ(x)|q(x)|2dx∫ b
a ρ(x)|q(x)|2dx

.

Правая часть этого равенства является вещественным
числом, таким образом, пришли к противоречию. Оста-
ется доказать отсутствие вещественных кратных кор-
ней. Предположим, что ξ — вещественный кратный ко-
рень, тогда функция

q(x) =
Pn(x)

(x− ξ)2

является полиномом с вещественными коэффициента-
ми степени n− 2. Снова условие ортогональности при-
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водит к противоречию:

0 = (q, Pn) =

(
Pn

(x− ξ)2
, Pn

)
=

=

(
Pn
x− ξ

,
Pn
x− ξ

)
=

∥∥∥∥ Pn
x− ξ

∥∥∥∥2

> 0.

Доказательство завершено.

5.3.2 Две оценки погрешности

Приведем две различных оценки погрешности квадра-
турной формулы∫ b

a
ρ(x)f (x) dx ≈

n∑
k=1

pk f (xk)

в предположении, что эта формула точна на полиномах
степени≤ 2n−1, т. е. является квадратурной формулой
Гаусса. Как мы уже знаем, это предположение равно-
сильно следующим условиям:

полином ωn(x) = (x− x1) . . . (x− xn) ортогонален
с весом ρ(x) любому полиному степени ≤ n− 1, а ко-
эффициенты pk вычисляются по формулам

pk =

∫ b

a
ρ(x)

ωn(x) dx

(x− xk)ω′n(xk)
.

Напомним, что при любой сетке узлов для любой
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интерполяционной квадратурной формулы
n∑
k=0

pk =

∫ b

a
ρ(x) dx.

Дополнительным свойством формулы Гаусса явля-
ется положительность всех коэффициентов pk.
Убедиться в этом можно так: для любого индекса k

функция

fk(x) =

(
ωn(x)

x− xk

)2

(fk(xk) := ω′2n (xk) > 0)

является полиномом степени 2n− 2, поэтому формула
Гаусса для нее точна:∫ b

a
ρ(x)fk(x)dx =

n∑
j=1

pj fk(xj) = pk fk(xk).

Отсюда следует

pk =

∫ b
a ρ(x)fk(x)dx

fk(xk)
> 0.

Таким образом, при любом числе узлов сетки

0 < pk ≤
∫ b

a
ρ(x) dx,

т. е. коэффициенты ограничены числом, не зависящим
от n, и вычисления по квадратурной формуле наивыс-
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шего алгебраического порядка точности оказываются
устойчивыми при повышении числа узлов. Эксперты по
вычислениям отмечают, что на практике квадратурные
формулы Гаусса применяются с числом узлов до 100.

В двух следующих теоремах через

ψn(f ) =

∫ b

a
ρ(x)f (x)dx−

n∑
k=1

pk f (xk)

мы будем обозначать погрешность квадратурной фор-
мулы Гаусса.

Теорема 5.9 Для любой функции f ∈ C[a, b]

|ψn(f )| ≤ 2E2n−1(f )

∫ b

a
ρ(x)dx,

где E2n−1(f ) — наилучшее равномерное приближение
f полиномами степени ≤ 2n− 1.

Доказательство. Пусть Q(x) — произвольный поли-
ном степени ≤ 2n− 1. Имеем∫ b

a
ρ(x)Q(x)dx =

n∑
k=1

pkQ(xk).

Поэтому погрешность квадратурной формулы Гаусса
может быть оценена следующим образом: |ψn(f )| =

=

∣∣∣∣∣
∫ b

a
ρ(x)[f (x)−Q(x)]dx−

n∑
k=1

pk [f (xk)−Q(xk)]

∣∣∣∣∣ ≤
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≤ ‖f (x)−Q(x)‖C[a,b]

{∫ b

a
ρ(x)dx +

n∑
k=1

pk

}
=

= 2‖f (x)−Q(x)‖C[a,b]

∫ b

a
ρ(x)dx.

Отсюда в силу произвольности полинома Q(x) степени
≤ 2n− 1 вытекает утверждение теоремы.

Теорема 5.10 Для любой функции f ∈ C2n[a, b] спра-
ведливо представление

ψn(f ) =
f (2n)(η)

(2n)!

∫ b

a
ρ(x)ω2

n(x)dx,

где η ∈ [a, b].

Доказательство. Рассмотрим интерполяционный по-
лином Эрмита-Фейера Hn(f ;x), построенный по усло-
виям

Hn(f ;xk) = f (xk), H
′
n(f ;xk) = f ′(xk) (k = 1, 2, . . . , n).

Так как Hn(f ;x) — полином степени ≤ 2n − 1, то для
него формула Гаусса точна, и поэтому∫ b

a
ρ(x)f (x) dx ≈

n∑
k=1

pk f (xk) =

=
n∑
k=1

pkHn(f ;xk) =

∫ b

a
ρ(x)Hn(f ;x) dx.

290



Отсюда следует

ψn(f ) =

∫ b

a
ρ(x) [f (x)−Hn(f ;x)] dx.

Пользуясь доказанным ранее представлением

f (x)−Hn(f ;x) =
f (2n)(ξ(x))

(2n)!
ω2
n(x) (ξ(x) ∈ (a, b))

для остаточного члена при кратной интерполяции и
теоремой о среднем для интегралов, легко получаем
требуемую формулу для ψn(f ).

5.3.3 Важные частные случаи

Лишь при малых значениях числа узлов n мы можем
построить явно ортогональные полиномы Pn(x) для про-
извольного промежутка и допустимого веса, пользуясь,
например, процессом ортогонализации Грама-Шмидта.
Явные выражения для Pn(x) при любом числе узлов
получены лишь в специальных случаях.

Приведем наиболее употребительные ортогональ-
ные полиномы и соответствующие им квадратурные
формулы Гаусса.

1) Полиномы Лежандра

Ln(x) =
dn(1− x2)n

dxn
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ортогональны с весом ρ(x) ≡ 1 на отрезке [−1, 1]. Ну-
ли Ln еще "вручную" были табулированы до n = 512.
Соответствующая квадратурная формула∫ 1

−1
f (x)dx ≈

n∑
k=1

pk f (xk), pk =

∫ 1

−1

Ln(x)dx

(x− xk)L′n(xk)
dx,

первая среди квадратурных формул наивысшего алгеб-
раического порядка точности, была получена Гауссом.

2) Ортогональными полиномами на отрезке [−1, 1]

с весом
ρ(x) =

1√
1− x2

оказываются уже знакомые нам полиномы Чебышева
первого рода:

Tn(x) = cos(n arccosx)

с нулями

xk = cos

(
(2k − 1)π

2n

)
(k = 1, . . . , n).

Легко вычисляются коэффициенты: pk = π/n для лю-
бого k. Соответствующая квадратурная формула наи-
высшего алгебраического порядка точности — формула
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Эрмита — имеет вид∫ 1

−1

f (x)√
1− x2

dx ≈ π

n

n∑
k=1

f

(
cos

2k − 1

2n
π

)
.

3) Для случая ρ(x) =
√

1− x2 на отрезке [−1, 1] ор-
тогональные полиномы — полиномы Чебышева второго
рода — определены формулами

Un(x) =
sin(n + 1)θ

sin θ
, θ = arccosx.

Полином Un(x) обращается в нуль в точках xk = cos kπ
n+1

(k = 1, . . . , n), а квадратурная формула также имеет
явный вид: ∫ 1

−1

√
1− x2f (x)dx ≈

≈ π

n + 1

n∑
k=1

sin2 kπ

n + 1
f

(
cos

kπ

n + 1

)
.

4) Пусть ρ(x) = (1− x)α(1 + x)β на отрезке [−1, 1].
Параметры удовлетворяют неравенствам

α > −1, β > −1,

вытекающим из условия интегрируемости весовой функ-
ции. Соответствующие ортогональные полиномы

P (α,β)
n (x) =

1

(1− x)α(1 + x)β
· d

n[(1− x)n+α(1 + x)n+β]

dxn
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называются полиномами Якоби. Можно показать, что
коэффициенты pk выражаются в явном виде в терми-
нах Γ — функции Эйлера.

5) Для построения квадратурных формул можно
также использовать полиномы Лагерра

Pn(x) =
1

xαe−x
dn[xn+αe−x]

dxn
.

Система полиномов Лагерра является ортогональной с
весом ρ(x) = xαe−x на полуоси (0,+∞). Имеется есте-
ственное условие для параметра: α > −1.

6) На числовой прямой (−∞,+∞) положительная
функция ρ(x) = e−x

2 является весовой, поскольку∫ ∞
−∞

e−x
2

dx <∞.

Ортогональные полиномы, соответствующие этому слу-
чаю, называются полиномами Эрмита и выражаются
формулой Hn(x) = ex

2
(
e−x

2
)(n)

.

5.4 Дополнительные вопросы

5.4.1 Интегралы с весом
от периодических функций

Рассмотрим 2π-периодическую, непрерывную функцию
f (x). Понятно, что в этом случае для вычисления ин-
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теграла ∫ 2π

0
ρ(x) f (x) dx

можно использовать приведенные ранее квадратурные
формулы. Для периодических функций естественной
является также приближенная формула, получаемая
заменой функции ее тригонометрическим интерполя-
ционным полиномом. А именно, полагаем∫ 2π

0
ρ(x) f (x) dx ≈

∫ 2π

0
ρ(x)Tn(f ;x) dx,

где Tn(f ;x) — тригонометрический полином степени не
выше n, удовлетворяющий условиям

Tn(f ;x0) = f (x0), . . . , Tn(f ;x2n) = f (x2n)

на сетке с 2n + 1 узлами

x0, x1, . . . , x2n ∈ [0, 2π], 0 < |xi − xj| < 2π, i 6= j.

Для получения квадратурной формулы необходимо ис-
пользовать представление в форме Лагранжа

Tn(f ;x) =
2n∑
k=0

f (xk)tk(x),
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где

tk(x) =

∏2n
j=0,j 6=k sin

x−xj
2∏2n

j=0,j 6=k sin
xk−xj

2

, k = 0, 1, . . . , 2n.

Будем иметь∫ 2π

0
ρ(x) f (x) dx ≈

2n∑
k=0

qk f (xk), (5.6)

где

qk =

∫ 2π

0
ρ(x) tk(x) dx (k = 0, 1, . . . , 2n).

Поскольку Tn(F ;x) ≡ F (x) для любой функции вида

F (x) =
a0

2
+

n∑
k=1

ak cos kx + bk sin kx,

то построенная квадратурная формула (5.6) будет точ-
на для любого тригонометрического полинома F сте-
пени ≤ n.

5.4.2 О формулах Филона

Пусть f ∈ C[a, b] и ω >> b − a, т. е. число ω намно-
го больше длины отрезка [a, b]. Тогда функции cosωx

и sinωx, x ∈ [a, b], многократно меняют знак. Такие
функции называют быстро осциллирующими.
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Рассмотрим интегралы∫ b

a
f (x) cosωx dx,

∫ b

a
f (x) sinωx dx.

Интегралы такого типа часто встречаются в приклад-
ных задачах, для решения которых используются пре-
образования Фурье или ряды Фурье. Например, для
разложения заданной функции в ряд Фурье необходи-
мо для любого числа k ∈ N вычислять интегралы

ak =
1

π

∫ 2π

0
f (x) sin kx dx, bk =

1

π

∫ 2π

0
f (x) cos kx dx.

Очевидно, достаточно рассмотреть интегралы с коси-
нусами, так как интегралы с синусами сводятся к ним
заменой переменных.

Применение обычных квадратурных формул мо-
жет привести к ошибочным результатам. Например,
пусть узлы x1, x2, . . . , xn выбраны так, что они совпа-
дают с корнями уравнения cos kx = 0, т. е. cos kxj = 0.
Применяя к функции g(x) = f (x) cos kx квадратурную
формулу вида∫ 2π

0
g(x) dx ≈

n∑
j=1

Ajg(xj),

при любом выборе параметров Aj приходим к неудо-
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влетворительному результату: коэффициенты Фурье

bk =
1

π

∫ 2π

0
f (x) cos kx dx ≈ 1

π

n∑
j=1

Ajf (xj) cos kxj = 0

для любой функции f .
На практике для вычисления интегралов от быстро

осциллирующих функций рекомендуют формулы Фи-
лона (Луи Наполеон Жорж Филон — английский ма-
тематик французского происхождения, специалист по
прикладной математике).

Формулы Филона для приближенного вычисления
интегралов

∫ b
a f (x) cosωx dx можно найти в любом спра-

вочнике. Объясним здесь лишь исходную идею Филона.
Пусть f — непрерывная, плавно меняющаяся функ-

ция, а функция ϕ(x) является быстро осциллирующей
на отрезке [a, b]. Построим интерполяционный полином
Лагранжа Ln(f ;x) по узлам x1, x2, . . . , xn ∈ [a, b]. По-
лагаем ∫ b

a
f (x)ϕ(x) dx ≈

∫ b

a
Ln(f ;x)ϕ(x) dx =

=
n∑
j=1

f (xj)

∫ b

a
lj(x)ϕ(x) dx,

где lj(x) — фундаментальные полиномы Лагранжа.
В том случае, когда ϕ(x) = cosωx, интегралы вида∫ b

a x
mϕ(x) dx можно вычислить точно интегрированием
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по частям. Следовательно, в этом случае явно опреде-
ляются и интегралы вида

∫ b
a lj(x)ϕ(x) dx.

5.4.3 О несобственных интегралах

Пусть функция f : (a, b]→ R непрерывна, но

lim sup
x→a+

|f (x)| =∞,

т. е. точка a является особой. Предположим, что схо-
дится несобственный интеграл

J(f ) =

∫ b

a
f (x) dx := lim

δ→0+

∫ b

a+δ
f (x) dx.

Непосредственное применение квадратурных формул
для вычисления такого интеграла может привести к
сколь угодно большим ошибкам.

Для корректного вычисления J(f ) можно посту-
пить следующим образом: с применением квадратур-
ных формул вычисляем интеграл∫ b

a+δ
f (x) dx.

с достаточно малым δ > 0, сопровождая вычисления
с оценкой выбрасываемого интеграла по промежутку
[a, a + δ]. Наряду с этим стандартным подходом су-
ществуют и искусственные приемы для приближенно-
го вычисления несобственных интегралов. Укажем два
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распространенных приема: 1) сведение несобственного
интеграла к собственному путем замены переменной
или интегрированием по частям с последующим при-
менением одной из квадратурных формул; 2) аддитив-
ное или мультипликативное выделение особенности с
последующим комбинированием аналитических и чис-
ленных методов. Проиллюстрируем эти рекомендации
на примере интеграла

J =

∫ 1

0
(1 + x2)−1 lnx dx.

Заменой переменных x = tk с постоянной k > 1 по-
лучаем J = k2

∫ 1
0 (1 + t2k)−1tk−1 ln t dt. Новая подынте-

гральная функция g(t) = (1 + t2k)−1tk−1 ln t непрерыв-
на на [−1, 1], поэтому интеграл J =

∫ 1
0 g(t)dt можно

вычислять приближенно по известным квадратурным
формулам. При интегрировании по частям с функ-
циями u = lnx и

v =

∫ x

0

dt

1 + t2
,

мы также получаем интеграл от непрерывной функ-
ции. Аддитивное выделение особенностей: простые
преобразования

(lnx)(1 + x2 − x2)

1 + x2
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позволяют представить наш интеграл в виде суммы

J =

∫ 1

0
lnx dx−

∫ 1

0

x2 lnx

1 + x2
dx,

где первый интеграл легко вычисляется аналитически
и равен единице, а ко второму интегралу можно приме-
нить одну из квадратурных формул. Мультиплика-
тивное выделение особенностей: запишем подын-
тегральную функцию в виде произведения

f (x) =
lnx

1 + x2
= ρ(x)g(x),

где

g(x) = − 1

1 + x2
, ρ(x) = − lnx, g ∈ C[0, 1].

К полученному интегралу можно применить квадра-
турную формулу вида∫ 1

0
ρ(x)g(x)dx ≈

n∑
k=1

Ak g(xk).

Для вычисления несобственных интегралов
∫∞

0 f (x) dx

можно рекомендовать один из следующих путей: либо
заменой переменных получить несобственные интегра-
лы по конечному промежутку, например, по формуле∫∞

0 f (x) dx =
∫ 1

0 f (x) dx−
∫ 1

0
f(1/t)
t2 dt, далее пользовать-

ся рекомендованными выше приемами; либо вычислять
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интеграл по отрезку [0, A] с достаточно большим A, со-
провождая вычисления с оценкой выбрасываемого ин-
теграла по лучу [A,+∞).

5.5 Задачи и упражнения

1. Для интеграла ∫ 1

0
xf (x) dx

постройте квадратурную формулу с двумя узлами, точ-
ную для всех полиномов: a) первой степени, b) второй
степени.

2. Найдите алгебраический порядок точности квад-
ратурной формулы∫ 1

0
f (x) dx ≈ f (0) + 4f (1/2) + f (1)

6
.

3. Для интеграла∫ 1

0
xf (x) dx

постройте квадратурную формулу Гаусса с двумя уз-
лами.
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4. Вычислите с точностью ε = 0, 1 интегралы∫ 1

0

dx

x + 2
,

∫ 1

0

dx

x4 + 2

с помощью: a) квадратурной формулы прямоугольни-
ков, b) квадратурной формулы трапеций.

5. Вычислите интеграл∫ 1

−1

dx√
1− x4

с помощью формулы Гаусса с двумя узлами.
6. С точностью ε = 0, 01 вычислите интеграл∫ 1

0
ex sin 100x dx.

7. С точностью ε = 0, 01 вычислите несобственный
интеграл ∫ 1

0

dx√
x(1− x)(x + 1)

.

8. Покажите, что следующая квадратурная форму-
ла прямоугольников∫ 2π

0
f (x)dx ≈ 2π

n

n∑
k=1

f

(
2πk

n

)
является формулой наивысшего тригонометрического
порядка точности.
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Глава 6

Задачи для ОДУ и УЧП

Из общего курса дифференциальных уравнений извест-
но, что существует большое число обыкновенных диф-
ференциальных уравнений (ОДУ), решения которых
выражаются через известные функции, и эти решения
можно найти в явном виде. Существуют хорошие спра-
вочники, содержащие те ОДУ, для которых известны
формулы их общих решений.

Нередко дифференциальные уравнения приходит-
ся решать приближенно, т. е. искать то или иное при-
ближение точного решения. Для решения различных
задач, связанных с дифференциальными уравнениями,
разработан ряд эффективных приближенных методов.
Их можно условно разделить на аналитические и чис-
ленные методы. Часто эти подходы переплетаются, и
возникают численно-аналитические методы.

Основным методом численного решения дифферен-
циальных уравнений является метод конечных разно-
стей (МКР). При изучении метода конечных разностей
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нужно обратить внимание на 3 составные части метода:
построение разностной схемы и алгоритма для вы-

числения сеточной функции,
теоретическое обоснование сходимости к точному

решению и
оценки погрешности в зависимости от шага сетки

и условий гладкости рассматриваемых функций.
Большая часть данного раздела посвящена различ-

ным методам приближенного решения одной и той же
задачи, а именно, задачи Коши для ОДУ первого по-
рядка, разрешенного относительно производной. Будут
рассмотрены также задача Коши для системы диффе-
ренциальных уравнений первого порядка, а также за-
дача Коши для дифференциальных уравнений высших
порядков, разрешенных относительно старшей произ-
водной.

Мы опишем также подробно применение метода ко-
нечных разностей к краевой задаче для линейного диф-
ференциального уравнения второго порядка и обосно-
вание сходимости метода.

По сравнению с ОДУ для дифференциальных урав-
нений в частных производных (УЧП) усложняются как
сами постановки задач, так и методы их решений.

Из курса уравнений в частных производных (УЧП)
известно, что для каждого типа уравнений существует
хорошо разработанная теория о свойствах решений, о
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корректных постановках краевых и начально краевых
задач и методах их решения. Эти теории существенно
зависят от типа уравнений и отличаются друг от друга.

Для УЧП, которые имеют применения на практи-
ке, хорошо разработаны методы аналитического пред-
ставления решений и разнообразные численные мето-
ды. Мы рассмотрим типичные задачи для нескольких
уравнений математической физики, когда численное ре-
шение может быть найдено методом конечных разно-
стей (МКР). Познакомимся также с несколькими при-
ближенными методами решения операторных и инте-
гральных уравнений.

6.1 Задача Коши для ОДУ

Рассмотрим следующую задачу Коши для обыкновен-
ного дифференциального уравнения первого порядка:
нужно найти решение y ∈ C1[x0, b] уравнения

y′ = f (x, y) (6.1)

на отрезке [x0, b], удовлетворяющее условию

y|x=x0
= y0, (6.2)
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где y0 — заданное число. Функция f также считается
заданной на множестве

Ω = {(x, y) ∈ R2 : x0 ≤ x ≤ b, |y| <∞},

причем f ∈ C(Ω).

При поиске приближенного решения будем предпо-
лагать существование и единственность точного реше-
ния y ∈ C1[x0, b]. Как известно из курса дифференци-
альных уравнений, для этого правая часть должна об-
ладать некоторыми свойствами. Например, задача (6.1)
— (6.2) гарантированно имеет единственное решение на
достаточно малом отрезке [x0, b], если функция f удо-
влетворяет условию Липшица по второму аргументу:
существует число K > 0 такое, что

|f (x, y)− f (x, z)| ≤ K|y − z|

для любых y, z ∈ R.

Для приближенного решения задачи (6.1) — (6.2)
можно использовать следующие три классических ме-
тода:

- метод последовательных приближений Пикара;

- метод Коши (метод степенных рядов с неопреде-
ленными коэффициентами);

- метод Эйлера (=метод ломаных).

Рассмотрим их подробнее.
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6.1.1 Метод Пикара

Задача (6.1) – (6.2) эквивалентна интегральному урав-
нению

y(x) = y0 +

∫ x

x0

f (t, y(t))dt. (6.3)

Эквивалентность легко показывается: из (6.1) – (6.2)
интегрированием получаем (6.3), и обратно, если инте-
гральное уравнение (6.3) имеет непрерывное решение,
то оно окажется непрерывно дифференцируемым в си-
лу свойств правой части (6.3).

Начальное условие y(x0) = y0 для решения инте-
грального уравнения (6.3) выполнено автоматически,
и, дифференцируя (6.3), получаем (6.1).

Метод Пикара — итерационный метод решения ин-
тегрального уравнения (6.3). В простейшем варианте в
качестве нулевого приближения берется функция, тож-
дественно равная постоянной:

y0(x) ≡ y0.

Последовательно определяются первое приближение

y1(x) = y0 +

∫ x

x0

f (t, y0)dt,

затем второе приближение

y2(x) = y0 +

∫ x

x0

f (t, y1(t))dt,
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и наконец, общее правило для определения n-ого при-
ближения задается равенством

yn(x) = y0 +

∫ x

x0

f (t, yn−1(t))dt.

Естественно ожидать, что для достаточно большо-
го n ∈ N

yn(x) ≈ y(x),

т. е. n-е приближение близко к точному решению зада-
чи. Этот факт легко доказать, если правая часть урав-
нения (6.1) удовлетворяет некоторым условиям. При-
ведем точные утверждения.

Сначала установим простой факт: если итераци-
онный процесс приводит к равномерно сходящейся по-
следовательности, то предельная функция является
искомым решением.

Теорема 6.1 Пусть f ∈ C(Ω). Если последователь-
ность Пикара yn(x) равномерно сходится к некоторой
функции y(x) на [x0, b], то y(x) — решение задачи (6.1)
— (6.2).

Доказательство. По построению y0 = сonst, y1 – непре-
рывная функция как интеграл с переменным верхним
пределом от непрерывной функции. Последовательно
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получаем, что yn−1 ∈ C[x0, b]. И поэтому

yn(x) = y0 +

∫ x

x0

f (t, yn−1(t))dt ∈ C[x0, b].

По условию теоремы yn(x) ⇒ y(x), и, как мы установи-
ли, функция yn(x) непрерывна на отрезке [x0, b]. Зна-
чит, по теореме Вейерштрасса и предельная функция
y(x) непрерывна на [x0, b]. Имеем

f (t, yn(t)) ⇒ f (t, y(t)) на [x0, b] при n→∞.

Переходя к пределу в равенстве

yn(x) = y0 +

∫ x

x0

f (t, yn−1(t))dt

при n → ∞, получаем, что предельная функция удо-
влетворяет интегральному уравнению (6.3). А значит,
функция y(x) является решением задачи Коши (6.1) –
(6.2).

Замечание. Если yn ⇒ y, то понятно, что функ-
цию yn для достаточно большого n можно взять в ка-
честве приближенного решения. Погрешность

εn = max
x∈[x0,b]

|y(x)− yn(x)| → 0 при n→∞.

Для явной оценки погрешности можно использо-
вать следующее утверждение.
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Теорема 6.2 Пусть f ∈ C(Ω) и удовлетворяет усло-
вию Липшица по переменной y, а именно,

|f (x, y)− f (x, z)| ≤ K|y − z|

для любых y, z ∈ R, K = const > 0.

Если число b > x0 выбрано так, что K(b−x0) < 1,
то справедлива следующая оценка погрешности

εn = ‖y − yn‖C[x0,b] ≤
αn

1− α
M(b− x0),

где

α = K(b− x0) < 1, M = max
x∈[x0,b]

|f (x, y0)|.

Доказательство. В пространстве C[x0, b] определим
оператор

A : C[x0, b]→ C[x0, b]

следующим равенством:

(Ay)(x) = y0 +

∫ x

x0

f (t, y(t))dt

для любой функции y ∈ C[x0, b]. Легко показать, что A
– сжимающий оператор, так как для любого x ∈ [x0, b]

|(Ay)(x)− (Az)(x)| ≤
∫ x

x0

|f (t, y(t))− f (t, z(t))|dt ≤
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≤
∫ x

x0

K|y(t)− z(t)|dt ≤

≤ K‖y − z‖C[x0,b]

∫ x

x0

dt =

= K‖y − z‖C[x0,b](x− x0), ∀x ∈ [x0, b].

Следовательно,

‖Ay − Az‖C[x0,b] ≤ K(b− x0)‖y − z‖C[x0,b] =

= α‖y − z‖C[x0,b], α < 1.

По теореме Банаха о сжимающем операторе будем иметь

‖y − yn‖C[x0,b] ≤
αn

1− α
‖y1 − y0‖C[x0,b] ≤

≤ αn

1− α
M

∥∥∥∥∫ x

x0

dt

∥∥∥∥
C[x0,b]

=

=
αn

1− α
M(b− x0).

Этим и завершается доказательство.

Метод Пикара позволяет определить явно точное
решение лишь в редких случаях, в частности, в тех слу-
чаях, когда функция f (x, y) такова, что интегралы∫ x

x0

f (t, yn−1(t))dt

вычисляются в явном виде. Приведем иллюстративный
312



пример.

Рассмотрим следующую задачу Коши

y′ = x2 + 2xy, y|x=0 = 0.

Поскольку уравнение y′ = x2 + 2xy является линей-
ным, стандартным методом из курса дифференциаль-
ных уравнений мы можем найти точное аналитическое
решение. Оно имеет вид

y(x) = −x
2

+
ex

2

2

∫ x

0
e−t

2

dt.

Вывод этой формулы пропускаю и оставляю для слу-
шателей в качестве упражнения.

А теперь получим точное решение методом после-
довательных приближений Пикара. Полагая y0(x) ≡ 0,
непосредственными вычислениями получаем

y1(x) =
x3

3
,

y2(x) =

∫ x

0

(
t2 +

2t4

3

)
dt =

x3

3
+

2x5

3 · 5
,

y3(x) =

∫ x

0

(
t2 +

2t4

3
+

4t6

3 · 5

)
dt =

x3

3
+

2x5

3 · 5
+

4x7

3 · 5 · 7
.
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По индукции получаем

yn(x) =

∫ x

0
(t2 + 2tyn−1(t)) dt =

n∑
k=1

2k−1x2k+1

(2k + 1)!!
.

Разложив точное решение в ряд Тейлора и сравнив
его с итерациями Пикара, мы легко убеждаемся в том,
что итерационный процесс сходится и позволяет опре-
делить приближенное решение с любой степенью точ-
ности. В частности, для точного решения

y(x) = lim
n→∞

yn(x)

мы нашли новую формулу. Сравнивая ее с точным ре-
шением, найденным выше аналитически, будем иметь
нетривиальное тождество

∞∑
k=1

2k−1x2k+1

(2k + 1)!!
= −x

2
+
ex

2

2

∫ x

0
e−t

2

dt.

6.1.2 Метод Коши

Предположим, что f — аналитическая функция пере-
менных (x, y) в некоторой окрестности точки (x0, y0),
т. е. эта функция представима там как сумма сходяще-
гося степенного ряда.

Рассмотрим снова задачу (6.1) – (6.2):

y′ = f (x, y), x0 ≤ x ≤ b,
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y(x0) = y0.

В аналитической теории дифференциальных уравне-
ний доказывается, что решение существует и единствен-
но, причем в некоторой окрестности точки x0 его мож-
но представить в виде суммы сходящегося степенного
ряда

y(x) =
∞∑
k=0

ak(x− x0)k.

Пусть этот ряд сходится на отрезке [x0, b].

Понятно, что на основании этого теоретического
факта мы можем сделать простой вывод: в качестве
приближенного решения задачи Коши можно взять ча-
стичную сумму ряда

yn(x) =
n∑
k=0

ak(x− x0)k

для достаточно большого n.

Коэффициенты ak указанного степенного ряда за-
висят от y0 и от частных производных функции f в точ-
ке (x0, y0). Действительно, в силу начального условия
(6.2) имеем a0 = y(x0) = y0, а уравнение (6.1) позволяет
найти

a1 = y′(x0) = f (x0, y(x0)) = f (x0, y0).
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Для определения ak при k ≥ 2 используем ряд

f (x, y(x)) =
∞∑
k=0

bk(x− x0)k,

где bk также неизвестны, но их можно выразить через
частные производные функции f в точке (x0, y0) и ко-
эффициенты a1, . . . , ak. Подставляя в уравнение (6.1)
ряды для двух функций y(x) и f (x, y(x)), получаем

∞∑
k=1

k ak (x− x0)k−1 =
∞∑
k=0

bk (x− x0)k,

отсюда следует равенство коэффициентов

nan = bn−1 ∀n ≥ 1.

Поскольку при n = 1

a1 = b0 =
∞∑
k=0

bk(x− x0)k
∣∣∣∣∣
x=x0

= f (x0, y(x0)) = f (x0, y0),

то при n = 2 получаем

2a2 = b1 =
df (x, y(x))

dx

∣∣∣∣
x=x0

=

=
∂f

∂x
(x0, y0) +

∂f

∂y
(x0, y0)y′(x0) =
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=
1

2

[
∂f

∂x
(x0, y0) +

∂f

∂y
(x0, y0)a1

]
.

Для n = 3

3a3 = b2 =
1

2!

d2f (x, y(x))

dx2

∣∣∣∣∣
x=x0

.

Очевидно, в правую часть войдут частные производные
f и найденные уже величины

y′(x0) = a1, y′′(x0) = 2a2.

Таким образом a3 выражается через a1, a2 и частные
производные f в точке (x0, y0). Аналогично убеждаем-
ся в том, что a4 можно выразить через a1, a2, a3 и зна-
чения частных производных f до порядка три в точке
(x0, y0). Понятно, что по индукции мы можем опреде-
лить коэффициенты ak для любого натурального k.

В принципе, можно выписать и явные формулы
для ak, но в общем случае они будут весьма громозд-
кими. Но во многих специальных случаях неизвестные
коэффициенты можно определить явно и выписать ре-
шение задачи. В качестве такого примера рассмотрим
ту же задачу Коши

y′ = x2 + 2xy, y|x=0 = 0,

с помощью которой мы иллюстрировали метод Пика-
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ра. Подставляя в уравнение (6.1) ряды для y(x) и ее
производной, мы получаем тождество

y′(x) =
∞∑
k=1

k ak x
k−1 = x2 + 2

∞∑
k=0

ak x
k+1,

справедливое в некоторой окрестности начала коорди-
нат. Легко видеть, что a0 = y(x0) = 0, a1 = y′(0) = 0, и
для любого натурального числа n имеем

a2n = 0,

а коэффициенты с нечетными индексами определяются
последовательно из соотношения

(2n + 1)a2n+1 = 2a2n−1.

Очевидно, точное решение задачи в этом частном слу-
чае запишется в виде суммы знакомого нам ряда

y(x) =
∞∑
k=1

2k−1x2k+1

(2k + 1)!!
.

Отметим, что радиус сходимости этого ряда равен бес-
конечности и поэтому полученное решение удовлетво-
ряет дифференциальному уравнению на всей числовой
оси.
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6.1.3 Метод Эйлера

Снова рассматриваем задачу Коши (6.1) – (6.2). Пред-
ложенный Эйлером численный метод основан на при-
ближении производной конечной разностью. Этот ме-
тод часто называют методом ломаных или явным ме-
тодом Эйлера.

Идея метода проста: отрезок [x0, b] делим наN рав-
ных частей с шагом

h =
b− x0

N
.

Берем сетку с равноотстоящими узлами

x0, x1, x2, . . . , xN = b,

где
xk = x0 + kh, k = 1, 2, . . . , N.

Обозначим точное решение рассматриваемой задачи Ко-
ши как

y(x), x0 ≤ x ≤ b.

Приближенное решение ищем в виде ломаной с верши-
нами (xk, yk), где yk ≈ y(xk).

Пусть f ∈ C2[x0, b]. Тогда по формуле Тейлора

y(x + h)− y(x) = hy′(x) + O(h2),

и дифференциальное уравнение (6.1) можно записать
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в виде равенства

y(x + h)− y(x) = hf (x, y(x)) + O(h2).

Следуя Эйлеру, заменим в этом уравнении x на xn и
отбросим O(h2). Получим n приближенных равенств

y(xn+1)− y(xn) ≈ hf (xn, y(xn)), n = 0, . . . , N − 1.

Приближенное значение yn ≈ y(xn) естественно нахо-
дить из соотношений

yn+1 − yn = hf (xn, yn), n = 0, . . . , N − 1.

Таким образом, мы приходим к следующему алгоритму
Эйлера:

y1 = y0 + hf (x0, y0),

y2 = y1 + hf (x1, y1),

. . . . . . . . .

yN = yN−1 + hf (xN−1, yN−1).

Очевидно, y1 = y(x1) + O(h2). При последователь-
ных вычислениях следующих величин

y2 ≈ y(x2),

. . . . . . . . .

yn ≈ y(xn),

. . . . . . . . .

yN ≈ y(xN)
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теоретическая погрешность определения yn на каждом
шаге также равна O(h2) (подчеркнем, что мы гово-
рим лишь о погрешности метода, которая определяет-
ся без учета погрешности нахождения f (xn−1, yn−1) и
без учета округлений при вычислениях). Но погреш-
ность может накапливаться, и, например, мы можем
предположить лишь, что yN = y(xN) + O(h), так как
N = (b − x0)/h — величина порядка 1/h. Таким об-
разом, эти эвристические рассуждения дают, что по-
грешность метода Эйлера на конечном отрезке имеет
порядок O(h) (без учета погрешности вычислений).

6.2 Обобщения метода Эйлера

Рассмотрим обобщения метода Эйлера, основанные на
применении квадратурных формул. Как мы убедились
ранее, задача Коши (6.1) — (6.2) эквивалентна инте-
гральному уравнению (6.3), т. е. уравнению

y(x) = y0 +

∫ x

x0

f (t, y(t))dt.

Отсюда следует

y(x + h)− y(x) =

∫ x+h

x
f (t, y(t))dt.

Основная идея такова: интеграл правой части вычис-
ляем приближенно с помощью квадратурных формул,
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используя, например, малые квадратурные формулы
прямоугольников, трапеций и т. п. на каждом частич-
ном отрезке [xn−1, xn], определяемом узлами

xn = x0 + nh, n = 0, 1, . . . , N (h = (b− x0)/N).

Для краткости мы будем использовать при этом обо-
значение

ϕ(t) = f (t, y(t)).

6.2.1 Метод квадратур

1) Применим сначала малую формулу левых прямо-
угольников.

Можем записать∫ x+h

x
ϕ(t)dt = ϕ(x)h + R1.

Оценим погрешность, считая, что функция ϕ достаточ-
ное число раз дифференцируема. Так как∫ x+h

x
ϕ(x)dt = ϕ(x)

∫ x+h

x
dt = ϕ(x)h,

то будем иметь

R1 =

∫ x+h

x
[ϕ(t)− ϕ(x)] dt =

∫ x+h

x
dt

∫ t

x
ϕ′(τ )dτ =
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=

∫ x+h

x
ϕ′(τ )dτ

∫ x+h

τ
dt =

∫ x+h

x
ϕ′(τ )(x + h− τ )dτ.

По теореме о среднем для интегралов существует точка

ξ ∈ [x, x + h],

такая, что

R1 = ϕ′(ξ)

(
xτ + hτ − τ 2

2

)∣∣∣∣∣
x+h

x

= ϕ′(ξ)
h2

2
= O(h2).

Таким образом,∫ x+h

x
f (t, y(t))dt = hf (x, y(x)) + O(h2),

и поэтому можем записать дифференциальное уравне-
ние (6.1) в виде равенства

y(x + h)− y(x) = hf (x, y(x)) + O(h2).

Полагая x = xn и yn ≈ y(xn), мы приходим к следую-
щему алгоритму для определения yn+1:

yn+1 = yn + h f (xn, yn),

т. е. мы получаем по-другому алгоритм Эйлера.

2) Применим теперь малую формулу правых пря-
моугольников. По аналогии с предыдущим случаем по-
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лучаем формулу

y(x + h)− y(x) = hf (x + h, y(x + h)) + O(h2).

Полагая в ней x = x0, . . . , xn = x0 + nh, . . ., приходим
к следующему алгоритму

y1 = y0 + hf (x1, y1)

y2 = y1 + hf (x2, y2)

. . . . . . . . . . . . . . . . . .

yn+1 = yn + hf (xn+1, yn+1)

На каждом шаге yn+1 определяется как решение урав-
нения (в общем случае нелинейного)

yn+1 = yn + h f (xn+1, yn+1).

Полученный алгоритм называют неявным методом Эй-
лера. Ясно, что погрешность метода на каждом шаге
(≡ невязка) равна O(h2), а погрешность метода на от-
резке имеет порядок малости O(h).

Неявный метод Эйлера можно превратить в явный,
если yn+1 в правой части равенства

yn+1 = yn + h f (xn+1, yn+1)

заменим его выражением

yn+1 = yn + h f (xn, yn)
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из явного метода Эйлера. Получим новый явный алго-
ритм вида

yn+1 = yn + hf (xn+1, yn + hf (xn, yn)).

3) Применим теперь малую формулу трапеций. C
точностью до O(h3) имеем

y(x + h)− y(x) ≈ h
f (x, y(x)) + f (x + h, y(x + h))

2
,

отсюда для определения yn+1 ≈ y(xn+1) получаем сле-
дующий численный алгоритм:

yn+1 = yn +
h

2
[f (xn, yn) + f (xn+1, yn+1)] .

Понятно, что возник новый неявный метод, обобщаю-
щий метод Эйлера, причем погрешность нового метода
равна O(h2) на отрезке, так как невязка имеет порядок
малости O(h3).

Комбинируя этот неявный метод с явным методом
Эйлера, мы получаем еще один явный метод, задавае-
мый формулой

yn+1 = yn +
h

2
f (xn, yn) +

h

2
f (xn+1, yn + h f (xn, yn)).

Последняя формула представляет собой один из
простейших алгоритмов, получаемых методом Рунге-
Кутта. Погрешность этой формулы на каждом шаге
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оказывается равной O(h3), хотя вывод этой формулы
гарантирует лишь порядок O(h2) на каждом шаге из-за
того, что мы использовали формулу из явного метода
Эйлера с этой погрешностью.

6.2.2 Метод Рунге-Кутта (общая схема)

Все три формулы предыдущего пункта для приближен-
ного интегрирования можно записать в едином виде. А
именно, имеем∫ x+h

x
ϕ(t)dt ≈ A0ϕ(x) + A1ϕ(x + h),

где
ϕ(t) = f (t, y(t)),

причем A0 = 1, A1 = 0 для формулы левых прямо-
угольников, A0 = 0, A1 = 1 для формулы правых пря-
моугольников и

A0 = A1 =
1

2

для формулы трапеций. Отметим, что во всех случаях
A0 + A1 = 1.

Понятно, что число подобных формул можно уве-
личить, применяя, например, формулы средних прямо-
угольников или малую формулу Симпсона.

Идея метода Рунге-Кутта состоит в применении но-
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вых квадратурных формул вида∫ x+h

x
ϕ(t)dt ≈

q∑
i=0

Aiϕi,

где q — заданное натуральное число, значения Xi и Yi
в формулах ϕi = hf (Xi, Yi) подбираются специальным
образом.

Общая схема такова. Рассматриваются три группы
констант:

(A) A0, A1, . . . , Aq (
∑q

i=0Ai = 1);

(α) α1, α2, . . . , αq;

(β) 
β10

β20, β21

. . . . . . . . .

βq0, βq1, . . . , βq(q−1).

Функции ϕi определяются следующим образом:

ϕ0 = h f (x, y(x)),

ϕ1 = h f (x + α1h, y(x) + β10ϕ0),

ϕ2 = h f (x + α2h, y(x) + β20ϕ0 + β21ϕ1),

. . . . . . . . . . . . . . . . . . . . . . . .

ϕq = h f (x + αqh, y(x) +
∑q−1

i=0 βqiϕi).

Как и ранее, мы заменяем точное уравнение на прибли-
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женное

y(x + h)− y(x) ≈
q∑
i=0

Aiϕi,

тогда погрешность метода на каждом шаге определится
формулой вида

rq(h) = y(x + h)− y(x)−
q∑
i=0

Aiϕi. (6.4)

Вопрос о том, каким образом определяются число-
вые параметры является очень важным, и мы займемся
этой задачей чуть ниже. Предположим пока, что посто-
янные из групп (A), (α), (β) заданы. Тогда для прибли-
женного решения задачи Коши (6.1) – (6.2) возникает
следующий алгоритм Рунге-Кутта:

yn+1 = yn +
q∑
i=0

Aiϕi, n = 0, 1, . . . , N − 1,

где ϕi определяются выписанными формулами, в ко-
торых вместо x берем xn, а вместо y(x) подставляем
yn ≈ y(xn), т. е.

ϕ0 = h f (xn, yn),

ϕ1 = h f (xn + α1h, yn + β10ϕ0),

ϕ2 = h f (xn + α2h, yn + β20ϕ0 + β21ϕ1),

. . . . . . . . . . . . . . . . . . . . . . . .

ϕq = h f (xn + αqh, yn +
∑q−1

i=0 βqiϕi).
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Так формально выглядит алгоритм численного мето-
да Рунге-Кутта в общем случае, если постоянные из
групп (A), (α), (β) заданы. Но эти константы выбира-
ются специальным образом, точнее, их определяют как
решения систем уравнений, получаемых из некоторых
систем тождеств.

Рассмотрим этот вопрос подробнее.
Основной становится следующая цель: минимиза-

ция погрешности метода (невязки) rq(h) за счет выбора
констант из групп (A), (α), (β). Естественной является
следующая

Задача. При заданном q нужно подобрать коэф-
фициенты (A), (α), (β) так, чтобы rq(h) = O(hk+1), т. е.
так, чтобы погрешность метода на отрезке [x0, b] име-
ла порядок O(hk), k ∈ N , с максимально возможным
числом k.

Понятно, что для этого нужно добиться, чтобы по-
грешность на каждом шаге равнялась rq(h) = O(hk+1)

для любых достаточно гладких функций f (x, y). Это
максимальное число k принято называть порядком ме-
тода Рунге-Кутта.

Очевидно, rq(0) = 0. Далее мы предполагаем, что
функция f достаточное число раз дифференцируема.
Тогда по формуле Тейлора

rq(h) = r′q(0)h+
r′′q (0)

2
h2 + . . .+

r
(k)
q (0)

k!
hk +

r
(k+1)
q (ξ)

(k + 1)!
hk+1.
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Потребуем, чтобы

rq(h) = O(hk+1),

т. е. потребуем выполнения равенств

r′q(0) = 0, . . . , r(k)
q (0) = 0.

Таким образом, имеем k равенств, и постараемся вы-
брать неизвестные постоянные таким образом, чтобы
эти равенства превратились в тождества.

По формуле Тейлора

y(x + h)− y(x) =

= y′(x)h+
y′′(x)

2!
h2 +

y′′′(x)

3!
h3 + . . .+

y(k)(x)

k!
hk+O(hk+1).

и
q∑
i=0

Aiϕi = c1 h + c2 h
2 + . . . + ck h

k + O(hk+1),

поэтому равенства r(i)
q (0) = 0 для i = 1, . . . , k запишут-

ся в виде: 
c1 = y′(x)

c2 = y′′(x)
2

. . . . . . . . . . . .

ck = y(k)(x)
k!
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6.2.3 Алгоритмы Рунге-Кутта
порядка 4, а также 2 и 3

Снова рассматриваем задачу Коши (6.1) — (6.2) на от-
резке [x0, b]. Выбираем шаг h = b−x0

N и узлы

xn = x0 + nh, n = 0, . . . , N, xn = x0 + Nh = b.

Самым употребительным для решения задачи Ко-
ши (6.1) — (6.2) является метод Рунге-Кутта со следу-
ющим алгоритмом:

yn+1 = yn +
1

6
(ϕ0 + 2ϕ1 + 2ϕ2 + ϕ3), n = 0, . . . , N − 1,

где 
ϕ0 = hf (xn, yn)

ϕ1 = hf (xn + h
2 , yn + ϕ0

2 )

ϕ2 = hf (xn + h
2 , yn + ϕ1

2 )

ϕ3 = hf (xn + h, yn + ϕ2)

Очевидно, этот алгоритм соответствует общему алго-
ритму, когда константы (A), (α), (β) даны равенствами

A0 = A3 = 1
6,

A1 = A2 = 1
3,

α1 = α2 = 1
2,

α3 = 1,

β10 = β21 = 1
2,

β32 = 1,
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а остальные константы βij = 0.

Таким образом, приведенный алгоритм соответству-
ет случаю q = 3. Прямыми громоздкими вычислениями
можно убедиться, что порядок этого алгоритма Рунге-
Кутта равен четырем. Именно этот алгоритм Рунге-
Кутта приводится в справочниках и широко использу-
ется на практике.

Последовательно рассмотрим случаи q = 0, q = 1 и
q = 2, и найдем для этих случаев порядок k = k(q) ме-
тода Рунге-Кутта. Как мы увидим, если q ≥ 1, то систе-
ма уравнений для определения числовых параметров
является нелинейной и имеет, как правило, множество
решений.

I. Метод Рунге-Кутта при q = 0. Имеем

yn+1 = yn + A0hf (xn, yn),

r0(h) = y(x + h)− y(x)− A0hf (x, y),

r0(0) = 0, xn = x, yn = y.

Выпишем производные по h и приравняем к нулю
их значения в точке h = 0. Имеем

r′0(h) = y′(x + h)− A0f (x, y),

и
r′′0(h) = y′′(x + h).
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Очевидно

r
(j)
0 (h) = y(j)(x + h), r′0(0) = 0,

отсюда y′(x) = A0f (x, y), следовательно, A0 = 1.

Таким образом, метод Рунге-Кутта при q = 0 эк-
вивалентен методу Эйлера

yn+1 = yn + hf (xn, yn).

Возникает вопрос: можно ли получить k = 2?

r′′0(0) = 0, отсюда 0 = y′′(x) = f ′x + f ′yy
′ = f ′x + f ′yf.

В общем случае f ′x + f ′yf не эквивалентен нулю, таким
образом, порядок k = 2 невозможен в общем случае.
Но можно отметить, что для уравнений специального
вида порядок k = 2 не исключен, например, тождество
f ′x + f ′yf ≡ 0 верно для функции

f (x, y) =
y

x
, f ′x + f ′yf = − y

x2
+

1

x
· y
x
.

II. Метод Рунге-Кутта при q = 1.

Надо определить 4 постоянных A0, A1, α1 и β10.
Проведем необходимые вычисления. Имеем:

r1(h) = y(x + h)− y(x)−

−A0hf (x, y)− A1hf (x + α1h, y + β10hf (x, y)).
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Поскольку

y(x + h)− y(x) = y′(x)h + y′′(x)
h2

2
+ O(h3) =

= f (x, y)h + [f ′x + f ′yf ]
h2

2!
+ O(h3),

A0ϕ0+A1ϕ1 = A0hf+A1h[f+(f ′xα1+f ′yβ10f )h+O(h2)] =

= (A0 + A1)hf + A1α1f
′
xh

2 + A1β10f
′
yfh

2 + O(h3),

то условие r′1(0) = 0 приводит к равенству

(A0 + A1)f (x, y) = f (x, y)

для любых f , следовательно, A0 + A1 = 1.

Равенство r′′1(0) = 0 равносильно соотношению

A1α1f
′
x + A1β10f

′
yf =

f ′x + f ′yf

2

(здесь и далее аргументы у функций f, f ′x, f ′y, т. е. x и
y, для краткости записи опускаем).

В общем случае f, f ′x, f ′y являются линейно неза-
висимыми функциями. Поэтому равенство r′′1(0) = 0

(рассматриваемое как тождество, которое должно вы-
полняться для всех допустимых значений x и y) приво-
дит к двум уравнениям, получаемым путем приравни-
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вания коэффициентов при функциях f ′x и f ′yf . Имеем
A1α1 = 1

2,

A1β10 = 1
2,

A0 + A1 = 1.

Получили систему из 3-х уравнений с 4-мя неизвест-
ными. Эта система имеет однопараметрическое множе-
ство решений. Можно взять, например, A1 ∈ (0, 1) как
параметр. Тогда

A0 = 1− A1,

α1 = β10 =
1

2A1
.

Укажем наиболее простые частные случаи, которым
соответствуют различные алгоритмы Рунге-Кутта по-
рядка k = 2, получаемые при q = 1.

а) Числовые значения

A0 = A1 =
1

2
, α1 = β10 = 1,

приводят к следующему алгоритму Рунге-Кутта поряд-
ка k = 2:

yn+1 = yn +
h

2
[f (xn, yn) + f (xn + h, yn + hf (xn, yn))].

б) Значениям

A0 = 0, A1 = 1, α1 = β10 =
1

2
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соответствует такой алгоритм Рунге-Кутта:

yn+1 = yn + h f

(
xn +

h

2
, yn +

h

2
f (xn, yn)

)
,

получаемый в случае q = 1 с гарантированной оценкой
погрешности r1(h) = O(h3), т. е. порядок этого метода
k = 2.

Отметим, что A1 можно выбирать также из следу-
ющих соображений: представив погрешность в виде

r1(h) = kh3 + O(h4),

минимизируем k за счет выбора A1.

III. Методы Рунге-Кутта при q = 2.

Имеем

yn+1 = yn + (A0ϕ0 + A1ϕ1 + A2ϕ2),

где 
ϕ0 = hf (x, y)

ϕ1 = hf (x + α1h, y + β10ϕ0)

ϕ2 = hf (x + α2h, y + β20ϕ0 + β21ϕ1)

(предполагаем, что в этих формулах xn = x, yn = y).
Имеем 8 неизвестных постоянных: A0, A1, A2, α1, α2,
β10, β20, β21. Можно показать, что условие

r′2(0) = r′′2(0) = r′′′2 (0) = 0
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будет выполнено при следующем выборе постоянных:

A0 = A1 =
1

6
, A2 =

2

3
,

α1 = β10 =
1

2
, α2 = 1, β20 = −1, β21 = 2.

Тогда r2(h) = O(h4), следовательно, порядок метода
k = 3.

Проведем вычисления для получения общего реше-
ния соответствующей системы тождеств. Имеем

r2(h) = y(x + h)− y(x)−
2∑
i=0

Aiϕi,

y(x+h)− y(x) = y′(x)h+ y′′(x)
h2

2
+ y′′′(x)

h3

6
+O(h4) =

= f (x, y)h + [f ′x(x, y) + f ′y(x, y)f (x, y)]
h2

2
+

+[f ′′xx(x, y) + 2f ′′xy(x, y)f (x, y) + f ′′yy(x, y)f 2(x, y)+

+f ′y(x, y)f ′x(x, y) + f
′2
y (x, y)f (x, y)]

h3

6
+ O(h4),

dϕ0

dh
= f (x, y) = ϕ′0, ϕ′′0 = ϕ′′′0 = . . . = 0,

ϕ′1 = f (x+α1h, y+β10ϕ0) +h[f ′x(x+α1h, y+β10ϕ0)α1+

+f ′y(x + α1h, y + β10ϕ0)β10f (x, y)].
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Следовательно,

ϕ′1(0) = f (x, y), ϕ′2(0) = f (x, y).

Тогда первое тождество имеет вид

f = A0f + A1f + A2f,

откуда следует, что

A0 + A1 + A2 = 1.

Напомним, что мы рассматриваем случай q = 2. Цель
заключается в том, чтобы порядок метода получился
равным k = 3. Нужно определить подходящие посто-
янные A0, A1, A2, α1, α2, β10, β20, β21. Имеем ϕ0 = hf ,
где f = f (x, y), и далее

ϕ1(h) = hf + (α1f
′
x + β10f

′
yf )h2+

(α2
2f
′′
xx + 2α1β10ff

′′
xy + β2

10f
′′
yyf

2)
h3

2
+ O(h4),

ϕ2(h) = hf + (α2f
′
x + β20f

′
yf + β21f

′
yf )h2+

+[α2
2f
′′
xx + 2α2(β20 + β21)ff ′xy + (β20 + β21)2ff ′yy+

+2β21f
′
y(α1f

′
x + β10f

′
yf )]

h3

2
+ O(h4).

Приравниваем подобные члены в разложениях по сте-
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пеням h для функций

y(x + h)− y(x) и
2∑
i=0

Aiϕi,

и получаем следующие уравнения для определения 8-и
постоянных A0, A1, A2, α1, α2, β10, β20, β21:

A0 + A1 + A2 = 1 (1)

α1A1 + α2A2 = 1
2 (2)

α2
1A1 + α2

2A2 = 1
3 (3)

β10A1 + (β20 + β21)A2 = 1
2 (4)

α1β10A1 + α2(β20 + β21)A2 = 1
3 (5)

β2
10A1 + (β20 + β21)2A2 = 1

3 (6){
α1β21A2 = 1

6 (7)

β10β21)A2 = 1
6 (8)

Из (7) и (8) следует, что α1 6= 0, β21 6= 0,A2 6= 0, β10 6= 0.

Поделим (7) на (8), получим

α1 = β10, (4′)

β21 =
1

6α1A2
. (5′)

Поскольку α1 = β10, то из (2) и (4) следует, что

β20 + β21 = α2 (6′).
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Ясно, что уравнения (4), (5), (6) являются теперь след-
ствиями уравнений (2) и (3).

Остается система из шести уравнений. А именно, к
(1), (2), (3) добавляются уравнения (4′), (5′), (6′), где

β10 = α1 (4′)

β21 = 1
6α1A2

(5′)

β20 = α2 − β21 (6′)

Рассмотрим уравнения (1) — (3), не содержащих вели-
чин β10, β20, β21. В системе (1) — (3) имеем пять неиз-
вестных, а именно, A0, A1, A2, α1, α2, а число уравнений
равно 3. Ясно, что решение такой системы не является
единственным, на самом деле существует бесконечное
множество решений. А именно, можно взять за свобод-
ные параметры величины A1, α1 и найти все осталь-
ные. Таким образом, приходим к выводу о том, что
полученная система будет иметь 2-х параметрическое
семейство решений.

Одно из решений было указано выше:

A0 = A2 =
1

6
, A1 =

2

3
,

α1 = β10 =
1

2
, α2 = 1, β20 = −1, β21 = 2.
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Укажем еще одно решение решение:

A0 =
1

4
, A1 = 0, A2 =

3

4
,

α1 = β10 =
1

3
, α2 = β21 =

2

3
, β20 = 0.

Соответствующий этому случаю алгоритм Рунге-Кутта
имеет вид:

yn+1 = yn +
h

4
f (xn, yn)+

+
3h

4
f

(
xn +

2

3
h, yn +

2

3
hf

(
xn +

h

3
, yn +

h

3
f (xn, yn)

))
.

6.3 Оценки погрешности

Мы снова рассматриваем задачу Коши (6.1) — (6.2) о
нахождении решения дифференциального уравнения

y′ = f (x, y)

на отрезке [x0, b], удовлетворяющего условию

y|x=x0
= y0.

Напомню, что численные алгоритмы связаны с делени-
ем отрезка [x0, b] на N равных частей, с шагом

h =
b− x0

N
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и с узлами

xn = x0 +nh, n = 0, . . . , N (xN = x0 +Nh = b),

используемых при вычислении приближенных значе-
ний решения yn ≈ y(xn).

Метод численного решения задачи (6.1) — (6.2) на-
зывается одношаговым, если yn+1 определяется с ис-
пользованием yn формулой вида

yn+1 = yn + hΦf(h, xn, yn) (6.5)

— явная схема (явный метод), где Φf определяется
методом. Также возможны одношаговые неявные алго-
ритмы вида

yn+1 = yn + hFf(h, xn, yn, yn+1, xn+1),

при этом yn+1 определяется как корень этого уравне-
ния.

Отметим, что существуют многошаговые мето-
ды решения задачи (6.1) — (6.2). В многошаговых ме-
тодах начало таблицы значений задано, т. е. известны

y0, y1 ≈ y(x1), . . . , yn−1 ≈ y(xn−1), yn ≈ y(xn)

и явный k-шаговый метод задается алгоритмом вида

yn+1 = yn + hΨf(h, yn−k+1, yn−k+2, . . . , yn)
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для n = k − 1, . . . , N − 1.
Далее рассмотрим приближенное решение задачи

(6.1) — (6.2) каким-либо явным одношаговым методом
с алгоритмом вида

yn+1 = yn + hΦf(h, xn, yn), n = 0, . . . , N − 1.

Определение 6.1 Погрешностью метода при задан-
ном шаге h = (b− x0)/N называется следующая вели-
чина

ε(h) = max
1≤n≤N−1

|εn|,

где εn := y(xn)− yn.

Нам потребуется также

Определение 6.2 Пусть yn(x) — точное решение за-
дачи Коши:

y′n = f (x, yn), xn ≤ x ≤ b,

yn(xn) = yn, n = 0, 1, 2, . . . , N − 1.

В частности, при n = 0 имеем y0(x) = y(x) — решение
(6.1) — (6.2). Невязкой называют величину

rn := yn(xn+1)− yn+1.

Задача.Оценить погрешность метода ε(h) при усло-
вии, что известны свойства функции f (x, y) и поведе-
ние невязки rn для малых h. Стандартные требования
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на f и rn таковы:

f : [x0, b]× R→ R

— непрерывная функция, и∣∣∣∣∂f (x, y)

∂y

∣∣∣∣ ≤ L = Const

(следовательно, f удовлетворяет условию Липшица по
второй переменной);

выполняется условие

lim
h→0

r(h)

h
= 0

для функции r(h) := max1≤n≤N−1 |rn|.
Напомню, что в известных нам методах оценки для

невязки r(h) определялись ранее. В частности, имеем

r(h) = O(h2)

в методе Эйлера или

r(h) = O(hk+1), (k = 2, 3, 4)

в методе Рунге-Кутта порядка k.
Потребуются следующие предварительные утвер-

ждения.

Лемма 6.1 Пусть [α, β] ⊂ [x0, b], функция f диффе-
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ренцируема по y. Пусть, далее, функции Y и Z – несов-
падающие решения уравнения y′ = f (x, y) на отрезке
[α, β]. Тогда имеет место формула

Y (β)− Z(β) = [Y (α)− Z(α)] exp

∫ β

α

(
∂f

∂y

)
Θ(x)

dx,

где использовано обозначение(
∂f

∂y

)
Θ(x)

= f ′y(x, Y (x) + Θ(x) · (Z(x)− Y (z))),

с некоторой Θ(x) ∈ (0, 1).

Доказательство. Так как

Y ′(x) = f (x, Y (x)), Z ′(x) = f (x, Z(x)),

то имеем

Y ′(x)− Z ′(x) = f (x, Y (x))− f (x, Z(x)).

Применяя формулу Лагранжа о конечных приращени-
ях к функции f по второй переменной, получаем

Y ′(x)− Z ′(x) =

(
∂f

∂y

)
Θ(x)

[Y (x)− Z(x)],

что влечет равенство

d

dx
ln[Y − Z] =

(
∂f

∂y

)
Θ(x)

.

345



Интегрируя от α до β и применяя экспоненту к обеим
частям получаемого равенства, приходим к формуле

ln
Y (β)− Z(β)

Y (α)− Z(α)
=

∫ β

α

(
∂f

∂y

)
Θ(x)

dx.

Следовательно,

Y (β)− Z(β)

Y (α)− Z(α)
= exp

∫ β

α

(
∂f

∂y

)
Θ(x)

dx,

что и требовалось доказать.

Лемма 6.2 Для любого n = 1, 2, . . . , N справедливо ра-
венство

εn =
n∑
i=1

ri−1e
∫ xn
xi

(∂f∂y)Θi
dx
, Θi(x) ∈ (0, 1).

Доказательство. Так как y(xn) = y0(xn), то

εn = y(xn)− yn = y0(xn)− yn =

= y0(xn)− y1(xn) + y1(xn)− y2(xn) + y2(xn)−

−y3(xn) + . . . + yi−1(xn)− yi(xn) + . . . + yn−1(xn)− yn.

Мы провели элементарные преобразования, а именно,
вычитали и добавляли yi−1(xn) при i = 2, n. Заметим
также, что yi = yi(xi) по определению функции yi(x).

Согласно лемме 6.1 при выборе β = xn, α = xi,
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будем иметь

yi−1(xn)− yi(xn) = [yi−1(xi)− yi(xi)] · e
∫ xn
xi

(∂f∂y)Θi
dx

=

= [yi−1(xi)− yi] · e
∫ xn
xi

(∂f∂y)Θi
dx

=

= ri−1e
∫ xn
xi

(∂f∂y)Θi
dx
.

Суммируем полученные соотношения i = 1, n. Получа-
ем искомую формулу. Тем самым, лемма доказана.

С использованием этих лемм докажем теперь ос-
новное утверждение этого пункта об оценке погрешно-
сти одношагового метода решения задачи Коши при
условии, что невязка имеет вполне определенное пове-
дение. Напомним, что

ε(h) = max
0≤n≤N−1

|εn|, h =
b− x0

N
−шаг.

Справедлива

Теорема 6.3 Пусть yn — приближенное значение y(xn)

решения задачи (6.1) — (6.2) с использованием некото-
рого одношагового метода вида

yn+1 = yn + hΦf(xn, yn, h).

Пусть, далее,∣∣∣∣∂f∂y
∣∣∣∣ ≤ L = Const ∀x ∈ [x0, b], y ∈ R,
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существует мажоранта r(h), такая, что |ri| ≤ r(h)

для любого i = 1, 2, . . . , N − 1 и

lim
h→0

r(h)

h
= 0.

Тогда имеет место оценка

ε(h) = O

(
r(h)

h

)
.

Доказательство. В силу леммы 6.2

|εn| ≤
n∑
i=1

|ri−1|e
∫ xn
xi

(∂f∂y)Θi
dx
.

Поскольку

|ri−1| ≤ r(h),

∣∣∣∣∂f∂y
∣∣∣∣ ≤ L, n ≤ N,

то получаем

|εn| ≤ r(h)
n∑
k=1

eL(xn−xk) ≤

≤ r(h)
n∑
k=1

eL(b−x0) ≤ r(h)eL(b−x0)N.

Но N = (b− x0)/h, поэтому

|εn| ≤ r(h)eL(b−x0)
b− x0

h
= C

r(h)

h
,
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где
C = (b− x0)eL(b−x0).

Следовательно,

ε(h) ≤ C
r(h)

h
,

поэтому можем записать

ε(h) = O

(
r(h)

h

)
.

Имеем полезное

Следствие 6.3.1 Пусть k ≥ 1 — натуральное число.
Если мажоранта r(h) = O(hk+1), то погрешность ме-
тода ε(h) = O(hk).

6.4 Правило Рунге для выбора шага

Предположим, что задача Коши (6.1) — (6.2) решает-
ся некоторым численным одношаговым методом, и мы
теоретически знаем, что r(h) = O(hk+1), k ≥ 1. Точнее
предполагаем известным следующий факт: для невяз-
ки справедлива формула

rn = ϕ(xn, yn)hk+1 + O(hk+2)

при h→ 0, где ϕ — ограниченная функция. Из доказа-
тельства теоремы предыдущего пункта получаем, что
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погрешность может быть представлена формулой вида

εn = %(xn)hk + O(hk+1),

где % — ограниченная функция. Эта величина %(xn)hk

называется главным членом погрешности.
В предположении, что ϕ, ∂f

∂y непрерывно диффе-
ренцируемые функции по обеим переменным и k > 1,
можно показать, что

%(xn) =

∫ xn

x0

ϕ(t, y(t))e
∫ xn
t f ′y(τ,y(τ))dτdt.

Чтобы вычислить главный член погрешности, нуж-
но знать явный вид ϕ(xn, yn), а не просто существова-
ние функции ϕ и ее ограниченность.

Рунге предложил весьма практичный численный
метод для оценки главного члена погрешности. При-
ведем эвристические рассуждения Рунге.

Предположим, что известен вид главного члена по-
грешности

εn = %(xn)hk + O(hk+1), k ≥ 1,

но сама функция %(x) неизвестна.
Рассматриваем какой-либо численный одношаговый

метод. Пусть точка ξ ∈ [x0, b], ξ > x0, является общей
узловой точкой при разбиении отрезка [x0, b] с приме-
нением двух различных шагов h1 > 0 и h2 > 0, h1 6= h2.
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Вычисляем приближенное значение решения зада-
чи (6.1) — (6.2) в узловой точке ξ > x0 дважды по
единому алгоритму с шагом h1 и с шагом h2. Предпо-
лагаем, что {

ξ = x0 + n1h1

ξ = x0 + n2h2
,

где n1, n2 ∈ N, yh1
— приближенное значение y(ξ), вы-

численное при шаге h1, а yh2
— приближенное значение

y(ξ), вычисленное для шага h2. Тогда можем записать{
y(ξ)− yh1

≈ %(ξ)hk1
y(ξ)− yh2

≈ %(ξ)hk2

и, вычитая из первого соотношения второе, получаем

yh2
− yh1

≈ %(ξ)(hk1 − hk2).

Отсюда следует формула Рунге

%(ξ) =
yh2
− yh1

hk1 − hk2
,

получаемое заменой приближенного равенства точным
равенством.

Предположим теперь, что нам нужно найти при-
ближенное решение с точностью ε > 0. Если

|%(ξ)hk1| ≤ ε
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или
|%(ξ)hk2| ≤ ε,

то все в порядке, необходимая точность достигнута. В
качестве шага берем h1 или h2, соответственно.

Если в обоих случаях главный член погрешности
> ε, то возникает вопрос о выборе нового шага hε. А
именно, требуется выбрать шаг hε так, чтобы погреш-
ность ≤ ε. Рунге предложил учитывать при этом лишь
следующую оценку для главного члена

|%(ξ)|hkε ≤ ε,

и определить оптимальный шаг hε из равенства

|%(ξ)|hkε =
|yh2
− yh1

|
|hk1 − hk2|

hkε = ε.

Отсюда получаем следующее правило Рунге выбора
оптимального шага:

hε =

(
ε

∣∣∣∣∣ hk1 − hk2yh2
− yh1

∣∣∣∣∣
)1/k

.

Рассмотрим употребительный частный случай, ко-
гда h1 = h и h2 = 2h, где шаг h > 0. Тогда формула
Рунге для %(ξ) приобретает вид

%(ξ) =
y2h − yh
hk − (2h)k

=
yh − y2h

(2k − 1)hk
.
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Полезной является также равенство

y(ξ)− yh ≈
yh − y2h

(2k − 1)
,

из которой следует формула

y(ξ) ≈ yh +
yh − y2h

(2k − 1)
,

называемая двухшаговым правилом Рунге для увели-
чения точности вычисления y(ξ).

6.5 Многошаговые методы Адамса

Снова рассматриваем задачу Коши (6.1) — (6.2)

y′ = f (x, y)

на отрезке [x0, b], удовлетворяющее условию

y|x=x0
= y0.

Как и для одношаговых методов выбираем некоторый
шаг

h =
b− x0

N
,

и через yn обозначаем приближенное значение точного
решения y(xn) в узловых точках

xn = x0 +nh, n = 0, . . . , N (xN = x0 +Nh = b).
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Ставится следующая задача: начало таблицы значений
решения известно, а именно, известны значения

y0, y1, . . . , yn n < N.

Требуется вычислить

yn+1, yn+2, . . . , yN .

Рассмотрим два классических многошаговых мето-
да Адамса.

Начальные подходы для получения алгоритма для
обоих методов одинаковы. А именно, пользуемся снова
знакомым нам тождеством

y(xn+1) = y(xn) +

∫ xn+1

nn

y′(x)dx = y(xn) +

∫ xn+1

nn

ϕ(x)dx,

где
ϕ(x) := y′(x) = f (x, y(x)).

Основная идея Адамса такова: для вычисления инте-
грала функцию ϕ(x) приближаем интерполяционным
полиномом Лагранжа, построенным по (k + 1) узлу.
Можно заметить, что обсуждаемые ниже методы Адам-
са являются (k + 1) - шаговыми, где k — заданное вы-
числителем фиксированное число, 1 ≤ k ≤ n.

Итак, берем формулу

ϕ(x) = ϕk+1(x) + rk+1(x),
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где ϕk+1 — интерполяционный полином Лагранжа сте-
пени ≤ k, (k + 1) — число узловых точек, rk+1 — оста-
точный член (т. е. погрешность) интерполяции.

Рассмотрим сначала экстраполяционный метод
Адамса.

Считаем, что значения

ϕ(xj) = f (xj, y(xj)) ≈ f (xj, yj)

известны для j = 0, 1, . . . , n. Полином ϕk+1(x) строится
как интерполяционный полином Лагранжа по узлам

xn, xn−1, xn−2, . . . , xn−k.

На основании формулы

y(xn+1) = y(xn) +

∫ xn+1

xn

ϕ(x)dx

с заменой переменных x = xn +hα, 0 ≤ α ≤ 1, получа-
ем

y(xn+1) = y(xn) + h

∫ 1

0
ϕ(xn + αh)dα, dx = h dα.

Подставляем ϕ(x) = ϕk+1(x) + rk+1(x) в интеграл. От-
брасывая остаточный член, получаем формулу

y(xn+1) ≈ y(xn) + h

∫ 1

0
ϕk+1(xn + αh)dα,
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что порождает следующий алгоритм для определения
yn+1:

yn+1 = yn + h

∫ 1

0
ϕk+1(xn + αh)dα.

Очевидно, экстраполяционный метод Адамса — яв-
ный метод, так как ϕk+1 определяется явно известными
значениями yn, yn−1, . . . , yn−k. При выводе формул ис-
пользуются значения интерполяционного полинома в
точках x ∈ (xn, xn+1), лежащих вне отрезка [xn−k, xn].
Поэтому метод называется экстраполяционным.

Мы можем также записать формулу для погреш-
ности

Rk+1 =

∫ xn+1

xn

rk+1(x)dx = h

∫ 1

0
rk+1(xn + αh)dα

и оценить |Rk+1|, пользуясь тем, что

rk+1(x) =
ϕ(k+1)(ξ)

(k + 1)!
ωk+1(x), ξ ∈ (xn−k, xn+1),

где

ωk+1(x) =
n∏

j=n−k
(x− xj).

Введем обозначения ϕj = ϕ(xj) и запишем извест-
ную нам формулу для интерполяционного полинома
ϕk+1(x) в форме Ньютона с использованием конечных
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разностей. Поскольку x = xn + αh, то имеем

ϕk+1(xn+αh) = ϕn+∆1ϕn−1
α

1!
+∆2ϕn−2

α(α + 1)

2!
+. . .+

+∆kϕn−k
α(α + 1) . . . (α + k − 1)

k!
.

Следовательно, экстраполяционный алгоритм Адамса
будет иметь вид

yn+1 = yn + h

∫ 1

0
ϕk+1(xn + αh)dα =

= yn + h[ϕn + c1∆1ϕn−1 + c2∆2ϕn−2 + . . . + ck∆
kϕn−k],

где коэффициенты выражаются формулами

c1 =

∫ 1

0

α

1!
dα =

1

2
,

c2 =

∫ 1

0

α(α + 1)

2!
dα =

5

12
,

...

ck =

∫ 1

0

α(α + 1) . . . (α + k − 1)

k!
dα.

Таким образом, в экстраполяционном методе Адамса
yn+1 находится явно по формуле

yn+1 = yn + h
n∑
j=0

cj∆
jϕn−j.
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Очевидно,

α ∈ [0, 1],
α + j

j + 1
< 1, а значит c1 > c2 > c3 > . . . .

Рассмотрим интерполяционный метод Адам-
са. Напомню, что мы ищем приближенное решение за-
дачи Коши {

y′ = f (x, y), x0 ≤ x ≤ b,

y(x0) = y0.

Задан шаг разбиения отрезка и соответствующие узлы:

h =
b− x0

N
, x0, x1 = x0 + h, . . .

Рассуждая так же, как и при выводе алгоритма для
экстраполяционного метода Адамса, получаем алгоритм
вида

yn+1 = yn +

∫ xn+1

xn

ϕk+1(x)dx. (6.6)

Отличие интерполяционного метода от экстрапо-
ляционного состоит в следующем: берется иной интер-
поляционный полином Лагранжа ϕk+1(x) для ϕ(x). А
именно, рассматривается интерполяционный полином,
построенный по узлам

xn+1, xn, xn−1, xn−2, . . . , xn−k+1.
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Предполагаются известными значения

yn, yn−1, yn−2, . . . , yn−k+1,

поэтому будут известны

ϕ(xj) = f (xj, yj), j = n, n− 1, n− 2, . . . , n− k + 1.

Но при построении интерполяционного полинома по ука-
занным узлам приходится пользоваться величиной

ϕ(xn+1) = f (xn+1, yn+1),

где величина yn+1 заранее неизвестна.

Далее, в интеграле из (6.6) полагаем x = xn+1 +αh,
−1 ≤ α ≤ 0, что приводит к формуле

yn+1 = yn + α

∫ 0

−1
ϕk+1(xn+1 + αh)dα.

Интерполяционный полином ϕk+1 можно записать
в форме Ньютона через конечные разности. При обо-
значениях ϕj = ϕ(xj) будем иметь

ϕk+1(x) = ϕn+1 + ∆1ϕn
α

1!
+ ∆2ϕn−1

α(α + 1)

2!
+ . . .+

+∆kϕn−k+1
α(α + 1) . . . (α + k − 1)

k!
.

Таким образом, алгоритм интерполяционного метода
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Адамса можно записать в следующем виде:

yn+1 = yn + h[ϕn+1 + c̃1∆1ϕn + . . . + c̃k∆
kϕn−k+1],

где

c̃j =

∫ 0

−1

α(α + 1) . . . (α + j − 1)

j!
dα.

Нетрудно показать, что c̃j = O (1/(j ln j)).

Интерполяционный метод Адамса является неяв-
ным методом. Действительно, так как

ϕn+1 = y′(xn+1) = f (xn+1, yn+1)

то правая часть в алгоритме содержит yn+1. Поэтому
yn+1 определяется как корень соответствующего нели-
нейного уравнения.

Уравнение для определения yn+1 в (6.6) имеет вид

yn+1 = yn + αΨ(yn+1).

Для его решения относительно неизвестной yn+1 можно
воспользоваться методом простой итерации. Достаточ-
ное условие сходимости имеет вид

|αΨ′(y)| ≤ q < 1.

В качестве начального приближения y0
n+1 можно взять

значение yn+1, найденное по экстраполяционному мето-
ду Адамса.
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Проведем оценку погрешности в предположении

max |y(k+2)(x)| ≤M,

где M — заданная постоянная. Применяя известную
оценку для погрешности интерполяции

rk+1(x) =
y(k+2)(ξ)

(k + 1)!
ωk+1(x), ξ ∈ (xn−k+1, xn+1),

где

ωk+1(x) =
n+1∏

j=n−k+1

(x− xj),

легко получаем

|Rk+1| ≤ hk+1M |c̃k+1|,

где

c̃k+1 =

∫ 0

−1

α(α + 1) . . . (α + k)

(k + 1)!
dα.

6.6 Задача Коши для системы ОДУ

Изученные нами методы легко распространяются на
более общие задачи Коши, в частности, на следующую
задачу Коши для системы ОДУ первого порядка

Y ′ = F (x, Y ), x0 ≤ x ≤ b,

Y (x0) = Y0,
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где Y0 ∈ Rm — заданный вектор, Y : [x0, b]→ Rm — ис-
комое непрерывно дифференцируемое решение (функ-
ция скалярного аргумента с векторными значениями),
F : [x0, b] × Rm → Rm — заданная вектор-функция
векторного аргумента.

Ясно, что Y (x) — вектор с координатами

y1(x), y2(x), . . . , ym(x),

а F (x, Y ) — вектор с координатами

F1(x, y1, y2, . . . , ym), . . . , Fm(x, y1, y2, . . . , ym).

Поэтому мы фактически имеем систему дифференци-
альных уравнений первого порядка, состоящую из m
уравнений вида

y′j = Fj(x, y1, y2, . . . , ym), j = 1, . . . ,m,

с начальными условиями (условиями Коши)

y1(x0) = y01, . . . , ym(x0) = y0m,

где y0j — заданные числа, j = 1, . . . ,m.

Ясно, что описанная задача Коши для системы урав-
нений в векторной форме равносильно интегральному
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уравнению

Y (x) = Y0 +

∫ x

x0

F (t, Y (t))dt, x0 ≤ x ≤ b,

где интеграл
∫ x
x0
F (t, Y (t))dt понимается как вектор с

m координатами∫ x

x0

F1(t, Y (t))dt, . . . ,

∫ x

x0

Fm(t, Y (t))dt.

Изученные методы приближенного решения зада-
чи Коши для одного уравнения первого порядка мы мо-
жем распространить на случай задачи Коши для ука-
занной выше системы ОДУ первого порядка. Если поль-
зоваться векторной формой записи системы, то алго-
ритмы решения будут иметь тот же вид, что и алго-
ритмы решения для одного уравнения. Приведем три
примера.

1) Метод последовательных приближений Пикара
определится следующими формулами

Yn(x) = Y0 +

∫ x

x0

F (t, Yn−1(t))dt, x0 ≤ x ≤ b, n ∈ N.

2) Пусть h = (b − x0)/N и xn = x0 + nh (n =

0, 1, . . . , N). Метод ломаных Эйлера для определения
приближенных значений Yn точного решения Y (x) в

363



точке x = xn (n = 1, . . . , N) имеет вид

Yn+1 = Yn + hF (xn, Yn), n = 0, 1, . . . , N − 1.

3) Пусть снова h = (b − x0)/N и xn = x0 + nh

(n = 0, 1, . . . , N). Наиболее употребительный алгоритм
Рунге-Кутта порядка k = 4 для решения задачи Коши
в случае системы запишется в виде

Yn+1 = Yn +
1

6
(ϕ0 + 2ϕ1 + 2ϕ2 +ϕ3), n = 0, . . . , N − 1,

где Yn ≈ Y (xn), Yn+1 ≈ Y (xn+1),
ϕ0 = hF (xn, Yn)

ϕ1 = hF (xn + h
2 , Yn + ϕ0

2 )

ϕ2 = hF (xn + h
2 , Yn + ϕ1

2 )

ϕ3 = hF (xn + h, Yn + ϕ2)

.

Обсудим теперь кратко задачу Коши для диф-
ференциального уравнения порядка m ≥ 2. Тре-
буется найти решение y ∈ Cm[x0, b] дифференциально-
го уравнения порядка m ≥ 2

y(m) = f
(
x, y, y′, . . . , y(m−1)

)
, x0 ≤ x ≤ b,

удовлетворяющее начальным условиям

y(x0) = y0, y′(x0) = y′0, . . . , y(m−1)(x0) = y
(m−1)
0 ,
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где y(j)
0 — заданные числа. Здесь речь идет о числовой

функции y : [x0, b] → R и заданной числовой функции
f : [x0, b]× Rm → R.

Как известно из курса дифференциальных уравне-
ний, уравнение порядка m ≥ 2 можно заменить равно-
сильной системой ОДУ первого порядка, состоящей из
m ≥ 2 уравнений. Действительно, мы можем формаль-
но определить m-мерный вектор

Y (x) =
(
y(x), y′(x), . . . , y(m−1)(x)

)
.

Тогда рассматриваемое дифференциальное уравнение
порядка m ≥ 2 равносильно системе ОДУ вида

Y ′ = F (x, Y ), x0 ≤ x ≤ b,

где F (x, Y (x)) — m-мерный вектор с координатами

y′(x), y′′(x), . . . , y(m−1)(x), f (x, Y (x)).

Очевидно, мы получаем задачу Коши для системы ОДУ
первого порядка с начальным условием

Y (x0) = Y0 := (y0, y
′
0, . . . , y

(m−1)
0 ).

Например, задача Коши для уравнения

y′′ = f (x, y, y′) , x0 ≤ x ≤ b,
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c начальными условиями

y(x0) = y0, y′(x0) = y′0

сводится к решению задачи Коши для системы уравне-
ний

y′ = z, z′ = f (x, y, z)

c начальными условиями

y(x0) = y0, z(x0) = y′0.

Следовательно, можем найти приближенное решение
задачи Коши для дифференциального уравнения по-
рядка m ≥ 2 с использование любого из алгоритмов,
приведенных выше для системы обыкновенных диф-
ференциальных уравнение первого порядка.

6.7 Одна краевая задача для ОДУ

Рассмотрим 2-х точечную краевую задачу для линей-
ных дифференциальных уравнений 2-го порядка.

Будем предполагать, что следующая задача одно-
значно разрешима. Ищется функция y ∈ C2[a, b], удо-
влетворяющая уравнению

y′′ + p(x)y′ + q(x)y = f (x), a ≤ x ≤ b, (6.7)
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и двум следующим краевым условиям

α0y(a) + α1y
′(a) = A, (6.8)

β0y(b) + β1y
′(b) = B. (6.9)

Здесь p, q, f — вещественнозначные непрерывные функ-
ции, заданные на отрезке [a, b], α0, α1, A — заданные
вещественные постоянные, удовлетворяющие условию
α2

0 + α2
1 6= 0, а также β0, β1, B — заданные веществен-

ные постоянные, такие, что β2
0 + β2

1 6= 0.
Рассмотрим иллюстративный пример. Возьмем урав-

нение
y′′ + y = 0

на отрезке [0, 2π].
Общее решение этого уравнения известно и задает-

ся формулой

y = c1 cosx + c2 sinx, c1, c2 − Const.

Рассмотрим различные краевые задачи.
а) Пусть ищется решение, удовлетворяющее крае-

вым условиям y(0) = 0 и y(2π) = 1. В силу условия
y(0) = 0 имеем c1 = 0. Тогда y = c2 sinx и условие
y(2π) = 1 не может быть выполнено, так как будем
иметь y(2π) = 0 6= 1, Значит, поставленная краевая
задача не имеет решения.

б) Пусть ищется решение, удовлетворяющее крае-
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вым условиям y(0) = 0 и y′(2π) = 1. Тогда снова c1 = 0

и y = c2 sinx, y′ = c2 cosx. В силу условия y(2π) = c2

имеем c2 = 1. Решение задачи существует и единствен-
но, причем решение определяется формулой y = sinx.

в) Если задать краевые условия

y(0) = 0

y(2π) = 0

}
,

то легко проверить, что функция y = C sinx является
решением при любом C. Таким образом, в этом случае
решение не единственно.

Для рассматриваемой задача 6.7 — 6.9 будем пред-
полагать, что задача однозначно разрешима.

Кроме того, предполагаем, что решение y ∈ C4[a, b].
Для этого достаточно предположить, что коэффициен-
ты дифференциального уравнения p, q, f ∈ C2[a, b].

Докажем этот факт. Нам дано, что

p, q, f, y ∈ C2[a, b].

Тогда из (6.7) вытекает

y′′ = −py′ − qy + f, p ∈ C2,

где правая часть содержит функции

y′ ∈ C1[a, b], q, y, f ∈ C2[a, b].
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Отсюда следует, что левая часть y′′ ∈ C1[a, b], т. е.
y ∈ C3[a, b], следовательно, y′ ∈ C2[a, b]. Снова ана-
лизируем равенство

y′′ = −py′ − qy + f ∈ C2[a, b].

Ясно, что левая часть y′′ ∈ C2[a, b]. Следовательно,
y ∈ C4[a, b], что и требовалось показать.

Метод численного решения требует предваритель-
ной подготовки. Опишем необходимые сведения.

Отрезок [a, b] делим на n частей с фиксированным
n ∈ N и с шагом h = (b− a)/n. Имеем узлы

x0 = a, xk = a+kh, k = 0, . . . , n (xn = a+nh = b).

Ищем числа yk ≈ y(xk), k = 0, . . . , n. Для этого исполь-
зуем аппроксимацию производных. В итоге, для нахож-
дения y0, . . . , yn получим систему линейных алгебра-
ических уравнений. Опишем теперь подробнее этапы
этого процесса.

Сначала выпишем разностную аппроксимацию. про-
изводных y′, y′′. Так как y ∈ C4[a; b], можем использо-
вать формулу Тейлора. Пусть x, x+h ∈ [a, b], тогда по
формуле Тейлора

y(x + h) = y(x) +
y′(x)

1!
h +

y′′(x)

2!
h2 +

y′′′(x)

3!
h3 + O(h4)
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для малых h = (b− a)/n. Пусть x, x− h ∈ [a, b], тогда

y(x− h) = y(x)− y′(x)

1!
h+

y′′(x)

2!
h2 − y′′′(x)

3!
h3 +O(h4).

Таким образом, имеем формулы: y(x + h) =

= y(x) + y′(x)h +
y′′(x)

2
h2 +

y′′′(x)

6
h3 + O(h4) (6.10)

и y(x− h) =

= y(x)− y′(x)h +
y′′(x)

2
h2 − y′′′(x)

6
h3 + O(h4). (6.11)

Из (6.10) следует разностная формула

y′(x) =
y(x + h)− y(x)

h
+ O(h),

называемая аппроксимацией y′ с шагом вперед.
Аналогично, из (6.11) следует

y′(x) =
y(x)− y(x− h)

h
+ O(h)

— аппроксимация y′ с шагом назад.
Далее, из (6.10) и (6.11) следует

y′(x) =
y(x + h)− y(x− h)

2h
+ O(h2)

— аппроксимация y′ с использованием симметричной
разности.
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Можно получить различные конечно разностные
представления для второй производной y′′. Но нам по-
требуется лишь одна формула, которая получается пу-
тем сложения формул (6.10) и (6.11):

y′′(x) =
y(x + h)− 2y(x) + y(x− h)

h2
+ O(h2).

Далее, пользуемся соотношениями (6.7) — (6.9) во внут-
ренних узлах xk ∈ (a, b). Подставляя эти представле-
ния производных в уравнение (6.7), получаем

y(xk + h)− 2y(xk) + y(xk − h)

h2
+

+p(xk)
y(xk + h)− y(xk − h)

2h
+

+q(xk)y(xk) + O(h2) = f (xk),

для k = 1, 2, 3, . . . , n− 1.

Так как xk + h = xk+1, a xk − h = xk−1, то преды-
дущие равенства можем записать в следующем виде

y(xk+1)− 2y(xk) + y(xk−1) +
h

2
p(xk)[y(xk+1)− y(xk−1)]+

+h2q(xk)y(xk) = h2f (xk) + O(h4),

или, после элементарных преобразований, в виде ра-
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венств

y(xk−1)

[
1− h

2
p(xk)

]
+ y(xk)[−2 + h2q(xk)]+

+y(xk+1)

[
1 +

h

2
p(xk)

]
= h2f (xk) + O(h4). (6.12)

Перейдем к аппроксимации граничных условий. Из
(6.8) следует, что в силу равенства

α0y(x0) + α1y
′(x0) = A

имеем

α0y(x0) + α1
y(x1)− y(x0)

h
= A + O(h).

Отсюда

y(x0)[α0h− α1] + α1y(x1) = Ah + O(h2). (6.13)

Граничное условие (6.9) обрабатывается аналогично.
Имеем

β0y(xn) + β1y
′(xn) = B,

отсюда

β0y(xn) + β1
y(xn)− y(xn−1)

h
= B + O(h),

поэтому получаем равенство

−β1y(xn−1) + y(xn)[β0h + β1] = hB + O(h2). (6.14)
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Обозначим

yk ≈ y(xk), pk = p(xk), qk = q(xk), fk = f (xk).

Подставляем величины в уравнения (6.12)— (6.14) и от-
брасываем малые величины (невязки rk). В результате
приходим к системе линейных алгебраических уравне-
ний для неизвестных

y0, y1, . . . , yn.

А именно, имеем уравнения

y0[α0h− α1] + y1α1 = hA;

yk−1

[
1− h

2
pk

]
+ yk[−2 + h2qk] + yk+1

[
1 +

h

2
pk

]
= h2fk,

для k = 1, 2, . . . , n− 1;

yn−1(−β1) + yn(β0h + β1) = hB.

Таким образом, для определения неизвестных

y0, y1, . . . , yn

получили систему линейных алгебраических уравнений
с 3-х диагональной матрицей.

Эту систему решаем методом прогонки. Напомню
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кратко этот метод.

Из первого уравнения находим y0 = ξ0y1 + η1, под-
ставляем во второе. Получаем новое второе уравнение
с двумя неизвестными y1, y2. Из нового второго урав-
нения находим y1 = ξ1y2 +η2, подставляем в третье. Из
нового третьего находим y2 = ξ2y3 + η3 и т. д.

Предпоследний шаг: из нового предпоследнего урав-
нения находим yn−1 = ξn−1yn + ηn−1, подставляем в по-
следнее уравнение. Новое последнее уравнение имеет
вид ãyn = bn, находим yn = bn/ã.

Мы провели прямой ход прогонки, который позво-
ляет определить величину yn. Обратная прогонка так-
же стандартна: зная yn, определяем yn−1, зная yn−1,
определяем yn−2 и т. д., зная y1, находим y0.

Приведем достаточное условие для того, чтобы ме-
тод прогонки был корректен. Ясно, для этого доста-
точным является условие: матрица полученной СЛАУ
обладает свойством диагонального преобладания. Для
простоты рассмотрим случай, когда

α1 = β1 = 0, α0 = β0 = 1.

Тогда первое уравнение имеет вид y0 = b0, а последнее
(n+ 1)-е уравнение запишется в виде yn = bn. Для k-го
уравнения условие диагонального преобладания озна-
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чает, что

| − 2 + h2qk| >
∣∣∣∣1− h

2
pk

∣∣∣∣ +

∣∣∣∣1 +
h

2
pk

∣∣∣∣ . (6.15)

Для выполнения (6.15) достаточно потребовать следу-
ющие условия:

а) q(x) < 0 на отрезке [a, b]

б) hmax |p(x)| ≤ 2, x ∈ [a, b].

Действительно, при выполнении этих условий бу-
дем иметь

| − 2 + h2qk| = 2− h2qk > 2,∣∣∣∣1− h

2
pk

∣∣∣∣ +

∣∣∣∣1 +
h

2
pk

∣∣∣∣ = 1− h

2
pk + 1 +

h

2
pk = 2.

Таким образом, условия а), б) влекут (6.15). Следова-
тельно, СЛАУ для определения неизвестных

y0, y1, . . . , yn

однозначно разрешима и ее решение можно найти ме-
тодом прогонки.

Нетрудно оценить и погрешность метода. Действи-
тельно, пусть εk = y(xk)− yk — погрешность определе-
ния y(xk). Покажем, что max |εk| = O(h2).

Удобно рассмотреть векторную погрешность

ε = (ε0, ε1, . . . , εn)
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и векторную невязку

r = (r0, r1, . . . , rn), r = r(h).

Заметим, что для k = 1, 2, . . . , n− 1

yk−1

[
1− h

2
pk

]
+ yk[−2 + h2qk] + yk+1

[
1 +

h

2
pk

]
= h2fk,

и
y(xk−1)

[
1− h

2
pk

]
+ y(xk)[−2 + h2qk]+

+y(xk+1)

[
1 +

h

2
pk

]
= h2fk + O(h4),

поэтому

[y(xk−1)− yk−1]

[
1− h

2
pk

]
+ [y(xk)− yk][−2 + h2qk]+

+[y(xk+1)−yk+1]

[
1 +

h

2
pk

]
= h2fk+rk(h), rk(h) = O(h4).

Очевидно, систему для определения векторной погреш-
ности можно записать в следующем виде

ε0 = 0,

εk−1

[
1− h

2
pk

]
+ εk[−2 +h2qk] + εk+1

[
1 +

h

2
pk

]
= rk(h),

для k = 1, 2, . . . , n− 1,

εn = 0,
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где |rk(h)| = O(h4). Эту систему можно привести к си-
стеме вида ε = Bε + c, где B — двухдиагональная
квадратная матрица порядка n + 1. Более подробно,
эту систему можно записать так

ε0 = 0,

εk = εk−1
1− hpk/2

2− h2qk
+ εk+1

1 + hpk/2

2− h2qk
+

rk(h)

[−2 + h2qk]
,

для k = 1, 2, . . . , n− 1,

εn = 0.

Обозначим
q := min

0≤k≤n
|qk| > 0.

Имеем: 2− h2qk ≥ 2 + h2q,

‖B‖∞ ≤
2

2 + h2q
< 1, 1− ‖B‖∞ ≥

h2q

2 + h2q
,

и
max

0≤k≤n
|εk| := ‖ε‖∞ ≤ ‖B‖∞‖ε‖∞ +

‖r(h)‖∞
2 + h2q

.

Следовательно,

max
0≤k≤n

|εk| := ‖ε‖∞ ≤
‖r(h)‖∞

(2 + h2q)(1− ‖B‖∞)
≤

≤ ‖r(h)‖∞
h2q

= O(h2),
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что и требовалось доказать.
Случай нелинейных ОДУ
Рассмотрим численный метод решения краевой за-

дачи для нелинейного обыкновенного дифференциаль-
ного уравнения 2-го порядка

y′′ = f (x, y, y′), a ≤ x ≤ b. (6.16)

Пусть краевые условия имеют вид

ϕ(y(a), y′(a)) = A (6.17)

и
ψ(y(b), y′(b)) = B, (6.18)

где A, B — постоянные, f, ϕ, ψ — гладкие функции.
Предполагаем, что f ∈ C2([a, b] × R2), ϕ ∈ C1(R2),
ψ ∈ C1(R2).

Предположим также, что поставленная краевая за-
дача имеет единственное решение y ∈ C4[a, b]. Тогда
идея построения численного решения остается такой
же, что и для линейного уравнения.

Отрезок [a, b] делим на n равных частей с шагом
h = b−a

n , возьмем узловые точки

x0 = a, xk = a+kh, k = 0, . . . , n (xn = a+nh = b).

Производим аппроксимацию производных по тем же
формулам, что и ранее, Например, для второй произ-
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водной берем формулу

y′′(x) =
y(x + h)− 2y(x) + y(x− h)

h2
+ O(h2).

Обозначаем yk ≈ y(xk), для определения y0, y1, . . . , yn
получаем систему уравнений:

ϕ(y0,
y1−y0

h ) = A

yk+1 − 2yk + yk−1 = h2f (xk, yk,
yk+1−yk−1

2h ),

(k = 1, 2, . . . , n− 1),

ψ(yn,
yn−yn−1

h ) = B

Получили нелинейную систему уравнений, содер-
жащую n + 1 уравнение. Решая эту систему уравне-
ний, например, методом итераций, получаем прибли-
женные значения y0, y1, . . . , yn искомого решения в уз-
ловых точках.

В общем случае оценка погрешности метода для
нелинейных уравнений является сложной проблемой,
изучаемой в специальной литературе по численным ме-
тодам.

6.8 Краевые задачи для УЧП

Математические модели огромного числа прикладных
проблем основаны на краевых или начально-краевых
задачах для дифференциальных уравнений в частных
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производных (УЧП). Естественно, разработаны различ-
ные методы численного решения подобных задач.

Мы ограничимся изложением метода конечных раз-
ностей (МКР) решения базовых краевых задач для диф-
ференциальных уравнений математической физики 2-
го порядка в случае 2-х независимых переменных.

ПустьD — область (непустое открытое связное мно-
жество),D ⊂ R2, u = u(x, y) —функция, определяемая
в этой области. В дальнейшем через Γ будем обозна-
чать границу этой области D и предполагать, что Γ —
замкнутая кусочно-гладкая кривая.

Будем рассматривать лишь линейные уравнения.
Приведем сначала формулировки нескольких стандарт-
ных краевых задач для уравнения Лапласа

∆u :=
∂2u

∂x2
+
∂2u

∂y2
= 0, (x, y) ∈ D.

Основные краевые задачи для уравнения Лапласа,
часто встречающиеся в прикладных вопросах, таковы.

1) Задача Дирихле для уравнения Лапласа. Требу-
ется определить функцию u ∈ C2(D) ∩ C(D), удовле-
творяющую условиям{

∆u = 0 в D,
u|Γ = ϕ(x, y), (x, y) ∈ Γ.

Здесь Γ = ∂D — жорданова кривая, ϕ : Γ → R —
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непрерывная функция.

Кратко сформулируем еще две краевых задачи для
того же уравнения Лапласа, отличающиеся от задачи
Дирихле видом краевых условий.

2) Задача Неймана: Γ — кусочно гладкая кривая,{
∆u = 0 в D,
∂u
∂n = ψ(x, y), (x, y) ∈ Γ.

Здесь ∂u/∂n— производная по внешней нормали к гра-
ничной кривой.

3) Смешанная задача:{
αu + β ∂u

∂n = γ на Γ,

∆u = 0 в D.

Здесь
α : Γ→ R, β : Γ→ R, γ : Γ→ R

— заданные функции, причем α2 + β2 6= 0.

Часто встречается следующий специальный случай
смешанной задачи. Граничная кривая состоит из двух
дуг: Γ = Γ1 ∪ Γ2. Функция, удовлетворяющая в обла-
сти уравнению Лапласа и непрерывно продолжимая на
границу, должна удовлетворять и краевым условиям
вида {

u|Γ1
= ϕ,

∂u
∂n|Γ2

= ψ.
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Отметим, что задачи вида 1) — 3) рассматриваются
не только для уравнения Лапласа, но и для более общих
дифференциальных уравнений эллиптического типа.

А теперь вспомним классификацию наиболее упо-
требительных УЧП математической физики. Для про-
стоты рассмотрим лишь общие линейные уравнения 2-
го порядка в случае 2-х независимых переменных. Пусть
D ⊂ R2 — область. Рассмотрим в этой области диффе-
ренциальное уравнение

A
∂2u

∂x2
+B

∂2u

∂x∂y
+C

∂2u

∂y2
+D

∂u

∂x
+E

∂u

∂y
+Fu = f, (6.19)

где A = A(x, y), . . . , F = F (x, y), f = f (x, y) — задан-
ные вещественнозначные непрерывные функции, опре-
деленные в D.

Рассмотрим дискриминант

α(x, y) := 4A(x, y)C(x, y)−B2(x, y).

1) Если α(x, y) > 0 во всех точках области D, то
говорят, что уравнение (6.19) является уравнением эл-
липтического типа.

Примеры уравнений эллиптического типа: уравне-
ние Лапласа ∆u = 0, уравнение Пуассона ∆u = f .

2) Если α(x, y) < 0 во всех точках области D, то
говорят, что уравнение (6.19) является уравнением ги-
перболического типа.
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Пример:
∂2u

∂x2
− ∂2u

∂y2
= f (x, y),

для этого уравнения A = 1, C = −1, B = 0.

3) Если α(x, y) ≡ 0 во всех точках области D, то
говорят, что уравнение (6.19) является уравнением па-
раболического типа.

Пример: заменим y на t, т. е. (x, t) ∈ D, и рассмот-
рим уравнение

∂2u

∂x2
+ ϕ(x, t) =

∂u

∂t
,

для этого уравнения A = 1, C,B = 0.

Из курса УЧП известно, что для каждого типа урав-
нений существует хорошо разработанная теория о свой-
ствах решений, о корректных постановках краевых и
начально краевых задач и методах их решения. Эти
теории существенно зависят от типа уравнений и отли-
чаются друг от друга.

Для УЧП, которые имеют применения на практи-
ке, хорошо разработаны методы аналитического пред-
ставления решений и разнообразные численные мето-
ды. Ниже мы рассмотрим лишь типичные задачи для
нескольких уравнений математической физики, когда
численное решение может быть найдено методом ко-
нечных разностей (МКР).
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6.8.1 Задача Дирихле
для уравнения Пуассона

Будем рассматривать модельную задачу в прямоуголь-
нике

D = [a, b]× [c, d].

А именно, рассмотрим задачу Дирихле для уравнения
Пуассона

∂2u

∂x2
+
∂2u

∂y2
= f (x, y) в D (6.20)

с краевыми условиями

u|Γ = ϕ(x, y) (6.21)

на границе прямоугольника. Краевые условия можно
записать так:

u(x, c) = ϕ1(x), a ≤ x ≤ b,

u(x, d) = ϕ2(x), a ≤ x ≤ b,

u(a, y) = ϕ3(y), c ≤ y ≤ d,

u(b, y) = ϕ4(y), c ≤ y ≤ d,

где ϕ1, ϕ2, ϕ3, ϕ4 — заданные дважды непрерывно диф-
ференцируемые функции.

Будем предполагать, что f ∈ C2(D).
Предполагая, что существует единственное реше-

ние u ∈ C4 поставленной краевой задачи, применим
МКР для численного решения.

Этап 1. Строим сетку, покрывающую прямоуголь-
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ник D следующим образом, Пусть n ∈ N, возьмем шаг
h = b−a

n для переменной x и узлы

xk = a + kh, k = 0, 1, . . . , n.

Далее, пусть m ∈ N, шаг l = d−c
m для переменной y.

Выбираем узлы

yj = c + jl, j = 0, 1, . . . ,m

для переменной y. Наша цель состоит в определении
приближенных значений ukj сеточной функции

u(xk, yj), k = 0, 1, . . . , n, j = 0, 1, . . . ,m.

Этап 2 — замена производных разностными отно-
шениями.

Так же, как и для функции одной переменной, мы
можем получить конечно разностные представления для
производных второго порядка. А именно, предположим,
что

(x, y), (x± h, y) ∈ D и u ∈ C4 по x ∈ [a, b].

Тогда

∂2u

∂x2
=
u(x + h, y)− 2u(x, y) + u(x− h, y)

h2
+ O(h2).
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Аналогично, предполагая

(x, y), (x, y ± l) ∈ D и u ∈ C4 по y,

получаем формулу

∂2u

∂y2
=
u(x, y + l)− 2u(x, y) + u(x, y − l)

l2
+ O(l2).

Через uk,j обозначим приближенное значение решения
в точке (xk, yj), т. е.

uk,j ≈ u(xk, yj).

Обозначим также

fk,j = f (xk, yj).

Далее, подставляем аппроксимации для производных

∂2u

∂x2
,
∂2u

∂y2

в узловых точках (xk, yj) в уравнение Пуассона, отбра-
сываем малые величины O(h2), O(l2). В результате по-
лучаем следующую систему уравнений для ukj:

uk+1,j − 2uk,j + uk−1,j

h2
+
uk,j+1 − 2uk,j + uk,j−1

l2
= fk,j.

Здесь: k = 1, . . . , n− 1, j = 1, . . . ,m− 1. Отметим, что
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величины
u0,j, un,j, uk,0, uk,m

известны в силу краевых условий.

Этап 3 — определение приближенных значений
uk,j сеточной функции. Для этого пользуемся выписан-
ной выше СЛАУ для неизвестных uk,j при k = 1, . . . , n−
1, j = 1, . . . ,m− 1, дополняя эту систему граничными
условиями.

Легко проверить, что в полученной СЛАУ число
неизвестных равно числу уравнений. Эта система реша-
ется методом матричной прогонки (для разреженной
системы). Можно показать, что погрешность метода

O(h2 + l2) = O(h2)

при условии, что h и l — величины одного порядка.

Опишем кратко упомянутыйметод матричной про-
гонки.

Полагаем h2 = αl2, α = const ∈ (0, 1). Тогда СЛАУ
из предыдущего пункта запишется в виде

(uk+1,j−2uk,j+uk−1,j)+α(uk,j+1−2uk,j+uk,j−1) = fk,jh
2,

где k = 1, . . . , n − 1, j = 1, . . . ,m − 1. Перегруппируя
слагаемые, будем иметь систему

uk+1,j + uk−1,j+
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+[αuk,j+1 − (2 + 2α)uk,j + 2uk,j−1] = h2fk,j, (6.22)

где k = 1, . . . , n− 1, j = 1, . . . ,m− 1.

Запишем новую СЛАУ, эквивалентную (6.22), от-
носительно векторов

uk = (uk,1, uk,2, . . . , uk,m−1).

Получаем новую систему уравнений

uk+1 + Buk + uk−1 = gk (6.23)

для векторов. Здесь B — следующая квадратная мат-
рица порядка (m− 1):

B =


−2− 2α α 0 . . . 0 0

α −2− 2α α . . . 0 0

0 α −2− 2α . . . 0 0

. . . . . . . . . . . . . . . . . .

0 0 0 0 α −2− 2α


где k = 1, . . . ,m − 1, B — трехдиагональная матрица.
Кроме того, отметим, правые части уравнений опреде-
лены следующим образом. Для 2 ≤ k ≤ m− 2 имеем

gk = h2f k = h2 · (fk,1, fk,2, . . . , fk,m−1).

Система (6.23) решается методом матричной про-
гонки.

388



При k = 1 имеем из первого уравнения системы:

u2 + Bu1 = g1 − u0,

где u0 — известный вектор, определяемый краевыми
условиями.

Применяя обратную матрицу B−1, получаем отсю-
да

u1 = −B−1u2 + B−1(g1 − u0),

т. е. получаем равенство вида

u1 = X1u2 + z1.

Здесь и далее заглавными буквами обозначены матри-
цы.

Во втором уравнении u1 заменяем ее представле-
нием X1u2 + z1. Тогда уравнение приобретает вид

u3 + Bu2 + X1u2 + z1 = g2

или, что то же самое,

u3 + (B + X1)u2 = g2 − z1.

Отсюда определяем u2 :

u2 = −(B + X1)−1u3 + z2,
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т. е. будем иметь формулу вида

u2 = X2u3 + z2

и т. д. Такая процедура после подстановки в последнее
уравнение дает одно уравнение с одним неизвестным.
Из предпоследнего уравнения получаем:

um−2 = Xm−2um−1 + zm−2.

Подставляем это выражение для um−2 в последнее урав-
нение. В итоге получаем:

um−1 = zm−1,

где правая часть представляет собой известный вектор.

Затем идет обратный ход прогонки по известным
формулам, полученным выше. Последовательно опре-
деляем вектора

um−1 → um−2 → . . .→ u1.

Таким образом, метод матричной прогонки выглядит
так же, как и метод прогонки для обычной СЛАУ, но
вместо прогоночных коэффициентов имеем прогоноч-
ные матрицы, так как при выводе прогоночных формул
мы пользовались обратными матрицами. Понятно, что
указанный алгоритм включает в себя знакомую нам за-
дачу обращения матриц.
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Замечание 1. Ожидаемая погрешность решения
имеет порядок O(h2). Обоснование этого факта можно
найти в специальной литературе.

Замечание 2. Рассмотренный подход годится для
решения задачи Дирихле, Неймана и смешанной крае-
вой задачи для общего линейного уравнения эллипти-
ческого типа в прямоугольнике.

Замечание 3. Метод можно приспособить и для
решения задач, когда уравнение рассматривается в об-
ласти произвольного вида, а не в прямоугольнике. Но
здесь возникают трудности следующего характера:

1) область нужно аппроксимировать элементарны-
ми областями, составленными из прямоугольников (так
же, как и при определении внутренней мерыЖордана);

2) естественно, требуется аппроксимация гранич-
ных условий.

6.8.2 Уравнение параболического типа

Рассмотрим уравнение

∂2u

∂x2
+ ϕ(x, t) =

∂u

∂t
(6.24)

в полуплоскости: t ≥ 0, −∞ < x < ∞. На границе
области, т. е. на оси абсцисс задается начальное условие

u(x, 0) = ψ(x), −∞ < x <∞. (6.25)
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Предполагаем, что существует единственное решение
u(x, t), причем функция ψ непрерывна, а функции u и
ϕ непрерывны в полуплоскости t ≥ 0, −∞ < x <∞ и
удовлетворяют некоторым дополнительным условиям,
которые будут указаны ниже.

Разностный метод решения получается с помощью
аппроксимации производных решения.

Этап 1. Строим сеточную область. Пусть h > 0 —
шаг по переменной x, тогда узлы определяются фор-
мулами xk = kh, k = 0,±1,±2, . . ., т. е. k ∈ Z.

Пусть τ — шаг по переменной t, т.е узлы опреде-
ляются формулами tj = τj, j = 0, 1, 2, . . ., т. е. индекс
j ∈ N∪ {0}. Так называемая сеточная область состоит
из узлов {(xk, tj)}.

Рекомендуемая связь между шагами по разным пе-
ременным такова: τ = τ (h) = O(h2).

Этап 2.Аппроксимируем производные, считая, что
решение достаточное число раз дифференцируемо. А
именно, считаем справедливыми стандартные форму-
лы

∂u

∂t
=
u(x, t + τ )− u(x, t)

τ
+ O(τ ),

∂2u

∂x2
=
u(x + h, t)− 2u(x, t) + u(x− h, t)

h2
+ O(h2).

Подставляем эти выражения в дифференциальное урав-
392



нение. Считая τ = O(h2), получаем

u(x, t + τ )− u(x, t)

τ
−

−u(x + h, t)− 2u(x, t) + u(x− h, t)
h2

=

= ϕ(x, t) + O(h2).

Как и ранее, обозначим uk,j ≈ u(xk, tj). Далее, в
предыдущем уравнении заменим x на xk, t на tj. От-
брасываем O(h2), тогда получается СЛАУ для опреде-
ления uk,j.

Начальное условие влечет равенства

uk,0 = ψk := ψ(xk), k ∈ Z.

Из уравнения (6.24) следует, что

uk,j+1 − uk,j
τ

− uk+1,j − 2uk,j + uk−1,j

h2
= ϕk,j.

По определению, полагаем

ϕk,j = ϕ(xk, tj).

Здесь
k ∈ Z, j = 0, 1, . . . .

Обозначим τ = rh2 и запишем систему следующим
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образом

uk,j+1 = uk,j+r[uk+1,j−2uk,j+uk−1,j]+. . .+rϕk,j, (6.26)

k ∈ Z, j = 0, 1, . . ..

Отметим, что в силу начального условия известны
величины uk0 = ψk, ∀k ∈ Z.

Получили СЛАУ бесконечного порядка. Но эта си-
стема устроена просто, поэтому ее разрешимость дока-
зывается элементарно. Действительно, на нулевом слое
по t, т. е. при t = 0 имеем:

бесконечномерный вектор

u0 = (. . . , u−2,0, u−1,0, u0,0, u1,0, u2,0, . . . , uk,0, . . .)

известен. А именно, согласно начальным условиям

u0 = ψ = (. . . , ψ−2, ψ−1, ψ0, ψ1, ψ2, . . . , ψk, . . .).

Система (6.26) при j = 0 дает:

для любого k

uk,1 = uk,0 + r[uk+1,0 − 2uk,0 + uk−1,0] + τϕk,0.

Пользуясь этими формулами мы можем вычислить при-
ближенные значения решения на первом слое, т. е. опре-
делить явно все координаты бесконечномерного векто-
ра u1 = {uk,1} при k ∈ Z.
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Итак, мы находим все координаты вектора

u1 = (. . . , u−2,1, u−1,1, u0,1, u1,1, u2,1, . . . , uk,1, . . .).

Зная сеточную функцию на 1-м слое и пользуясь фор-
мулами

uk,2 = uk,1 + r[uk+1,1 − 2uk,1 + uk−1,1] + τϕk,1,

определяем сеточную функцию на 2-м слое, и так да-
лее. Условно можем записать процесс последовательно-
го определения сеточной функции так:

u2 → u3 → . . . .

Рассмотрим вопрос об устойчивости процесса за ко-
нечное число шагов. Пусть N — число шагов (слоев),
и пусть

0 ≤ t ≤ T = τN, 0 < τ ≤ 1/2.

Постановку задач дадим в виде некоторых замечаний
и определений.

Замечание 6.8.1 Задачу (6.24) – (6.25) мы можем за-
писать формально следующим образом: найти функ-
цию u как решение операторного уравнения Lu = f ,
где оператор определен формулами

Lu =

{
∂u
∂t −

∂2u
∂x2 в области D

u на Γ
,
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f =

{
ϕ(x, t) в области D
ψ(x) на Γ

.

Далее, сеточные функции обозначим uh, fh, речь идет
о векторах с координатами uk,j, fk,j.

Замечание 6.8.2 Численный метод приводит к реше-
нию задачи: найти сеточную функцию uh по условию

Lhu
h = fh,

где Lh — линейный оператор, определяемый выписан-
ной выше системой уравнений (6.26).

Нормы бесконечномерных векторов uh, fh задаем
формулами

‖uh‖ = sup
k,j
|uk,j|,

‖fh‖ = sup
k,j
|fk,j|.

Определение 6.3 (устойчивости) Существует

M > 0

такое, что

‖uh‖ ≤M‖fh‖, ∀fh, ‖fh‖ <∞.

Это означает, что ограничена норма обратного опера-
тора, точнее, выполнено неравенство ‖L−1

h ‖ ≤M .
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Напомню, что мы имеем формулы

uk0 = ψk, k ∈ Z, (6.27)

uk,j+1 = uk,j + r(uk+1,j − 2uk, + uk−1,j) + τϕk,j, (6.28)

где k ∈ Z, j = 0, 1, . . .. Из (6.28) следует, что

uk,j+1 = r [uk+1,j + uk−1,j] + (1− 2r)uk,j + τ ϕk,j.

Задачу рассматриваем для конечного времени

0 ≤ t ≤ T = τN

(можно взять более общий случай, когда

τN ≤ T < τ (N + 1)).

Итак, рассматриваем операторное уравнение

Lhu
h = fh,

где uh = {uk,j} — сеточная функция, причем нормы
векторов заданы формулами

‖uh‖ = sup
k∈Z,0≤j≤N

|uk,j|,

‖fh‖ = max{ sup
k∈Z
|ψk|, sup

k∈Z,0≤j≤N
|ϕk,j|}.
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Теорема 6.4 Пусть τ = rh2, причем

0 < r ≤ 1/2, 0 ≤ t ≤ T = τN.

Тогда задача Lh uh = fh устойчива, т. е. существует
постоянная M > 0, такая, что

‖uh‖ ≤M‖fh‖.

Доказательство. Имеем

sup
k∈Z
|uk,0| = sup

k∈Z
ψk.

Далее, величину supk∈Z |uk1| оценим, пользуясь (6.26)
при j = 0 и соотношениями

sup |A + B| ≤ sup |A| + sup |B|.

Будем иметь

sup
k∈Z
|uk,1| ≤ r(sup

k
|uk+1,0| + sup

k
|uk−1,0|)+

+(1− 2r) sup
k∈Z
|uk,0| + τ sup

k∈Z
|ϕk,0| =

= 2r sup
k∈Z
|uk,0| + (1− 2r) sup

k∈Z
|uk,0| + sup

k∈Z
|ϕk,0| =

= sup
k∈Z
|uk,0| + τ sup

k∈Z
|ϕk,0|.
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Итак, полагая j = 1, имеем

sup
k∈Z
|uk,2| ≤ sup

k∈Z
|uk,1| + τ sup

k∈Z
|ϕk,1|.

Далее, продолжаем процесс. В итоге получаем неравен-
ства

supk |uk,0| ≤ supk |ϕk|
supk∈Z |uk,1| ≤ supk∈Z |uk,0| + τ supk∈Z |ϕk,0|
supk∈Z |uk,2| ≤ supk∈Z |uk,1| + τ supk∈Z |ϕk,1|
. . . . . . . . . . . . . . . . . .

supk∈Z |uk,m| ≤ supk∈Z |uk,m−1| + τ supk∈Z |ϕk,m−1|
. . . . . . . . . . . . . . . . . .

supk∈Z |uk,N | ≤ supk∈Z |uk,N−1| + τ supk∈Z |ϕk,N−1|.

Складываем эти неравенства, и для любого

m = 1, 2, . . . , N

будем иметь неравенство

sup
k∈Z
|uk,m| ≤ sup

k∈Z
|ψk|+τm sup

k∈Z,1≤j≤N
|ϕk,j| ≤ ‖fh‖+T‖fh‖.

Отсюда следует, что

‖uh‖ ≤M‖fh‖,

где M = T + 1. Таким образом, теорема доказана.

Обратим внимание на то, что в доказательстве су-
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щественно используется малость величины τ ∈ (0, 1/2].
Общие замечания.

1) Ясно, что рассмотренный метод можно приме-
нить и для параболических линейных уравнений обще-
го вида с гладкими коэффициентами в верхней полу-
плоскости.

2) Существуют и иные подходы численного реше-
ния уравнений параболического типа, в частности, чис-
ленно-аналитические. Начальная идея такова: аппрок-
симируется лишь производная ∂u/∂t по формуле

∂u

∂t
≈ u(x, t− τ )− u(x, t)

−τ
.

В итоге на каждом слое имеем ОДУ второго порядка
относительно переменной x.

6.8.3 МКР для волнового уравнения

В верхней полуплоскости

D = {(x, y) : −∞ < x < +∞, y > 0}

рассмотрим волновое уравнение

∂2u

∂x2
− ∂2u

∂y2
= f (x, y), (x, y) ∈ D, (6.29)
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c начальными условиями

u(x, 0) = ϕ(x), −∞ < x < +∞, (6.30)

∂u

∂y

∣∣∣∣
y=0

= ψ(x), −∞ < x < +∞. (6.31)

Снова предполагаем существование, единственность и
достаточную гладкость решения поставленной задачи.
Схематично опишем метод конечных разностей для чис-
ленного решения.

Этап 1. Строим сеточную область, состоящую из
точек (xk, yj), беря h в качестве шага по переменной
x, xk = kh, k ∈ Z, и l в качестве шага по y, yj = jl,
j ∈ N ∪ {0}.

Этап 2.Аппроксимируем производные ∂2u
∂x2 , ∂

2u
∂y2 , счи-

тая решение u и его производную ∂u
∂y в начальных усло-

виях достаточно гладкими функциями. Имеем

∂2u(x, y)

∂x2
=
u(x + h, y)− 2u(x, y) + u(x− h, y)

h2
+O(h2),

∂2u(x, y)

∂y2
=
u(x, y + l)− 2u(x, y) + u(x, y − l)

l2
+ O(l2)

и
∂u(x, 0)

∂y
=
u(x, l)− u(x, 0)

l
+ O(l).

Этап 3. Подставляем указанные выражения для
производных в уравнение и начальные условия, пола-
гая x = xk, y = yj, xk ± h = xk±1, yj ± l = yj±1.

401



Отбрасываем малые величины O(h2), O(l2) в уравне-
нии и O(l) в начальных условиях. Получаем систему
для определения uk,j ≈ u(xk, yj). Имеем

uk+1,j − 2uk,j + uk−1,j

h2
+

+
uk,j+1 − 2uk,j + uk,j−1

l2
= fk,j, (6.32)

где fk,j := f (xk, yj),

k = 0,±1,±2, . . . , j = 0, 1, 2, . . . .

Из (6.30) следует uk0 = ϕk = ϕ(xk), k ∈ Z.

Из (6.31) следует uk,1 = uk,0 + lψk, ψk = ψ(xk),
k ∈ Z.

Полученная система относительно uk,j однозначно
разрешима. Действительно, значение сеточной функ-
ции известно на нулевом слое, так как uk0 = ϕk1, и на
первом слое, так как uk1 = ϕk + lψk. Но тогда, зная
uk,j, uk,j−1, из (6.32) мы определяем uk,j+1 для любого
k. Зная {uk,0, uk,1}, находим uk,2, зная {uk,1, uk,2}, опре-
делим uk,3. Процесс можно продолжить, так как ясно,
что знание сеточной функции на двух соседних слоях
позволяет найти значения сеточной функции на следу-
ющем слое.

Отметим, что при выборе шагов полагают l = αh,
0 < α ≤ 1. Тогда l = O(h).
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6.9 Задачи и упражнения

1. Найдите решение y ∈ C1[0, 1] интегрального урав-
нения

y(x)− 2

∫ x

0
ty(t) dt = −x

3

3
.

2. Для задачи Коши

y′ = f (x, y), y|x=0 = 0,

где
f (x, y) := x2 + 2xy, 0 ≤ x ≤ 1,

запишите алгоритм численного решения порядка 4, поль-
зуясь следующим алгоритмом Рунге — Кутта

yn+1 = yn +
1

6
(ϕ0 + 2ϕ1 + 2ϕ2 + ϕ3), n = 0, . . . , N − 1,

взяв h = 1/10, xn = hn (n = 0, 1, 2, . . . , 10),
ϕ0 = hf (xn, yn)

ϕ1 = hf (xn + h
2 , yn + ϕ0

2 )

ϕ2 = hf (xn + h
2 , yn + ϕ1

2 )

ϕ3 = hf (xn + h, yn + ϕ2)

.

3. Пользуясь методом Рунге — Кутта, попробуйте
получить свой алгоритм четвертого порядка для реше-
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ния задачи Коши

y′ = f (x, y), 0 ≤ x ≤ 1, y|x=0 = y0.

4. Рассмотрите задачу Коши на отрезке [x0, b] для
системы из двух уравнений

u′(x) = f (x, u(x), v(x)), v′(x) = g(x, u(x), v(x))

с начальными условиями

u(x0) = u0, v(x0) = v0.

Напишите для этой задачи алгоритмы Рунге-Кутта вто-
рого порядка точности, аналогичные следующим двум
алгоритмам:

yn+1 = yn + hf (xn + h/2, yn + (h/2)f (xn, yn))

и
yn+1 = yn + (h/2)f (xn, yn)+

+(h/2)f (xn + h, yn + hf (xn, yn)).

5. На лекциях был указан способ получения обоб-
щений метода ломаных Эйлера с применением малых
квадратурных формул прямоугольников и трапеций.
Пользуясь этим способом с привлечением малой квад-
ратурной формулы Симпсона, получите новый алго-
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ритм для решения задачи Коши

y′ = f (x, y), 0 ≤ x ≤ 1, y|x=0 = y0.

6. Напомню, что алгоритм интерполяционного ме-
тода Адамса можно записать в следующем виде

yn+1 = yn + h[ϕn+1 + c̃1∆1ϕn + . . . + c̃k∆
kϕn−k+1],

где

c̃j =

∫ 0

−1

α(α + 1) . . . (α + j − 1)

j!
dα.

Докажите, что

c̃j = O (1/(j ln j)) .
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Глава 7

Операторные уравнения

Пусть Y и F — бесконечномерные линейные нормиро-
ванные пространства над полем вещественных чисел, и
пусть A : Y → F — заданный линейный непрерывный
оператор, имеющий ограниченный обратный оператор
A−1. Рассмотрим уравнение

Ay = f, (7.1)

где f ∈ F — заданный элемент, требуется определить
y ∈ Y . Если обратный оператор A−1 известен, то точ-
ное решение уравнения (7.1) определяется формулой
y∗ = A−1f .

Задача: Найти приближенное решение y∗n уравне-
ния (7.1) в ситуации, когда известно лишь существо-
вание обратного оператора A−1, но обратный оператор
A−1 неизвестен.

С операторным уравнением вида (7.1) мы уже встре-
чались при обосновании сходимости метода последо-
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вательных приближений Пикара (см. методы решения
задачи Коши для ОДУ первого порядка). Теперь же
нашей основной целью является изучение нескольких
методов приближенного решения уравнения (7.1), при-
меняемых при численном решении интегральных урав-
нений.

Предположение о бесконечномерности пространств
Y и F не является случайным.

Если Y и F являются конечномерными, то, очевид-
но, уравнение вида (7.1) сводится к обычной СЛАУ, с
методами решения которой мы уже знакомы.

В качестве бесконечномерных пространств Y и F
при решении интегральных уравнений на практике ис-
пользуются функциональные пространства, в частно-
сти, банахово пространство C[a, b] и гильбертово про-
странство L2[a, b].

7.1 Методы моментов (общая схема)

Дополнительно предполагаем, что F — гильбертово про-
странство. Следовательно, определено скалярное про-
изведение (f, g) для любых двух элементов f ∈ F и
g ∈ F .

Пусть заданы две системы линейно-независимых
элементов:

система элементов l1, l2, . . . , ln в пространстве Y и
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система элементов g1, g2, . . . , gn в пространстве F .

Приближенное решение уравнения (7.1) ищем в ви-
де следующей линейной комбинации

yn =
n∑
k=1

αklk,

где αk — числовые коэффициенты из R. Числа αk зара-
нее неизвестны, для нахождения этих коэффициентов
нужны дополнительные условия. Выбор дополнитель-
ных условий представляет собой важную проблему.

В методе моментов для определения постоянных αk
накладываются следующие дополнительные условия.

Рассматривается невязка rn = f − Ayn и требует-
ся выполнение условий: вектор rn ортогонален вектору
gj для всех j = 1, 2, . . . , n. Условие ортогональности
означает, что

(rn, gj) = 0, j = 1, 2, . . . , n.

Отсюда следует

(f, gj)− (Ayn, gj) = 0,

поэтому
n∑
k=1

αk(Alk, gj) = (f, gj) (j = 1, 2, . . . , n). (7.2)
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Предположим, что СЛАУ (7.2) однозначно разрешима,
обозначим ее решение как α∗1, α∗2, . . . , α∗n. Тогда искомое
приближенное решение определяется формулой

y∗n =
n∑
k=1

α∗klk.

Такой метод называется методом моментов.

Замечание. Если F — n-мерное пространство, то
совокупность векторов {gj}, j = 1, 2, . . . , n, является
базисом. Следовательно, условия

(rn, gj) = 0, j = 1, 2, . . . , n,

влекут, что rn = 0, т. е. y∗n будет точным решением.

В общем случае, можно лишь надеяться на то, что
y∗n ≈ y∗, где y∗ = A−1f — точное решение уравнения
(7.1).

Возникает важный вопрос, как оценить норму

‖y∗ − y∗n‖.

Понятно, что нужны дополнительные условия для то-
го, чтобы гарантировать малость нормы ‖y∗ − y∗n‖.

Отметим, что ставший уже классическим, глубо-
ко разработанный метод Галеркина представляет собой
специальный случай метода моментов, когда Y = F ,
gk = lk при k = 1, 2, . . . , n. Система для определения
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αk в этом случае имеет вид
n∑
k=1

αk (Alk, lj) = (f, lj), j = 1, n. (7.3)

7.2 Метод наименьших квадратов

Так называют другой специальный случай метода мо-
ментов, когда заданные линейно-независимые системы
взаимосвязаны, а именно, имеют место равенства

gj = Alj, j = 1, 2, . . . , n.

Очевидно, этом случае система для определения αk име-
ет вид

n∑
k=1

αk(Alk, Alj) = (f, Alj), j = 1, n. (7.4)

Название "метод наименьших квадратов" оправдано
тем, что коэффициенты αk можно найти из требования
минимальности некоторой суммы квадратов. Поясним
этот факт подробнее. Пусть

yn =
n∑
k=1

αklk,
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рассмотрим задачу минимизации функции Φ, опреде-
ленную равенством

Φ(α1, α2, . . . , αn) = ‖f − Ayn‖2 → min.

Функция Φ зависит от n переменных. Имеем

0 ≤ Φ(α1, α2, . . . , αn),

кроме того,

Φ(α1, α2, . . . , αn) =

(
f −

n∑
k=1

αkAlk, f −
n∑
k=1

αkAlk

)
=

= ‖f‖2 − 2
n∑
k=1

αk(f, Alk) +
n∑
k=1

n∑
j=1

αkαj(Alk, Alj)

— квадратичная функция от переменных α1, α2, . . . , αn.

Ясно, что эта функция является непрерывно диф-
ференцируемой, минимум существует и точка миниму-
ма находится как решение системы уравнений

∂Φ

∂αj
= 0, j = 1, n.

Вычисляя указанные производные, мы легко убежда-
емся в том, что получаемая таким образом система урав-
нений эквивалентна системе (7.4) из метода моментов.

Рассмотрим теперь вопрос оценки погрешности для
метода наименьших квадратов при следующих услови-
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ях (требованиях):
I) Y — банахово пространство, {lk}∞k=1 — полная

система в пространстве Y ;
II) линейный непрерывный оператор A : Y → F

имеет обратный ограниченный оператор A−1, и, следо-
вательно, существует единственное решение уравнения
(7.1), определяемое формулой y∗ = A−1f ;

III) будем рассматривать метод наименьших квад-
ратов, т. е. gj = Alj, (j = 1, 2, . . . , n).

Теорема 7.1 При сделанных предположениях I), II),
III) существует единственное решение α∗1, α∗2, . . . , α∗n
системы

n∑
k=1

αk(Alk, Alj) = (f, Alj), j = 1, n,

определяющее приближенное решение

y∗n =
n∑
k=1

α∗klk

на основе метода наименьших квадратов, причем

‖y∗ − y∗n‖ → 0 при n→∞.

Более точно, имеем оценки

En(y∗) ≤ ‖y∗ − y∗n‖ ≤ η(A)En(y∗),
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где
η(A) = ‖A−1‖ · ‖A‖ — число обусловленности опе-

ратора A,
En(y∗) — наилучшее приближение элемента

y∗ ∈ Y

элементами вида

ỹn =
n∑
k=1

α̃klk.

Доказательство проведем в несколько шагов.
1) Как мы знаем, в нормированном пространстве

существует элемент y∗∗n наилучшего приближения, т. е.
существует элемент вида

y∗∗n =
n∑
k=1

α∗∗k lk,

обладающий свойством:

En(y∗) = ‖y∗ − y∗∗n ‖ ≤ ‖y∗ − yn‖

для любого элемента yn вида

yn =
n∑
k=1

αklk.

2) Докажем теперь существование приближенно-
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го решения y∗n, определяемого по методу наименьших
квадратов. Дано, что

g1 = Al1, . . . , gn = Aln.

Покажем, что система {gj}nj=1 линейно-независима.
Предположим обратное: пусть существуют коэф-

фициенты β1, . . . , βn, такие, что

β2
1 + . . . + β2

n 6= 0 и
n∑
j=1

βjgj = 0.

Следовательно,
n∑
j=1

βjAlj = 0.

Применяя к обеим частям этого равенства обратный
оператор A−1, получаем

n∑
j=1

βj lj = 0.

Пришли к противоречию с предположением о линейной
независимости системы {lj}nj=1.

Тогда из того, что системаAl1, Al2, . . . , Aln линейно-
независима, следует

det{(Alk, Alj)}nk,j=1 6= 0.

Значит система (7.4) однозначно разрешима и позволя-
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ет определить приближенное решение, имеющее вид

y∗n =
n∑
j=1

α∗klk.

Как мы показали выше при объяснении названия
метода наименьших квадратов, этот элемент миними-
зирует ‖f − Ayn‖. Поэтому имеем

‖f − Ay∗n‖ ≤ ‖f − Ayn‖

для любого элемента yn вида

yn =
n∑
j=1

αklk.

В частности, будем иметь

‖f − Ay∗n‖ ≤ ‖f − Ay∗∗n ‖.

3) Теперь легко получается оценка погрешности, а
именно, оценка для величины

‖y∗ − y∗n‖.

Имеем
En(y∗) ≤ ‖y∗ − y∗n‖ =

= ‖A−1 · A · (y∗ − y∗n)‖ ≤

≤ ‖A−1‖ · ‖Ay∗ − Ay∗n‖ =
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= ‖A−1‖ · ‖f − Ay∗n‖ ≤

≤ ‖A−1‖ · ‖f − Ay∗∗n ‖ =

= ‖A−1‖ · ‖Ay∗ − Ay∗∗n ‖ ≤

≤ ‖A−1‖ · ‖A‖ · ‖y∗ − y∗∗n ‖ = η(A)En(y∗),

где
η(A) = ‖A−1‖ · ‖A‖.

Таким образом, доказаны неравенства

En(y∗) ≤ ‖y∗ − y∗n‖ ≤ η(A)En(y∗).

В силу того, что система {lk}∞k=1 является полной в ба-
наховом пространстве Y , будем иметь, что En(y∗)→ 0

при n→∞. Следовательно,

‖y∗ − y∗n‖ → 0 при n→∞.

Этим и завершается доказательство теоремы.

7.3 Прямые методы, основанные
на аппроксимации операторов

Следуя лауреату нобелевской премии Л.В. Канторови-
чу, прямыми называют методы, сводящие приближен-
ное решение операторных уравнений к решению конеч-
номерных СЛАУ. Очевидно, изученные нами методы
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моментов относятся к прямым методам.

В этом пункте рассмотрим новое семейство прямых
методов.

Пусть F, Y — линейные нормированные простран-
ства, и пусть f ∈ F — заданный элемент. Рассмотрим
снова уравнение

Ay = f (7.5)

в предположении, что A : Y → F — линейный обрати-
мый оператор. Ищется решение y ∈ Y .

Пусть заданы конечномерные подпространства

Yn ⊂ Y, Fn ⊂ F

размерности

dimYn = dimFn = n ∈ N.

И пусть для каждого n ∈ N задан также элемент

fn ∈ Fn,

и линейный конечномерный оператор

An : Yn → Fn.

Если
fn ≈ f, An ≈ A,

в некотором смысле, то естественно искать приближен-
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ное решение yn ∈ Yn уравнения (7.5) как решение урав-
нения

An yn = fn.

Это уравнение эквивалентно некоторой системе ли-
нейных алгебраических уравнений. В этом легко убе-
диться следующим образом.

В подпространстве Yn существует базис l1, . . . , ln, а
в подпространстве Fn существует базис g1, . . . , gn. То-
гда справедливы следующие разложения соответству-
ющих элементов по базисам:

fn =
n∑
j=1

βjgj, Anlk =
n∑
j=1

lkjgj,

где k = 1, . . . , n.

Возьмем элемент

yn =
n∑
k=1

αklk ∈ Yn

и подставим в уравнение Anyn = fn. Получим
n∑
k=1

αk

n∑
j=1

lkjgj =
n∑
k=1

βjgj.

Приравнивая коэффициенты при gj, получаем следую-
щую систему линейных алгебраических уравнений для

418



определения αk:
n∑
k=1

αklkj = βj, j = 1, n.

Как мы увидим ниже, эта система линейных алгебра-
ических уравнений, а значит и уравнение An yn = fn,
однозначно разрешима при некоторых дополнительных
предположениях.

Теперь рассмотрим подробнее вопросы существова-
ния приближенного решения (т. е. решения уравнения
An yn = fn) и его близости к точному решению опера-
торного уравнения (7.5).

Точнее, рассмотрим обоснование сходимости опи-
санного метода при следующих предположениях:

I) оператор A : Y → F является линейным и
непрерывным, и существует непрерывный обратный опе-
ратор

A−1 : F → Y ;

II) для любого n ∈ N выбраны подпространства

Yn ⊂ Y, Fn ⊂ F

такие, что
dimYn = dimFn = n;

III) элементы fn ∈ Fn выбраны так, что

δn := ‖f − fn‖ → 0 при n→∞;
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IV) конечномерные линейные операторы

An : Yn → Fn

выбраны так, что

εn := ‖A− An‖Yn→F → 0 при n→∞.

Теорема 7.2 При указанных предположениях I—IV спра-
ведливы следующие утверждения:

для достаточно больших n уравнение Anyn = fn
однозначно разрешимо и

‖y∗ − y∗n‖ = O(εn + δn), εn + δn → 0,

где
y∗ = A−1f, y∗n = A−1

n fn.

Доказательство. Выберем n настолько большим,
чтобы

qn := εn‖A−1‖ < 1.

Далее считаем, что qn < 1. Рассмотрим произвольный
элемент yn ∈ Yn. Имеем

‖yn‖ = ‖A−1Ayn‖ ≤

≤ ‖A−1‖ · ‖Ayn‖ ≤

≤ ‖A−1‖ · ‖Ayn − Anyn + Anyn‖ ≤
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≤ ‖A−1‖ · ‖(A− An)yn‖ + ‖A−1‖ · ‖Anyn‖ ≤

≤ ‖A−1‖‖A− An‖ · ‖yn‖ + ‖A−1‖ · ‖Anyn‖ =

= qn‖yn‖ + ‖A−1‖ · ‖Anyn‖.

Отсюда следует, что

(1− qn)‖yn‖ ≤ ‖A−1‖ · ‖Anyn‖,

поэтому
‖Anyn‖ ≥ mn · ‖yn‖, (7.6)

где
mn =

1− qn
‖A−1‖

> 0.

Из неравенств qn < 1 и (7.6) следует, что уравнение
Anyn = fn однозначно разрешимо, причем существует
ограниченный обратный оператор A−1

n , такой, что

‖A−1
n ‖ ≤

1

mn
.

Таким образом, доказано, что существует искомое при-
ближенное решение y∗n = A−1

n fn при достаточно боль-
ших n, для которых qn := εn‖A−1‖ < 1.

Напомним, что y∗ = A−1f — точное решение урав-
нения Ay = f . Оценим погрешность, т. е. норму разно-
сти y∗ − y∗n. Имеем

‖y∗ − y∗n‖ = ‖A−1A(y∗ − y∗n)‖ ≤
421



≤ ‖A−1‖ · ‖Ay∗ − Ay∗n‖.

Так как Ay∗ = f и Any
∗
n = fn, то

‖Ay∗ − Ay∗n‖ =

= ‖f − Ay∗n‖ =

= ‖f − fn + fn − Ay∗n‖ =

= ‖f − fn + (An − A)y∗n‖ ≤

≤ ‖f − fn‖ + ‖An − A‖ · ‖y∗n‖ =

= δn + εn‖y∗n‖.

Следовательно,

‖y∗ − y∗n‖ ≤ ‖A−1‖ · (δn + εn‖y∗n‖).

С учетом неравенства

‖y∗n‖ ≤ ‖y∗n − y∗‖ + ‖y∗‖,

получаем

‖y∗−y∗n‖ ≤ ‖A−1‖ δn+εn ‖A−1‖‖y∗−y∗n‖+εn‖A−1‖‖y∗‖.

Так как qn = εn‖A−1‖, то это неравенство равносильно
неравенству

(1− qn)‖y∗ − y∗n‖ ≤ ‖A−1‖(δn + εn‖y∗‖).
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Отсюда следует неравенство

‖y∗ − y∗n‖ ≤
‖A−1‖(1 + ‖y∗‖)

1− qn
(δn + εn)

при qn = εn‖A−1‖ < 1, что в свою очередь влечет соот-
ношение

‖y∗ − y∗n‖ = O(εn + δn)

при n→∞, так как limn→∞ qn = 0. Этим и завершает-
ся доказательство теоремы.

Замечание. Обычно, подпространства Fn, Yn и
оператор An выбирают согласованно. Типичная ситу-
ация такова. Предположим, что существует линей-
ный оператор проектирования Pn : F → Fn, обладаю-
щий характеристическим свойством P 2

n = Pn. Тогда
полагают An := PnA, и приближенное решение опре-
деляют из уравнения

PnAyn = Pnf (yn ∈ Yn).

Область определения оператора Pn может быть
шире, чем пространство F . Если пространство Y так-
же лежит а области определения оператора Pn, то
можно взять Yn = PnY := {Pny : y ∈ Y }. Получа-
емые таким образом приближенные методы решения
операторных уравнений называют проекционными.
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Глава 8

Интегральные уравнения

Рассмотрим интегральное уравнение Фредгольма II ро-
да

y(x) + λ

∫ b

a
h(x, t) y(t)dt = f (x), a ≤ x ≤ b, (8.1)

где ядро h и правая часть f — заданные непрерывные
функции, λ — постоянная. В общем случае решение
уравнения (8.1) не удается определить в явном виде.
Поэтому возникает задача численного решения.

Очевидно, уравнение (8.1) можно рассматривать как
уравнение Ay = f , где линейный оператор

A : C[a, b]→ C[a, b]

определен формулой

(Ay)(x) := y(x) + λ

∫ b

a
h(x, t) y(t)dt, a ≤ x ≤ b.

Для малых λ решение может быть найдено с примене-
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нием сходящегося итерационного процесса, заданного
формулами

y0(x) = 0, yk(x) +λ

∫ b

a
h(x, t) yk−1(t)dt = f (x), k ∈ N.

Далее мы рассмотрим иные методы в предположении
однозначной разрешимости уравнения (8.1) при задан-
ных h, f и λ. Точное решение (8.1) будем обозначать
символом y∗.

8.1 Полиномиальная коллокация

Метод полиномиальной коллокации для приближенно-
го решения уравнения (8.1) заключается в следующем.

Задаем узлы xj ∈ [a, b], j = 1, 2, . . . , n. Прибли-
женное решение уравнения (8.1) ищем в виде полинома
степени n− 1, полагая

yn(x) =
n∑
k=1

αkx
k−1.

Коэффициенты α1, α2, . . . , αn нужно определить таким
образом, чтобы функция yn(x) представляла собой при-
ближенное решение уравнения (8.1).

Требуем, чтобы yn(x) удовлетворяла уравнению (8.1)
в узлах, т. е. требуем, чтобы

(Ayn)(xj) = f (xj), j = 1, 2, . . . , n.
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Легко видеть, что эта система равносильна следующей
системе линейных алгебраических уравнений

n∑
k=1

ajkαk = f (xj), j = 1, 2, . . . , n, (8.2)

где

ajk = xk−1
j + λ

∫ b

a
h(xj, t)t

k−1dt.

Предположим, что система (8.2) имеет решение

α∗1, α
∗
2, . . . , α

∗
n.

Тогда в качестве приближенного решения (8.1) берем
полином

y∗n =
n∑
k=1

α∗kx
k−1.

Близость найденного таким образом приближенного ре-
шения y∗n к точному решению y∗ = A−1f уравнения
(8.1) удается подтвердить лишь при некоторых допол-
нительных условиях.

Приведем теорему Л.В. Канторовича.

Теорема 8.1 Пусть выполняются условия:
1) существуют числа r ≥ 1 и M > 0, такие, что

функции f (.) и h(., t) при любом t ∈ [a, b] принадле-
жат пространству W rM :=

:= {g ∈ C[a, b], ∃g(r), |g(r)(x)| ≤M ∀x ∈ [a, b]};
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2) ядро h и параметр λ таковы, что уравнение
(8.1) однозначно разрешимо при любом f ∈ C[a, b];

3) xj (j = 1, 2, . . . , n) — узлы Чебышева.
Тогда СЛАУ (8.2) однозначно разрешима для до-

статочно больших n и

‖y∗ − y∗n‖C[a,b] = O

(
lnn

nr

)
.

Схема доказательства. Доказательство основано на
нескольких фактах.

а) Следуя Канторовичу, интерпретируем систему
(8.2) как уравнение вида

Anyn = fn,

где fn — интерполяционный полином Лагранжа по уз-
лам xj для f , yn — полином степени ≤ n−1. А именно,

fn(x) =
n∑
j=1

f (xj)lj(x),

где lj(x) — фундаментальные полиномы Лагранжа,

yn(x) =
n∑
k=1

αkx
k−1.

Можем записать равенства fn = Pnf , yn = Pnyn,
где Pn — линейный оператор, сопоставляющий функ-
ции ее интерполяционный полином Лагранжа, постро-
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енный по узлам xj. В частности, имеем

fn(x) = (Pnf )(x) := Ln(f ;x) =
n∑
j=1

f (xj)lj(x).

Оператор Pn является проекционным оператором. То-
гда уравнение

Anyn = fn

запишется в виде уравнения

PnAyn = Pnf.

Поскольку

(Ayn)(x) := yn(x) + λ

∫ b

a
h(x, t) yn(t)dt

и

(Anyn)(x) := yn(x) + λPn

(∫ b

a
h(., t) yn(t)dt

)
(x) =

= yn(x) + λ

∫ b

a
Pn (h(., t)) (x) yn(t)dt,

то справедливо равенство ((A− An)yn)(x) =

= λ

∫ b

a
yn(t)[h(x, t)− (Pnh(., t))(x)]dt
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для всех точек x ∈ [a, b]. Поэтому

||(A− An)yn|| ≤ const
M lnn

nr
||yn||,

что влечет оценку

εn := ||A− An|| = O

(
lnn

nr

)
, (n→∞).

б) Далее Л.В. Канторович применяет теорему 7.2,
полагая An := PnA, fn = Pnf , пользуясь равенством
yn = Pnyn для полинома yn степени ≤ n−1 и оценками

‖Pn‖ = O(lnn), εn = O

(
lnn

nr

)
, δn = O

(
lnn

nr

)
.

С этими оценками мы знакомились ранее при изу-
чении численных методов анализа. Как мы знаем, оцен-
ка ‖Pn‖ = O(lnn) доказана С.Н. Бернштейном в пред-
положении, что узлы интерполяции являются узлами
Чебышева. Оценки

εn = O

(
lnn

nr

)
, δn = O

(
lnn

nr

)
вытекают из теоремы Лебега об оценке погрешности
интерполяции в сочетании с упомянутой теоремой Берн-
штейна и теоремой типа Джексона-Стечкина о скоро-
сти аппроксимации полиномами степени n−1 функции,
принадлежащей семейству W rM .
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8.2 Метод сплайн-коллокации

Применяется та же идея, что и в методе полиномиаль-
ной коллокации, а именно, сведение к теореме 7.2. Но
явные представления будут другими, так как рассмат-
риваются сплайн-интерполяции.

Обсудим подробнее. На отрезке [a, b] рассматрива-
ем равноотстоящие узлы с шагом h = (b − a)/n, т. е.
узлы

xj = a + hj, j = 0, 1, . . . , n.

Функцию yn(x) ищем как сплайн 1-степени, а функции
f сопоставляем ее сплайн 1-ой степени, т. е. полагаем

yn(x) =
n∑
k=0

αksk(x),

fn(x) =
n∑
k=0

f (xk)sk(x),

где sk — фундаментальный сплайн 1-ой степени, удо-
влетворяющий условиям sk(xj) = δkj (k, j = 0, 1, . . . , n).

Очевидно, СЛАУ для определения αk легко выпи-
сывается. Система имеет вид

αj +
n∑
k=0

bjkαk = f (xj), j = 0, 1, 2, . . . , n, (8.3)
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где

bjk = λ

∫ b

a
h(xj, t)sk(t)dt.

Предположим, что система (8.3) имеет решение

α∗0, α
∗
1, . . . , α

∗
n.

Тогда в качестве приближенного решения уравнения
(8.1) берем сплайн

y∗n =
n∑
k=0

α∗ksk(x).

Теорема 8.2 Пусть интегральное уравнение (8.1) име-
ет решение y∗ = A−1f ∈ C[a, b] при любой правой ча-
сти f ∈ C[a, b]. Тогда для достаточно больших n при-
ближенное решение y∗n, определяемое описанным вы-
ше методом сплайн-коллокации, существует и един-
ственно, причем

‖y∗ − y∗n‖C[a,b] = O(εn + δn).

Здесь

εn = |λ|
∫ b

a
ω

(
h(., t),

b− a
n

)
dt, δn = ω

(
f,
b− a
n

)
,

где
ω

(
f,
b− a
n

)
, ω

(
h(., t),

b− a
n

)
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— модули непрерывности соответствующих функций
по переменной x ∈ [a, b].

Схема доказательства. Пользуемся тем, что нам из-
вестна оценка погрешности при аппроксимации непре-
рывной функции ее сплайном 1-ой степени. При этом
будут использованы соответствующие модули непрерыв-
ности. Имеем

δn = ‖f−fn‖C[a,b] = max
x
|f (x)−S1

n(f, x)| ≤ ω

(
f,
b− a
n

)
.

Далее, для любого yn вида

yn(x) =
n∑
k=0

αksk(x)

имеем
‖(A− An)yn‖C[a,b] =

=

∥∥∥∥∥λ
∫ b

a
yn(t)[h(x, t)− hn(x, t)]dt

∥∥∥∥∥
C[a,b]

≤

≤ |λ|
∫ b

a
ω

(
h(., t),

b− a
n

)
dt · ‖yn‖C[a,b].

Отсюда получаем

εn = ‖A− An‖ ≤ |λ|
∫ b

a
ω

(
h(., t),

b− a
n

)
dt.

Поскольку h и f — заданные непрерывные функции,
то εn → 0 и δn → 0 при n → ∞. Поэтому мы можем
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применить теорему 7.2 и получить искомую оценку

‖y∗ − y∗n‖C[a,b] = O(εn + δn).

Замечание. Пусть Y и F — линейные нормирован-
ные пространства функций, определенных на отрез-
ке [a, b]. В этом случае методы коллокации можно
использовать и для численного решения операторных
уравнений вида Ay = f , где A : Y → F — заданный
линейный непрерывный оператор.

А именно, как и в методе моментов ищем прибли-
женное решение вида yn(x) =

∑n
k=1 αklk(x), x ∈ [a, b],

определяем невязку rn(x) = f (x)− (Ayn)(x).
Далее, задаем узлы xj ∈ [a, b], j = 1, 2, . . . , n, и

числа αk определяем как решение системы уравнений
rn(xj) = 0, j = 1, 2, . . . , n.

8.3 Метод механических квадратур

Рассмотрим следующее уравнение Фредгольма II рода

(Ay)(x) := y(x)− λ
∫ b

a
ρ(t)h(x, t)y(t)dt = f (t).

Считаем, что заданные функции f , h и ρ являются
непрерывными, а также ρ(x) > 0 при x ∈ [a, b].

Предполагаем, что при любой непрерывной правой
части существует единственное решение y∗ ∈ C[a, b].
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Опишем кратко метод механических квадратур.
Обозначим ψ(t) = h(x, t)y(t). Берем квадратурную

формулу вида∫ b

a
ρ(t)ψ(t)dt =

n∑
k=1

Akψ(xk) + Rn(ψ),

x1, . . . , xn — заданные узлы, ψ(xk) = h(x, xk)y(xk), при-
ближенные значения yn(x) ≈ y(x) в узлах xj ищем как
решение СЛАУ:

yn(xj)−λ
n∑
k=1

Akh(xj, xk)y(xk) = f (xj), j = 1, 2, . . . , n.

т. е. cj = yn(xj) — неизвестные, подлежащие определе-
нию числа, удовлетворяющие СЛАУ

cj − λ
n∑
k=1

Akh(xj, xk)ck = f (xj), j = 1, 2, . . . , n.

Таким образом, мы получаем ряд новых вычисли-
тельных схем, основанных на применении квадратур-
ных формул, так как имеется множество квадратурных
формул (в частности, квадратурные формулы прямо-
угольников, трапеций и Симпсона, а также квадратур-
ные формулы Гаусса).

Многие задачи для ОДУ являются эквивалентны-
ми соответствующим интегральным уравнениям. На-
пример, нетрудно показать, что интегральное уравне-
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ние
y(x) + (1− x)

∫ x

0
tf (t, y(t))dt+

+x

∫ 1

x
(1− t)f (t, y(t))dt = Bx

эквивалентно следующей краевой задаче

y′′ = f (x, y), y(0) = 0, y(1) = B,

где f : [0, 1] × R → R предполагается непрерывной
функцией. Поэтому естественно применять методы кол-
локации при решении краевых задач для ОДУ.

Рассмотрим дифференциальное уравнение

y′′ + p(x)y′ + q(x)y = f (x), a ≤ x ≤ b, (8.4)

где коэффициенты p, q, f ∈ C[a, b]. Ищем y ∈ C2[a, b],
удовлетворяющее краевым условиям

y(a) = y(b) = 0. (8.5)

В этом случае конструкция приближенного решения
yn(x) методом полиномиальной коллокации такова. При-
ближенное решение ищем в виде следующего полинома

yn(x) = (x− a)(b− x)
n∑
k=1

αkx
k−1. (8.6)

Краевые условия yn(a) = yn(b) = 0 обеспечены автома-
тически. Неизвестные коэффициенты α1, . . . , αn опре-
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деляем так:

* задаем узлы x1, x2, . . . , xn ∈ (a, b),

** потребуем, чтобы yn(x) в виде (8.6) удовлетворя-
ло (8.4) точно, но только в узлах, т. е. в точках x = xj.

Обозначим

ψk(x) = (x− a)(b− x)xk−1,

следовательно,

yn(x) =
n∑
k=1

αkψk(x).

Подставляем yn(x) в (8.4) и требуем выполнение урав-
нения в узловых точках x = xj. Получаем

n∑
k=1

αk{ψ′′k(xj) + p(xj)ψ
′
k(xj) + q(xj)ψk(xj)} = f (xj)

для любого j = 1, 2, . . . , n. Если эта СЛАУ имеет ре-
шение α∗1, . . . , α∗n, то получаем искомое приближенное
решение в виде следующего полинома

y∗n(x) = (x− a)(b− x)
n∑
k=1

α∗kx
k−1.

Л.В. Канторович доказал, что указанное прибли-
женное решение y∗n сходится к точному решению при
n→∞, если выполнены следующие условия:
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1) задача (8.4) – (8.5) имеет единственное реше-
ние y∗ ∈ C2[a, b];

2) p, q, f ∈ W rM , т. е. эти функции имеют про-
изводные порядка r ≥ 1, ограниченные по модулю неко-
торой константой M ;

3) x1, x2, . . . , xn ∈ (a, b) — узлы Чебышева.

8.4 Задачи и упражнения

1. Убедитесь в том, что функция

y(x) = x2 + 1

является решением интегрального уравнения

y(x)−
∫ 1

0

x2

t2 + 1
y(t) dt = 1.

2. Подбором ядра K(x, t) и правой части f (x) по-
стройте три разных интегральных уравнения вида

y(x) +

∫ b

a
K(x, t) y(t) dt = f (x), a ≤ x ≤ b,

решением которых является одна и та же функция

y(x) = ex.

3. Методом полиномиальной коллокации найдите
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приближенное решение интегрального уравнения

y(x)−
∫ 1

0

x2

t2 + 1
y(t) dt = 1, 0 ≤ x ≤ 1.

Рассмотрите три случая с узлами Чебышева при
n = 3, n = 6 и n = 9. Сравните с точным решением.

4. Методом сплайн-коллокации найдите приближен-
ное решение интегрального уравнения

y(x)−
∫ 1

0

x2

t2 + 1
y(t) dt = 1, 0 ≤ x ≤ 1.

Рассмотрите три случая: n = 3, n = 6 и n = 9.
Сравните полученные решения с точным.
5. Пусть a < b, f : [a, b] × R → R — непрерывная

функция. Докажите, что интегральное уравнение

y(x) +
b− x
b− a

∫ x

a
(t− a)f (t, y(t))dt+

+
x− a
b− a

∫ b

x
(b− t)f (t, y(t))dt =

=
(β − α)x + (αb− βa)

b− a
эквивалентно следующей краевой задаче

y′′ = f (x, y), y(a) = α, y(b) = β

для ОДУ второго порядка.
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6. Докажите следующее свойство проекционных опе-
раторов.

Пусть X — векторное пространство над полем K,
P : X → X — линейный оператор, обладающий свой-
ствами: P 2 = P , P 6= I , P 6= 0. Тогда 0 ∈ K и 1 ∈ K
являются собственными значениями оператора P . Ес-
ли λ ∈ K \{0, 1}, то P −λI является биекцией, причем

(P − λI)−1 =
1

λ(1− λ)
P − 1

λ
I.
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Глава 9

Рекомендуемая литература

Большинство включенных в библиографию работ
представляют собой учебные пособия. Каждая книга
имеет свои особенности. Так, например, книга Н.Н. Ка-
литкина рассчитана на читателя, который занимается
применением численных методов к прикладным про-
блемам. В этой книге вы найдете огромное количество
практических рекомендаций вычислителю.

Включены также работы, изучение которых будет
весьма полезно, но требует серьезных усилий. К ним от-
носятся книга И.П. Натансона по конструктивной тео-
рии функций, книга С.Б. Стечкина и Ю.Н. Субботина
по сплайнам и обзорная статья В.М. Тихомирова по
теории приближения функций.

Следует также указать, что научная и учебная ли-
тература по численным методам весьма обширна. Ни-
же приведена лишь часть известных книг, написанных
специалистами по вычислительной математике.
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