Estimations of classes of integral which constructed with the help of the classical warping function

Let G be a multiply connected plane domain. We denote by Γ_{0} the outer boundary curve of G, and by $\Gamma_{1}, \ldots, \Gamma_{n}$ the internal boundary curves. The boundary-value problem that defines the warping function $u(x, G)$ of G is

$$
\left\{\begin{aligned}
\Delta u=-2 & \text { in } G, \\
u=0 & \text { on } \Gamma_{0}, \\
u=c_{i} & \text { on } \Gamma_{i}, i=1, \ldots, n,
\end{aligned}\right.
$$

where the constants c_{i} are determined by the conditions

$$
\oint_{\Gamma_{i}} \frac{\partial u}{\partial n} \mathrm{~d} s=-2 a_{i}, i=1, \ldots, n,
$$

$\partial / \partial n$ is the inward normal derivative, and a_{i} is the area enclosed by Γ_{i}.
In the next two assertions we give estimates for a class of integrals of the warping function.

Let a function $F(t)$ has the representation

$$
F(t):=p \int_{0}^{t} s^{p-1} f(s) \mathrm{d} s
$$

where $p>0$, and $f(s)$ is another function, whose properties play an important role, as we see below.

Theorem 1. Let G be a multiply connected domain and let $p>0$ such that $\mathbf{T}_{p}(G)<+\infty$. Then

1) If $f(s)$ is a non decreasing function, then

$$
\int_{G} F(u(x, G)) \mathrm{dA} \leq \int_{R_{p}} F\left(u\left(x, R_{p}\right)\right) \mathrm{dA} .
$$

2) if $f(s)$ is a non increasing function, then an inverse inequality holds

$$
\int_{G} F(u(x, G)) \mathrm{dA} \geq \int_{R_{p}} F\left(u\left(x, R_{p}\right)\right) \mathrm{dA} .
$$

Here R_{p} is a concentric ring with the same joint area of the holes as on G, and the ring R_{p} satisfy the equality $\mathbf{T}_{p}\left(R_{p}\right)=\mathbf{T}_{p}(G)$. Both equalities hold if and only if G is a ring bounded by two concentric circles.

Using the functionals $\mathbf{T}_{p}(G)$ and $\mathbf{u}(G)$ we can get explicit bounds for integrals of the warping function.

Theorem 2. Under the assumptions of Theorem 1 the following estimates hold:

$$
\int_{G} F(u(x, G)) \mathrm{dA} \leq \frac{\mathbf{T}_{p}(G)}{\mathbf{u}(G)^{p}} F(\mathbf{u}(G))-\frac{2 \pi \mathbf{u}(G) F(\mathbf{u}(G))}{p+1}+2 \pi \int_{0}^{\mathbf{u}(G)} F(t) \mathrm{d} t,
$$

where $f(s)$ is a non decreasing function, and

$$
\int_{G} F(u(x, G)) \mathrm{dA} \geq \frac{\mathbf{T}_{p}(G)}{\mathbf{u}(G)^{p}} F(\mathbf{u}(G))-\frac{2 \pi \mathbf{u}(G) F(\mathbf{u}(G))}{p+1}+2 \pi \int_{0}^{\mathbf{u}(G)} F(t) \mathrm{d} t,
$$

here $f(s)$ is a non increasing function.
Equalities hold iff G is a concentric ring.

