
Lecture 1. Newton’s Laws

Coordinates

Physics is the study of dynamics. Dynamics is the description of the actual forces of nature that, we
believe, underlie the causal structure of the Universe and are responsible for its evolution in time. We
are about to embark upon the intensive study of a simple description of nature that introduces the
concept of a force, due to Isaac Newton. A force is considered to be the causal agent that produces
the effect of acceleration in any massive object, altering its dynamic state of motion.

a) meters – the SI units of length
b) seconds – the SI units of time
c) kilograms – the SI units of mass

Coordinatized visualization of the motion of a particle
of mass m along a trajectory x⃗(t). Note that in a short
time Δt the particle’s position changes from x⃗(t) to
x⃗(t+Δt) .

x⃗(t)=x(t) �𝑥𝑥 + 𝑦𝑦(𝑡𝑡) �𝑦𝑦
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Velocity

The average velocity of the particle is by definition the vector change in its position ∆x⃗ in some time Δt
divided by that time:

�⃗�𝑣𝑎𝑎𝑎𝑎 =
∆�⃗�𝑥
∆𝑡𝑡

Sometimes average velocity is useful, but often, even usually, it is not. It can be a rather poor measure for
how fast a particle is actually moving at any given time, especially if averaged over times that are long
enough for interesting changes in the motion to occur.

The instantaneous velocity vector is the time-derivative of the position vector:

�⃗�𝑣 𝑡𝑡 = lim
∆𝑡𝑡→0

�⃗�𝑥 𝑡𝑡 + ∆𝑡𝑡 − �⃗�𝑥(𝑡𝑡)
∆𝑡𝑡

= lim
∆𝑡𝑡→0

∆�⃗�𝑥
∆𝑡𝑡

=
𝑑𝑑�⃗�𝑥
𝑑𝑑𝑡𝑡

Speed is defined to be the magnitude of the velocity vector:
𝑣𝑣 𝑡𝑡 = �⃗�𝑣(𝑡𝑡)
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Acceleration

To see how the velocity changes in time, we will need to consider the acceleration of a particle, or the
rate at which the velocity changes. As before, we can easily define an average acceleration over a
possibly long time interval Δt as:

�⃗�𝑎𝑎𝑎𝑎𝑎 =
�⃗�𝑣 𝑡𝑡 + ∆𝑡𝑡 − �⃗�𝑣(𝑡𝑡)

∆𝑡𝑡
=
𝑑𝑑�⃗�𝑣
𝑑𝑑𝑡𝑡

The acceleration that really matters is (again) the limit of the average over very short times; the time
derivative of the velocity. This limit is thus defined to be the instantaneous acceleration:

�⃗�𝑎 𝑡𝑡 = lim
∆𝑡𝑡→0

∆�⃗�𝑣
∆𝑡𝑡

=
𝑑𝑑�⃗�𝑣
𝑑𝑑𝑡𝑡

=
𝑑𝑑2�⃗�𝑥
𝑑𝑑𝑡𝑡2
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Newton’s Laws

a) Law of Inertia: Objects at rest or in uniform motion (at a constant velocity) in an inertial reference frame remain 
so unless acted upon by an unbalanced (net, total) force. We can write this algebraically as: 

�⃗�𝐹 = ∑𝑖𝑖 �⃗�𝐹𝑖𝑖 = 0 = 𝑚𝑚�⃗�𝑎 = 𝑚𝑚𝑑𝑑𝑎𝑎
𝑑𝑑𝑡𝑡
⇒ �⃗�𝑣 = 𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑡𝑡𝑎𝑎𝑠𝑠𝑡𝑡 𝑣𝑣𝑣𝑣𝑐𝑐𝑡𝑡𝑐𝑐𝑣𝑣

b) Law of Dynamics: The total force applied to an object is directly proportional to its acceleration in an inertial 
reference frame. The constant of proportionality is called the mass of the object. We write this algebraically as:

�⃗�𝐹 = �
𝑖𝑖

�⃗�𝐹𝑖𝑖 = 𝑚𝑚�⃗�𝑎 =
𝑑𝑑(𝑚𝑚�⃗�𝑣)
𝑑𝑑𝑡𝑡

=
𝑑𝑑�⃗�𝑝
𝑑𝑑𝑡𝑡

where we introduce the momentum of a particle, �⃗�𝑝 = 𝑚𝑚�⃗�𝑣.
c) Law of Reaction: If object A exerts a force �⃗�𝐹𝐴𝐴𝐵𝐵 on object B along a line connecting the two objects, then object B 

exerts an equal and opposite reaction force of �⃗�𝐹𝐴𝐴𝐵𝐵 = −�⃗�𝐹𝐵𝐵𝐴𝐴 on object A. We write this algebraically as:

�⃗�𝐹𝑖𝑖𝑗𝑗 = −�⃗�𝐹𝑗𝑗𝑖𝑖 𝑐𝑐𝑣𝑣 �
𝑖𝑖,𝑗𝑗

�⃗�𝐹𝑖𝑖𝑗𝑗 = 0

where i and j are arbitrary particle labels. The latter form will be useful to us later; it means that the sum of all 
internal forces between particles in any closed system of particles cancels!
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Forces

Classical dynamics at this level, in a nutshell, is very simple. Find the total force on an object. Use
Newton’s second law to obtain its acceleration (as a differential equation of motion). Solve the equation
of motion by direct integration or otherwise for the position and velocity.

The next most important problem is: how do we evaluate the total force?

There are fundamental forces – elementary forces that we call “laws of nature” because the forces 
themselves aren’t caused by some other force, they are themselves the actual causes of dynamical action 
in the visible Universe.

The Forces of Nature (strongest to weakest):

a) Strong Nuclear (bound together the quarks, protons and neutrons)

b) Electromagnetic (combines the positive nucleus with electrons)

c) Weak Nuclear (acts at very short range. This force can cause e.g. neutrons to give off an electron and 
turn into a proton)

d) Gravity
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Force Rules
a) Gravity (near the surface of the earth): 

𝐹𝐹𝑔𝑔 = 𝑚𝑚𝑚𝑚, 𝑚𝑚 ≈ 9,81 𝑚𝑚𝑚𝑚𝑡𝑡𝑚𝑚𝑚𝑚
𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑2

≈ 10 𝑚𝑚𝑚𝑚𝑡𝑡𝑚𝑚𝑚𝑚
𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑2

b) The Spring (Hooke’s Law) in one dimension:
𝐹𝐹𝑥𝑥 = −𝑘𝑘∆𝑥𝑥

c) The Normal Force: 
𝐹𝐹⊥ = 𝑁𝑁

d) Tension in an Acme (massless, unstretchable, unbreakable) string: 
𝐹𝐹𝑆𝑆 = 𝑇𝑇

e) Static Friction:
𝑓𝑓𝑆𝑆 ≤ 𝜇𝜇𝑠𝑠𝑁𝑁

f) Kinetic Friction:
𝑓𝑓𝑘𝑘 = 𝜇𝜇𝑘𝑘𝑁𝑁

g) Fluid Forces, Pressure: A fluid in contact with a solid surface (or anything else) in general exerts a force on that 
surface that is related to the pressure of the fluid:

𝐹𝐹𝑃𝑃 = 𝑃𝑃𝐴𝐴
h) Drag Forces: 

𝐹𝐹𝑑𝑑 = −𝑏𝑏𝑣𝑣𝑠𝑠
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Force Balance – Static Equilibrium

If all of the forces acting on an object balance:

�⃗�𝐹𝑡𝑡𝑠𝑠𝑡𝑡 = �
𝑖𝑖

�⃗�𝐹𝑖𝑖 = 𝑚𝑚�⃗�𝑎 = 0

Example: Spring and Mass in Static Force Equilibrium

Suppose we have a mass m hanging on a spring with spring constant k such that the spring is stretched out some distance 
Δx from its unstretched length. 

A mass m hangs on a spring with spring constant k. We would like to compute the amount Δx
by which the string is stretched when the mass is at rest in static force equilibrium.

�𝐹𝐹𝑥𝑥 = −𝑘𝑘 𝑥𝑥 − 𝑥𝑥0 − 𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑎𝑎𝑥𝑥

or (with Δx = x − x0, so that Δx is negative as shown)

𝑎𝑎𝑥𝑥 = −
𝑘𝑘
𝑚𝑚
∆𝑥𝑥 − 𝑚𝑚
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Force Balance – Static Equilibrium

In static equilibrium, 𝑎𝑎𝑥𝑥 = 0 (and hence, 𝐹𝐹𝑥𝑥 = 0) and we can solve for Δx:

𝑎𝑎𝑥𝑥 = −
𝑘𝑘
𝑚𝑚
∆𝑥𝑥 − 𝑚𝑚 = 0

𝑘𝑘
𝑚𝑚
∆𝑥𝑥 = 𝑚𝑚

∆𝑥𝑥 =
𝑚𝑚𝑚𝑚
𝑘𝑘
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Simple Motion in One Dimension

A mass m at rest is dropped from a height H above the ground at time t = 0; what happens to the mass as 
a function of time?

1. You must select a coordinate system to use to describe what happens. 

2. You must write Newton’s Second Law in the coordinate system for all masses, being sure to include 
all forces or force rules that contribute to its motion.

3. You must solve Newton’s Second Law to find the accelerations of all the masses (equations called 
the equations of motion of the system). 

4. You must solve the equations of motion to find the trajectories of the masses, their positions as a 
function of time, as well as their velocities as a function of time if desired. 

5. Finally, armed with these trajectories, you must answer all the questions the problem poses using 
algebra and reason
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Example: A Mass Falling from Height H 

Draw in all of the forces that act on the mass as proportionate 
vector arrows in the direction of the force.

�⃗�𝐹 = −𝑚𝑚𝑚𝑚�𝑦𝑦

or if you prefer, you can write the dimension-labelled scalar 
equation for the magnitude of the force in the y-direction:

𝐹𝐹𝑦𝑦 = −𝑚𝑚𝑚𝑚

𝐹𝐹𝑦𝑦 = −𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑎𝑎𝑦𝑦

𝑚𝑚𝑎𝑎𝑦𝑦 = −𝑚𝑚𝑚𝑚

𝑎𝑎𝑦𝑦 = −𝑚𝑚

𝑑𝑑2𝑦𝑦
𝑑𝑑𝑡𝑡2

=
𝑑𝑑𝑣𝑣𝑦𝑦
𝑑𝑑𝑡𝑡

= −𝑚𝑚

where g = 10 m/second2
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Example: A Mass Falling from Height H 
The last line (the algebraic expression for the acceleration) is called the equation of motion for the 
system

𝑑𝑑𝑎𝑎𝑦𝑦
𝑑𝑑𝑡𝑡

= −𝑚𝑚 Next, multiply both sides by dt to get:

𝑑𝑑𝑣𝑣𝑦𝑦 = −𝑚𝑚𝑑𝑑𝑡𝑡 Then integrate both sides:

∫𝑑𝑑𝑣𝑣𝑦𝑦 = −∫𝑚𝑚𝑑𝑑𝑡𝑡 doing the indefinite integrals to get:

𝑣𝑣𝑦𝑦 𝑡𝑡 = −𝑚𝑚 � 𝑡𝑡 + 𝐶𝐶

The final C is the constant of integration of the indefinite integrals. We have to evaluate it using the
given (usually initial) conditions. In this case we know that:

𝑣𝑣𝑦𝑦 0 = −𝑚𝑚 � 0 + 𝐶𝐶 = 𝐶𝐶 = 0

Thus:

𝑣𝑣𝑦𝑦 𝑡𝑡 = −𝑚𝑚𝑡𝑡

We now know the velocity of the dropped ball as a function of time!
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Example: A Mass Falling from Height H 
However, the solution to the dynamical problem is the trajectory function, y(t). To find it, we repeat the same process, 
but now use the definition for vy in terms of y:

𝑑𝑑𝑦𝑦
𝑑𝑑𝑡𝑡

= 𝑣𝑣𝑦𝑦 𝑡𝑡 = −𝑚𝑚𝑡𝑡 Multiply both sides by dt to get:

𝑑𝑑𝑦𝑦 = −𝑚𝑚𝑡𝑡 𝑑𝑑𝑡𝑡 Next, integrate both sides:

∫𝑑𝑑𝑦𝑦 = −∫𝑚𝑚𝑡𝑡 𝑑𝑑𝑡𝑡 to get:

𝑦𝑦 𝑡𝑡 = −
1
2
𝑚𝑚𝑡𝑡2 + 𝐷𝐷

The final D is again the constant of integration of the indefinite integrals. We again have to evaluate it using the given
(initial) conditions in the problem. In this case we know that:

𝑦𝑦 0 = −
1
2
𝑚𝑚02 + 𝐷𝐷 = 𝐷𝐷 = 𝐻𝐻

because we dropped it from an initial height 𝑦𝑦 0 = 𝐻𝐻. Thus:

𝑦𝑦 𝑡𝑡 = −1
2
𝑚𝑚𝑡𝑡2 + 𝐻𝐻

and we know everything there is to know about the motion!
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Example: A Mass Falling from Height H 
Finally, we have to answer any questions that the problem might ask! Here are a couple of common questions you can 
now answer using the solutions you just obtained:

a) How long will it take for the ball to reach the ground?

b) How fast is it going when it reaches the ground?

To answer the first one, we use a bit of algebra. “The ground” is (recall) y = 0 and it will reach there at some specific
time (the time we want to solve for) tg.

We write the condition that it is at the ground at time tg :

𝑦𝑦 𝑡𝑡𝑔𝑔 = −
1
2
𝑚𝑚𝑡𝑡2 + 𝐻𝐻 = 0

If we rearrange this and solve for tg we get:

𝑡𝑡𝑔𝑔 = ±
2𝐻𝐻
𝑚𝑚
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Example: A Mass Falling from Height H 
To find the speed at which it hits the ground, one can just take our correct (future) time and plug it into 
vy! That is:

𝑣𝑣𝑔𝑔 = 𝑣𝑣𝑦𝑦 𝑡𝑡𝑔𝑔 = −𝑚𝑚𝑡𝑡𝑔𝑔 = −𝑚𝑚
2𝐻𝐻
𝑚𝑚

= − 2𝑚𝑚𝐻𝐻

Note well that it is going down (in the negative y direction) when it hits the ground.
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Example: A Constant Force in One Dimension
A car of mass m is travelling at a constant speed v0 as it enters a long, nearly straight merge lane. A
distance d from the entrance, the driver presses the accelerator and the engine exerts a constant force of
magnitude F on the car.

a) How long does it take the car to reach a final velocity vf > v0?

b) How far (from the entrance) does it travel in that time?
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Example: A Constant Force in One Dimension
We will write Newton’s Second Law and solve for the acceleration (obtaining an equation of motion). Then we will
integrate twice to find first vx(t) and then x(t).

𝐹𝐹 = 𝑚𝑚𝑎𝑎𝑥𝑥

𝑎𝑎𝑥𝑥 = 𝐹𝐹
𝑚𝑚

= 𝑎𝑎0 (a constant)

𝑑𝑑𝑣𝑣𝑥𝑥
𝑑𝑑𝑡𝑡

= 𝑎𝑎0

Next, multiply through by dt and integrate both sides:

𝑣𝑣𝑥𝑥 𝑡𝑡 = �𝑑𝑑𝑣𝑣𝑥𝑥 = �𝑎𝑎0𝑑𝑑𝑡𝑡 = 𝑎𝑎0𝑡𝑡 + 𝑉𝑉 =
𝐹𝐹
𝑚𝑚
𝑡𝑡 + 𝑉𝑉

V is a constant of integration that we will evaluate below.

Note that if 𝑎𝑎0 = 𝐹𝐹/𝑚𝑚 was not a constant (say that F(t) is a function of time) then we would have to do the integral:

𝑣𝑣𝑥𝑥 𝑡𝑡 = �
𝐹𝐹(𝑡𝑡)
𝑚𝑚

𝑑𝑑𝑡𝑡 =
1
𝑚𝑚
�𝐹𝐹 𝑡𝑡 𝑑𝑑𝑡𝑡 =? ? ?
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Example: A Constant Force in One Dimension

At time t = 0, the velocity of the car in the x-direction is v0, so V = v0 and:

𝑣𝑣𝑥𝑥 𝑡𝑡 = 𝑎𝑎0𝑡𝑡 + 𝑣𝑣0 =
𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡

We multiply this equation by dt on both sides, integrate, and get:

𝑥𝑥 𝑡𝑡 = �𝑑𝑑𝑥𝑥 = �(𝑎𝑎0𝑡𝑡 + 𝑣𝑣0)𝑑𝑑𝑡𝑡 =
1
2
𝑎𝑎0𝑡𝑡2 + 𝑣𝑣0𝑡𝑡 + 𝑥𝑥0

where x0 is the constant of integration. We note that at time t = 0, x(0) = d, so x0 = d. Thus:

𝑥𝑥 𝑡𝑡 =
1
2
𝑎𝑎0𝑡𝑡2 + 𝑣𝑣0𝑡𝑡 + 𝑑𝑑

𝑣𝑣𝑥𝑥 𝑡𝑡 = 𝑎𝑎0𝑡𝑡 + 𝑣𝑣0

𝑥𝑥 𝑡𝑡 =
1
2
𝑎𝑎0𝑡𝑡2 + 𝑣𝑣0𝑡𝑡 + 𝑥𝑥0
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Motion in Two Dimensions
The idea of motion in two or more dimensions is very simple. Force is a vector, and so is acceleration. Newton’s
Second Law is a recipe for taking the total force and converting it into a differential equation of motion:

�⃗�𝑎 =
𝑑𝑑2𝑣𝑣
𝑑𝑑𝑡𝑡2

=
�⃗�𝐹𝑡𝑡𝑠𝑠𝑡𝑡
𝑚𝑚

If we write the equation of motion out in components:

𝑎𝑎𝑥𝑥 =
𝑑𝑑2𝑥𝑥
𝑑𝑑𝑡𝑡2

=
𝐹𝐹𝑡𝑡𝑠𝑠𝑡𝑡,𝑥𝑥

𝑚𝑚

𝑎𝑎𝑦𝑦 =
𝑑𝑑2𝑦𝑦
𝑑𝑑𝑡𝑡2

=
𝐹𝐹𝑡𝑡𝑠𝑠𝑡𝑡,𝑦𝑦

𝑚𝑚

𝑎𝑎𝑧𝑧 =
𝑑𝑑2𝑧𝑧
𝑑𝑑𝑡𝑡2

=
𝐹𝐹𝑡𝑡𝑠𝑠𝑡𝑡,𝑧𝑧

𝑚𝑚

we will often reduce the complexity of the problem from a “three dimensional problem” to three “one dimensional
problems”.

Select a coordinate system in which one of the coordinate axes is aligned with the total force.
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Example: Trajectory of a Cannonball

An idealized cannon, neglecting the drag force of the air. Let x be the horizontal direction and y be the vertical
direction, as shown. Note well that �⃗�𝐹𝑔𝑔 = −𝑚𝑚𝑚𝑚�⃗�𝑦 points along one of the coordinate directions while Fx = (Fz = ) 0 in
this coordinate frame.

A cannon fires a cannonball of mass m at an initial speed v0 at an angle θ with respect to the ground as shown in
figure. Find:

a) The time the cannonball is in the air.

b) The range of the cannonball.
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Example: Trajectory of a Cannonball
Newton’s Second Law for both coordinate directions:

𝐹𝐹𝑥𝑥 = 𝑚𝑚𝑎𝑎𝑥𝑥 = 0

𝐹𝐹𝑦𝑦 = 𝑚𝑚𝑎𝑎𝑦𝑦 = 𝑚𝑚
𝑑𝑑2𝑦𝑦
𝑑𝑑𝑡𝑡2

= −𝑚𝑚𝑚𝑚

We divide each of these equations by m to obtain two equations of motion, one for x and the other for y:

𝑎𝑎𝑥𝑥 = 0

𝑎𝑎𝑦𝑦 = −𝑚𝑚

We solve them independently. In x:

𝑎𝑎𝑥𝑥 =
𝑑𝑑𝑣𝑣𝑥𝑥
𝑑𝑑𝑡𝑡

= 0

The derivative of any constant is zero, so the x-component of the velocity does not change in time. We find the initial
(and hence constant) component using trigonometry:

𝑣𝑣𝑥𝑥 𝑡𝑡 = 𝑣𝑣0𝑥𝑥 = 𝑣𝑣0 cos𝜃𝜃
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Example: Trajectory of a Cannonball
We then write this in terms of derivatives and solve it:

𝑣𝑣𝑥𝑥 𝑡𝑡 =
𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡

= 𝑣𝑣0 cos(𝜃𝜃)

𝑑𝑑𝑥𝑥 = 𝑣𝑣0 cos(𝜃𝜃)𝑑𝑑𝑡𝑡

�𝑑𝑑𝑥𝑥 = 𝑣𝑣0 cos(𝜃𝜃)�𝑑𝑑𝑡𝑡

𝑥𝑥 𝑡𝑡 = 𝑣𝑣0 cos(𝜃𝜃) 𝑡𝑡 + 𝐶𝐶

We evaluate C (the constant of integration) from our knowledge that in the coordinate system we
selected, x(0) = 0 so that C = 0. Thus:

𝑥𝑥 𝑡𝑡 = 𝑣𝑣0 cos(𝜃𝜃) 𝑡𝑡



Lecture 1. Newton’s Laws

Example: Trajectory of a Cannonball
The solution in y is more or less identical to the solution that we obtained above dropping a ball, except
the constants of integration are different:

𝑎𝑎𝑦𝑦 =
𝑑𝑑𝑣𝑣𝑦𝑦
𝑑𝑑𝑡𝑡

= −𝑚𝑚

𝑑𝑑𝑣𝑣𝑦𝑦 = −𝑚𝑚𝑑𝑑𝑡𝑡

�𝑑𝑑𝑣𝑣𝑦𝑦 = −�𝑚𝑚 𝑑𝑑𝑡𝑡

𝑣𝑣𝑦𝑦 𝑡𝑡 = −𝑚𝑚𝑡𝑡 + 𝐶𝐶′

For this problem, we know from trigonometry that:

𝑣𝑣𝑦𝑦 0 = 𝑣𝑣0 sin(𝜃𝜃)

so that 𝐶𝐶′ = 𝑣𝑣0 sin(𝜃𝜃) and:

𝑣𝑣𝑦𝑦 𝑡𝑡 = −𝑚𝑚𝑡𝑡 + 𝑣𝑣0 sin(𝜃𝜃)



Lecture 1. Newton’s Laws

Example: Trajectory of a Cannonball
We write vy in terms of the time derivative of y and integrate:

𝑑𝑑𝑦𝑦
𝑑𝑑𝑡𝑡

= 𝑣𝑣𝑦𝑦 𝑡𝑡 = −𝑚𝑚𝑡𝑡 + 𝑣𝑣0 sin 𝜃𝜃

𝑑𝑑𝑦𝑦 = (−𝑚𝑚𝑡𝑡 + 𝑣𝑣0 sin 𝜃𝜃 )𝑑𝑑𝑡𝑡

�𝑑𝑑𝑦𝑦 = �(−𝑚𝑚𝑡𝑡 + 𝑣𝑣0 sin 𝜃𝜃 )𝑑𝑑𝑡𝑡

𝑦𝑦 𝑡𝑡 = −
1
2
𝑚𝑚𝑡𝑡2 + 𝑣𝑣0 sin 𝜃𝜃 𝑡𝑡 + 𝐷𝐷

Again we use y(0) = 0 in the coordinate system we selected to set D = 0 and get:

𝑦𝑦 𝑡𝑡 = −
1
2
𝑚𝑚𝑡𝑡2 + 𝑣𝑣0 sin 𝜃𝜃 𝑡𝑡



Lecture 1. Newton’s Laws

Example: Trajectory of a Cannonball
Collecting the results from above, our overall solution is thus:

𝑥𝑥 𝑡𝑡 = 𝑣𝑣0 cos(𝜃𝜃) 𝑡𝑡

𝑦𝑦 𝑡𝑡 = −
1
2
𝑚𝑚𝑡𝑡2 + 𝑣𝑣0 sin 𝜃𝜃 𝑡𝑡

𝑣𝑣𝑥𝑥 𝑡𝑡 = 𝑣𝑣0𝑥𝑥 = 𝑣𝑣0 cos𝜃𝜃

𝑣𝑣𝑦𝑦 𝑡𝑡 = −𝑚𝑚𝑡𝑡 + 𝑣𝑣0 sin(𝜃𝜃)

We know exactly where the cannonball is at all times, and we know exactly what its velocity is as well.



Lecture 1. Newton’s Laws

The Inclined Plane

In this problem we will talk about a new force, the normal force. Recall from above that the
normal force is whatever magnitude it needs to be to prevent an object from moving in to a
solid surface, and is always perpendicular (normal) to that surface in direction.

This is the naive/wrong coordinate system to use
for the inclined plane problem. The problem can
be solved in this coordinate frame, but the
solution (as you can see) would be quite difficult.



Lecture 1. Newton’s Laws

The Inclined Plane

A block m rests on a plane inclined at an angle of θ with respect to the horizontal. There is no
friction, but the plane exerts a normal force on the block that keeps it from falling straight
down. At time t = 0 it is released (at a height H = Lsin(θ) above the ground), and we might
then be asked any of the “usual” questions – how long does it take to reach the ground, how
fast is it going when it gets there and so on.

The motion we expect is for the block to slide down
the incline, and for us to be able to solve the problem
easily we have to use our intuition and ability to
visualize this motion to select the best coordinate
frame.



Lecture 1. Newton’s Laws

The Inclined Plane

Let’s try to decompose these forces in terms of our coordinate system:
𝑁𝑁𝑥𝑥 = 𝑁𝑁 sin𝜃𝜃
𝑁𝑁𝑦𝑦 = 𝑁𝑁 cos𝜃𝜃

where 𝑁𝑁 = 𝑁𝑁 is the (unknown) magnitude of the normal force.

We then add up the total forces in each direction and write
Newton’s Second Law for each direction’s total force :

𝐹𝐹𝑥𝑥 = 𝑁𝑁 sin𝜃𝜃 = 𝑚𝑚𝑎𝑎𝑥𝑥
𝐹𝐹𝑦𝑦 = 𝑁𝑁 cos𝜃𝜃 − 𝑚𝑚𝑚𝑚 =𝑚𝑚𝑎𝑎𝑦𝑦

Finally, we write our equations of motion for each direction:

𝑎𝑎𝑥𝑥 =
𝑁𝑁 sin𝜃𝜃
𝑚𝑚

𝑎𝑎𝑦𝑦 =
𝑁𝑁 cos𝜃𝜃 −𝑚𝑚𝑚𝑚

𝑚𝑚
Unfortunately, we cannot solve these two equations as
written yet. That is because we do not know the value of
N; it is in fact something we need to solve for!



Lecture 1. Newton’s Laws

The Inclined Plane

To solve them we need to add a condition on the solution, expressed as an equation. The
condition we need to add is that the motion is down the incline, that is, at all times:

𝑦𝑦(𝑡𝑡)
𝐿𝐿 cos𝜃𝜃 − 𝑥𝑥(𝑡𝑡)

= tan𝜃𝜃

That means that:
𝑦𝑦 𝑡𝑡 = 𝐿𝐿 cos𝜃𝜃 − 𝑥𝑥 𝑡𝑡 tan𝜃𝜃

𝑑𝑑𝑦𝑦(𝑡𝑡)
𝑑𝑑𝑡𝑡

= −
𝑑𝑑𝑥𝑥 𝑡𝑡
𝑑𝑑𝑡𝑡

tan𝜃𝜃
𝑑𝑑2𝑦𝑦(𝑡𝑡)
𝑑𝑑𝑡𝑡2

= −
𝑑𝑑2𝑥𝑥 𝑡𝑡
𝑑𝑑𝑡𝑡2

tan𝜃𝜃
𝑎𝑎𝑦𝑦 = −𝑎𝑎𝑥𝑥 tan𝜃𝜃

We can use this relation to eliminate (say) ay from the equations above, solve for ax, then
backsubstitute to find ay.

The solutions we get will be so very complicated (at least compared to choosing a better
frame), with both x and y varying nontrivially with time!



A good choice of coordinate frame has (say) the x-
coordinate lined up with the total force and hence
direction of motion.

Lecture 1. Newton’s Laws

The Inclined Plane

We can decompose the forces in this coordinate
system, but now we need to find the components of
the gravitational force as 𝑁𝑁 = 𝑁𝑁�𝑦𝑦 is easy!
Furthermore, we know that ay = 0 and hence Fy = 0.

𝐹𝐹𝑥𝑥 = 𝑚𝑚𝑚𝑚 sin𝜃𝜃 = 𝑚𝑚𝑎𝑎𝑥𝑥
𝐹𝐹𝑦𝑦 = 𝑁𝑁 −𝑚𝑚𝑚𝑚 cos𝜃𝜃 = 𝑚𝑚𝑎𝑎𝑦𝑦 = 0

We can immediately solve the y equation for:
𝑁𝑁 = 𝑚𝑚𝑚𝑚 cos𝜃𝜃

and write the equation of motion for the x-direction: 𝑎𝑎𝑥𝑥 = 𝑚𝑚 sin𝜃𝜃 which is a constant.
From this point on the solution should be familiar – since 𝑣𝑣𝑦𝑦 0 = 0 and 𝑦𝑦 0 = 0, 𝑦𝑦 𝑡𝑡 = 0
and we can ignore y altogether and the problem is now one dimensional!
See if you can find how long it takes for the block to reach bottom, and how fast it is going
when it gets there. You should find that 𝑣𝑣𝑏𝑏𝑠𝑠𝑡𝑡𝑡𝑡𝑠𝑠𝑚𝑚 = 2𝑚𝑚𝐻𝐻



Lecture 1. Newton’s Laws

Circular Motion

A small ball, moving in a circle of radius r. We are
looking down from above the circle of motion at a
particle moving counterclockwise around the circle. At
the moment, at least, the particle is moving at a constant
speed v (so that its velocity is always tangent to the
circle).

The length of a circular arc is the radius times the angle
subtended by the arc we can see that:

∆𝑐𝑐 = 𝑣𝑣∆𝜃𝜃

Note Well! In this and all similar equations θ must be
measured in radians, never degrees
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Circular Motion

The average speed v of the particle is thus this distance
divided by the time it took to move it:

𝑣𝑣𝑎𝑎𝑎𝑎𝑔𝑔 =
∆𝑐𝑐
∆𝑡𝑡

= 𝑣𝑣
∆𝜃𝜃
∆𝑡𝑡

Of course, we really don’t want to use average speed (at
least for very long) because the speed might be varying,
so we take the limit that Δt → 0 and turn everything into
derivatives, but it is much easier to draw the pictures
and visualize what is going on for a small, finite Δt :

𝑣𝑣 = lim
∆𝑡𝑡→0

𝑣𝑣
∆𝜃𝜃
∆𝑡𝑡

= 𝑣𝑣
𝑑𝑑𝜃𝜃
𝑑𝑑𝑡𝑡

This speed is directed tangent to the circle of motion (as
one can see in the figure) and we will often refer to it as
the tangential velocity.
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Circular Motion

𝑣𝑣𝑡𝑡 = 𝑣𝑣
𝑑𝑑𝜃𝜃
𝑑𝑑𝑡𝑡

In this equation, we see that the speed of the particle at
any instant is the radius times the rate that the angle is
being swept out by the particle per unit time. This latter
quantity is a very useful one for describing circular
motion, or rotating systems in general.

We define it to be the angular velocity:

𝜔𝜔 =
𝑑𝑑𝜃𝜃
𝑑𝑑𝑡𝑡

Thus: 𝑣𝑣 = 𝑣𝑣𝜔𝜔 or 𝜔𝜔 = 𝑎𝑎
𝑚𝑚
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Centripetal Acceleration

A ball of mass m swings down in a circular arc of radius L
suspended by a string, arriving at the bottom with speed v. What
is the tension in the string?

At the bottom of the trajectory, the tension T in the string points
straight up and the force mg points straight down. No other forces
act, so we should choose coordinates such that one axis lines up
with these two forces. Let’s use +y vertically up, aligned with the
string. Then:

𝐹𝐹𝑦𝑦 = 𝑇𝑇 −𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑎𝑎𝑦𝑦 = 𝑚𝑚
𝑣𝑣2

𝐿𝐿

or 𝑇𝑇 = 𝑚𝑚𝑚𝑚 + 𝑚𝑚 𝑎𝑎2

𝐿𝐿

The net force towards the center of the circle must be algebraically equal to mv2/r
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Example: Ball on a String

The velocity of the particle at t and t + Δt. Note that over a very
short time Δt the speed of the particle is at least approximately
constant, but its direction varies because it always has to be
perpendicular to 𝑣𝑣, the vector from the center of the circle to
the particle. The velocity swings through the same angle Δθ
that the particle itself swings through in this (short) time.

In time Δt, then, the magnitude of the change in the velocity is:

∆𝑣𝑣 = 𝑣𝑣∆𝜃𝜃

Consequently, the average magnitude of the acceleration is:

𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔 =
∆𝑣𝑣
∆𝑡𝑡

= 𝑣𝑣
∆𝜃𝜃
∆𝑡𝑡

The instantaneous magnitude of the acceleration is: 𝑎𝑎 = lim
∆𝑡𝑡→0

𝑣𝑣 ∆𝜃𝜃
∆𝑡𝑡

= 𝑣𝑣 𝑑𝑑𝜃𝜃
𝑑𝑑𝑡𝑡

= 𝑣𝑣𝜔𝜔 = 𝑎𝑎2

𝑚𝑚
= 𝑣𝑣𝜔𝜔2

If a particle is moving in a circle at instantaneous speed v, then its acceleration towards the center of that
circle is v2/r (or rω2 if that is easier to use in a given problem).
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Example: Tether Ball/Conic Pendulum

Ball on a rope (a tether ball or conical pendulum). The ball
sweeps out a right circular cone at an angle θ with the vertical
when launched appropriately.

Suppose you hit a tether ball so that it moves in a plane circle at
an angle θ at the end of a string of length L. Find T (the tension
in the string) and v, the speed of the ball such that this is true.

Note well in this figure that the only “real” forces acting on the
ball are gravity and the tension T in the string. Thus in the y-
direction we have:

�𝐹𝐹𝑦𝑦 = 𝑇𝑇cos𝜃𝜃 −𝑚𝑚𝑚𝑚 = 0

and in the x-direction (the minus r-direction, as drawn) we have: ∑𝐹𝐹𝑥𝑥 = 𝑇𝑇sin𝜃𝜃 = 𝑚𝑚𝑎𝑎𝑚𝑚 = 𝑚𝑚𝑎𝑎2

𝑚𝑚

Thus 𝑇𝑇 = 𝑚𝑚𝑔𝑔
cos 𝜃𝜃

𝑣𝑣2 = 𝑇𝑇𝑚𝑚 sin 𝜃𝜃
𝑚𝑚

or   𝑣𝑣 = 𝑚𝑚𝐿𝐿 sin𝜃𝜃 tan𝜃𝜃
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Example: Tangential Acceleration

Sometimes we will want to solve problems where a particle speeds up or slows down while
moving in a circle. Obviously, this means that there is a nonzero tangential acceleration
changing the magnitude of the tangential velocity.

Let’s write �⃗�𝐹 (total) acting on a particle moving in a circle in a coordinate system that rotates
along with the particle – plane polar coordinates. The tangential direction is the �⃗�𝜃 direction,
so we will get:

�⃗�𝐹 = 𝐹𝐹𝑚𝑚�̂�𝑣 + 𝐹𝐹𝜃𝜃�̂�𝜃

From this we will get two equations of motion (connecting this, at long last, to the dynamics
of two dimensional motion):

𝐹𝐹𝑚𝑚 = −𝑚𝑚
𝑣𝑣2

𝑣𝑣

𝐹𝐹𝑡𝑡 = 𝑚𝑚𝑎𝑎𝑡𝑡 = 𝑚𝑚
𝑑𝑑𝑣𝑣
𝑑𝑑𝑡𝑡
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