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INTRODUCTION

Amorphous metallic alloys (AMA) are prospective
materials, which attract the special interest of scien�
tists and technologists by their unique physical�chem�
ical and mechanical properties [1–8]. For example,
amorphous alloys containing transition metals
(Fe, Co, Ni) as the main component have a high ten�
sile�strength limit, which exceeds by more than two
times the characteristics of their crystalline counter�
parts. Some of these amorphous alloys also have high
corrosion stability, and excellent magnetic and electric
properties. All these properties of AMA are related
with the presence of local structural disorder [5, 6].

The amorphous metallic alloys NiZr are character�
ized by the following features [9]: (i) the structure of
the alloys has pronounced short�range topological
order which strongly affects the dispersion curve in the
amorphous state; (ii) they have a large coherent cross
section of neutron scattering which is an important
characteristic at comparison the simulation and theo�
retical results with of experimental data. At present the
alloy Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 (Vitreloy 1), which
can form a bulk amorphous phase at a cooling rate of
~1 K/s, is widely known [10]. This and other features
stimulate a large number of experimental and theoret�
ical studies [5–10].

In Ref. [11] the effect of the concentration depen�
dence of NixZr100 – x alloys (x = 5, 10, 16.7, 33.3, 0.5,
66.7, 83.3, 90.0, 95.0) on the processes of crystalliza�
tion was studied via computer simulations. It was
shown that the highest degree of crystallization corre�
sponds to the alloy with a high nickel content, i.e.,
Ni66.7Zr33.3. It was established that crystallization in

alloys is due to an increase in the number of icosahe�
dral quasicrystalline clusters.

The dynamic properties of the Ni33Zr67 alloy in the
amorphous and crystalline phases were studied in
Ref. [12] by means of inelastic neutron scattering
technique. By comparison of spectra of the dynamic
structure factor S(k, ω) for amorphous and for crystal�
line phases, the authors concluded that the propaga�
tion of collective excitations in metallic glass Ni33Zr67

is due to “optical” excitations corresponding to the
crystalline phase. The authors supposed that three
optical modes in the Ni33Zr67 crystal can also exist in
the amorphous phase on a short timescale. However,
subsequent experimental studies [13] did not confirm
this hypothesis about the nature of collective excita�
tions in amorphous metallic alloys.

In this work the microscopic dynamic processes in
the amorphous metallic alloy Ni33Zr67 are studied in
order to clarify the mechanism of the origin and prop�
agation of collective excitations in the terahertz fre�
quency region.

THEORY OF STRUCTURAL RELAXATION

The differential scattering cross�section in experi�
ments on inelastic X�ray scattering is proportional to
the so�called dynamic structure factor S(k, ω), which
is a Fourier transform of the coherent scattering func�
tion [14–17]
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Here, the angular brackets denote averaging over the
equilibrium ensemble, and the quantity

(2)

is the local density fluctuation; N is the number of
atoms forming the system;  is the radius�vector for
the jth atom at the moment of time t and k is the wave
vector.

The time evolution of the density fluctuation is
determined by the Heisenberg equation [18]:

(3)

where  is the self�consistent Liouville operator.
According to the Lee’s recurrent relation approach

[19–23], the  value can formally be presented in
the form of a vector in abstract d�dimensional space
[17]:

 (4)

here f0(k), f1(k), …, fd – 1(k) is a complete set of “basis
vectors” forming the space S. “Vectors” f0(k), f1(k), …,
fd – 1(k) satisfy the condition (fm(k), ) = 0 at
m ≠ m' and are related by the following recurrence
relation (RR�I):

(5)

Here, the brackets (..,..) denote the Kubo scalar prod�
uct [24];  is the recurrant or mth�order relaxation
parameter;  are the so�called basis�functions
[F(k, t) = a0(k, t)], which are related by the second
recurrence relation (RR�II) [19]:

(6)

Thus, a set of recurrence relations (5) and (6) leads
to the time evolution of the dynamic variable 
which appears in the space formed by the orthogonal
basis vectors fm(k), fm + 1(k), … .

Applying the Laplace transformation to the last
equation, it is possible to obtain a relation:
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which can be presented in the form of the continued
fraction [1]

(8)

The parameters  can be expressed in terms of
the normalized frequency moments of the dynamic
structure factor S(k, ω) [1]:

(9)

when S(k, ω) is related to the Fourier transform
a0(k, t) by the relation

(10)

By solving Eqs. (5) and (9), it is possible to find expres�
sions relating the frequency moments of the dynamic
structure factor with the relaxation parameters [25]:

(11)

……..

Using Eqs. (5) and (9), one can find the expressions
for the parameters  [17]:

 

(12)

Here, n denotes the number density of the system, S(k)
is the static structure factor, g(r) is the radial particle�
distribution function, U(r) is the interatomic interac�
tion potential. The index l denotes the component
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parallel to vector k, quantity F(k) denotes the combi�
nation of integral expressions containing the interpar�
ticle potential as well as two� and three�particle distri�
bution functions. In the general case, the  param�
eters of higher orders n also contain distribution
functions of n, (n – 1), … and n = 2 orders. Conse�
quently, if the studied system is characterized by
strongly expressed potential interactions, the problem
of finding the time evolution of the local density fluc�
tuation of the number of particles is reduced to decou�
pling the chain equations for the n�particle distribu�
tion functions [26]. It was empirically established in
Ref. [27] that the high�order relaxation parameters
satisfy to the condition [Δ4(k) ≈ Δ5(k) ≈ Δ6(k)], which
makes it possible to obtain an expression for the
dynamic structure factor from Eqs. (8) and (10) in
the form:

(13)

SIMULATION DETAILS

Computer molecular dynamics simulations (MD)
of the amorphous metallic alloy Ni33Zr67 was per�
formed at the temperature T = 300 K. The considered
system was consisted of N = 10 976 particles (NNi =
3535 and NZr = 7441), where the number density is
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n = 0.0427 Å–3 (mass density = 5.7255 g/cm3). The
interaction between atoms was implemented using the
interatomic interaction potential proposed in [28]:

(14)

Here α,β  {Ni, Zr} and Aα, β, ζα, β, аα,β, bα, β are
parameters of the potential from Ref. [28]. The inter�
action potential between different components of the
mixture is shown in Fig. 1.

The simulation was performed in the isothermal–
isobaric ensemble (NpT). To maintain the system in
thermal equilibrium, the Berendsen’s thermostat and
barostat with the coupling parameter τ = 10–14 s were
used [29]. Avoiding crystallization by fast cooling, the
system from the stable liquid state (T = 3000 K) was
transferred into the amorphous metastable state (T =
300 K). The system was cooled in the isoenthalpy–
isobaric ensemble (NpH) at a cooling rate of dT/dt =
1013 K/s. The equations of particle motion were inte�
grated using the velocity Verlet integration algorithm
with a time step of 10–15 s.

SIMULATION RESULTS

Structural Properties 
of the Amorphous Metallic Alloy Ni33Zr67 

The structural features of the metallic alloy were
analyzed on the basis of calculation of the partial
radial distribution function of particles in the system
(Fig. 2) [30]:

 (15)

and the static structure factor S(k). The partial com�
ponents of the static structure factor were calculated
on the basis of a Fourier transform of the radial distri�
bution function of atoms [31]:

(16)

The total static structure factor was found via spatial
Fourier transform of the total radial distribution func�
tion of the particles, which, in turn, was calculated
using the following relation [32]

(17)

where c is the concentration of particles, f is the scatter�
ing length (in the case of neutron scattering). Figure 3
shows the partial components and the total static
structure factor obtained on the basis of computer
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Fig. 1. Interaction potential between different components
of the alloy Ni33Zr67.
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simulation in comparison with the experimental data
of neutron diffraction [33]. It is seen from the figure
that the simulation results are in good agreement with
the experimental data, and as a whole correctly repro�
duce the experimental S(k).

Dynamic Structure Factor AMA Ni33Zr67 

The dynamic structure factor S(k,ω) for the case of
binary mixtures [17] is determined by the relation

(18)

where partial components of the dynamic structure
factor have the form [34]:

(19)

cα is the concentration of the atomic type α  {Ni, Zr},
fα is the atomic form�factor, tM is the time scale of
observation for the variable  The partial com�
ponents of the dynamic structure factor for the amor�
phous metallic alloy Ni33Zr67 at the temperature T =
300 K for a wide range of wavenumbers is shown in
Fig. 4. It is seen from the figure that, in the region of low
wavenumber values, the spectra Sα, β(k, ω) have a pro�
nounced three�peak structure (the so�called Brillouin
triplet [25]), which disappears with increasing k values.
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The intensity of inelastic X�ray scattering I(k, ω) of
the binary mixture is connected with the dynamic
structure factor S(k, ω) by the following relation [35]:

(20)

Here Sq(k, ω) is the quantum dynamic structure factor,
β = 1/(kBT) is the inverse temperature, E(k) is the nor�
malization factor, and R(k, ω) is the experimental res�
olution function:

(21)

satisfies the condition of normalization

(22)

A comparison of the results of simulation for the
intensity of scattering I(k, ω) with the experimental
data on inelastic X�ray scattering [13] is given in Fig. 5.
It is seen in the figure that the simulation results cor�
rectly reproduce the low�frequency and high�fre�
quency features of the intensity of inelastic X�ray scat�
tering in a wide range of wavenumber values. However,
the simulation results do not show low�frequency
excitations in the spectra I(k, ω) at values k = 9–
11.4 nm–1 observed experimentally.

The results of theoretical calculations for the scat�
tering  intensity spectra I(k, ω) by Eq. (13) are pre�
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sented in Fig. 6, where the detailed balance condition
(20) and the experimental resolution function (21)
taken into account [13]. The values of the first relax�
ation parameter Δ1 were calculated exactly on the basis
of the molecular�dynamics simulation data using
Eqs. (12). The values of parameters Δ2(k), Δ3(k), and
Δ4(k) were obtained from the best correspondence
between the theory and experimental data. It is seen from
the figure, that this theory for the structural relaxation of
the density fluctuation of atoms in an amorphous metal�
lic alloy makes it possible to reproduce the complicated
form of the scattering intensity spectra I(k, ω).

The Longitudinal Current Spectra and Dispersion 
of the Sound Velocity

The dispersion of the sound velocity ωc(k), which is
directly associated with the position of the high�fre�
quency peak in S(k, ω), was analyzed on the basis of
calculation of the longitudinal current spectra CL(k, ω)
[36]. This value can be found from the dynamic struc�
ture factor S(k, ω) as:

(23)

Figure 7 shows the partial components of the lon�
gitudinal current spectra CL(k, ω) at the temperature
T = 300 K and at different wavenumber values. It is
seen from the figure, that an additional low�frequency
vibrational mode at ωl(k) ≈ 20 THz appears in the
spectrum CL(k, ω) with an increase of the wavenumber

2

2
( , ) ( , ).LC k S k

k
ω

ω = ω

value. It should be noted that the presence of two
inelastic vibrational excitations in the longitudinal
current spectra CL(k, ω) was observed by Egelstaff
et al. [37] as early as in 1968 in experiments on neutron
diffraction in liquid lead [38,39]. According to the
conclusions [37], the low�frequency branch was
explained by the propagation of transverse collective
excitations, and the high�frequency branch was
related to longitudinal collective excitations in liquid
lead. However, later the authors abandoned such
interpretation of their own results by relating the
appearance of the low�frequency branch to manifesta�
tion of the effects of multiple scattering in the experi�
ment.

In Ref. [13] on the basis of inelastic X�ray scatter�
ing in AMA Ni33Zr67, the authors relate the appear�
ance of the low�frequency mode with longitudinal
acoustic�like Ioffe–Regel excitations, the energy of
which lies above the energy values of the boson peak.
We note that their results contradict the models pro�
posed for the description of acoustic properties in
strong glass�forming systems [40], which predict the
equality of the energy values of Ioffe–Regel excita�
tions and the energy of the boson peak (EIR = EBP).

Recently, it was shown in Ref. [27] that the high�
frequency acoustic excitations are connected with
two�, three� and four�particle interactions, i.e., the
main contribution to the high�frequency dynamics of
the particles is produced by structural units consisting
of four atoms. Taking into account that the character�
istic timescale for the vibrational motions τ is inversely
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Fig. 7. Partial components of the longitudinal current spectra of Ni33Zr67 at the temperature T = 300 K for: (a) pairs of Ni–Ni
atoms; (b) components of the Ni–Zr system and (c) Zr–Zr atoms.
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proportional to the vibrational frequency (τ ~ 1/ω),
we obtain that the low�frequency and high�frequency
excitations are characterized, respectively, by large
and small timescales [41, 42]. It can be seen from
Fig. 7 that the frequency of the low�frequency excita�

tions (  where ) in the partial compo�
nents of the longitudinal current spectra is almost the
same and weakly depends on the wavenumber values.
Thus, it is possible to conclude that the nature of the
low�frequency excitations is associated with the vibra�
tional motion of large individual clusters (containing
more than four atoms) consisting of Ni and Zr atoms.

Dispersion of the sound velocity in the system
Ni33Zr67 obtained on the basis of simulations in com�
parison with the results of hydrodynamic theory
( ) and experimental data for inelastic X�ray
scattering [13] is shown in Fig. 8. It is seen from the
figure that the simulation results are in a good agree�
ment with experimental data [13], and with the asymp�
totic results of hydrodynamic theory. In spite of the fact
that the calculated value of the sound velocity (ϑMD =
4500 m/s) has a somewhat underestimated value in
comparison with the experimental value ϑMD =
4790 m/s), the simulation data correctly reproduce the
details of the dispersion curve.

CONCLUSIONS

In this work, the MD simulation results for the bulk
metallic glass Ni33Zr67 are presented. The simulation
results for the structural and dynamic characteristics
are in good agreement with the experimental data of
neutron diffraction and inelastic X�ray scattering.

Theoretical interpretation of the simulation results
was performed within the Lee’s recurrent relation

, ,l
α β

ω { }Ni Zr, ,α β∈

( )c k kω = ϑ

approach: the results of theoretical calculations of the
scattering intensity spectra I(k, ω) for AMA Ni33Zr67
are in good agreement with the experimental data of
inelastic X�ray scattering [13].

It was established that the low�frequency excitation
observed in the longitudinal current spectra are associ�
ated with the vibrational motions of large individual
clusters (including more than four atoms), consisting
of Ni, and Zr atoms.
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