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INVESTIGATION OF A NUMERICAL METHOD FOR SOLVING
THE SPECTRAL PROBLEM OF THE THEORY

OF DIELECTRIC WAVEGUIDES

Ye.M. Karchevskii

Investigation of spectral problems of the theory of dielectric waveguides and development of
numerical methods attract large attention (see, e.g., [1]-[ ]). I" tsl-t7l numerical methods were
suggested for searching eigenwaves of cylindric dielectric waveguides on the basis of the represen-
tation of their amplitudes as a superposition of potentials of simple and double layers. During the
last years in solving a series of spectral problems of electrodynamics authors successfully apply
representation of fields in the form of potentials of a simple layer (see, e.g., [8]-[10]). This enables
to shorten essentially computer time.

The present article is devoted to the investigation of a numerical method for searching constants
of propagation of surface eigenwaves of cylindric dielectric waveguides with a smooth contour of
the cross section, which is based on representation of the desired functions in the form of potentials
of simple layer. Under assumption of closeness of the refractive indices of the waveguide and the
environment, the problem is reduced to a nonlinear spectral problem for a system of singular integral
equations. On the basis of the known regularization procedure (see, e.g., [11], p. 14), we construct
the system of the Galyorkin method. Zeros of the determinant of the matrix of this systern are
taken in the capacity of approximate solution of this problem. For investigation of the convergence
of the method we use the results of [12]. A similar approach was applied to substantiation of the
method for calculation of microband lines in [8], [9].

L. The problem of determination of the constants of propagation of eigen surface waves of a
cylindric dielectric waveguide under assumption of closeness of the refractive indices of the wave-
guide and environment can be reduced (see [1], item 2) to the search of values of the parameter B, under
which nontrivial solutions n(.r, y) of the boundary problem

A,u ! ylu = 0, (c, y) e ^9,

A,u { y}u = 0, (r,a) 45,
It*=,u"_,#=T, @,y)ec,

(1)

(2)

(3)

(4)u exponentially decreases as r =
exist. Here .9 is a bounded domain with the boundary C, X? = k\n? - B', kA = u2eopo, eq is the
electric constant, ps is the magnetic constant, c.r is the frequency of electromagnetic oscillations,
r1t rtrz are values of the refractive indices of waveguide and environment, ?uf 0u is the correct
normal derivative, f+ (f -) is the limit value of the function / inside (outside) the contour C.
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We shall seek solution of problem (t)-(+) in the class of functions continuous in 5 and ft' \ S
and twice continuously differentiable in E' \ C. In what follows we shall assume that the contour
C is a twice continuously differentiable curve, &o ) 0, n1) n2.

It is well known that in the simplest case where the contour C is a circumference, nontrivial
solutions of the problem under consideration can exist only if. lcsn2 1 B I ksn1. Moreover, the
corresponding values of the constants of propagation B can be easily computed in this situation as
the roots ofthe transcendent equation (see, e.g., [13]). In the present article we investigate the
case of a contour C of arbitrary form.

As usual, we shall assume that ReB ) 0 (see, e.9., [14], p.265). Consider multivalued functions

xi@) = v@ n, of the complex variable 0. onthe complex plane we make cuts which connect
thebifurcationpoints lcsni,-ksni of thefunctions Xiviatheinfinitepoint. Letusagreetochoose
in what follows univalent branches of the functions Xi such that Im Xj > 0 for B > lcsnj.

Analogous to Theorem 3.40 in [15] one can prove

Theorem L. For any lcs ) 0, n1 ) nzr nontriuial solutions of problem (1)-(4) can exist only
for real B which are on the segment ksn2 ! B 1 ksn1.

We shall seek solutions of equations (1) and (2) in the form of potential of simple tayer (see [15])
with the continuous densities 91 and g2, respectively:

Mo)dlrnr", M e S,

Mo)dtMo, M 4s.

Ilere I

Qi(g; M, Mo) = IH["(*rrrr"), j = 1,2, M = (r,y), Mo - (ro, yo).

The function u(r,,y), given by (6), satisfies condition (4) for any B €G = (konr, konr). Using the
boundary conditions (3) andlimit properties of potentials of simple layer (see [15]), we obtain the
problem: Find B € G, for rvhich the nontrivial continuous solutions gt, pz of the system of integral
equations

t
J"@{F; 

M, Ms)elMs) - ar@; M, Ms)e2(Ms))dI*" : s., (7)

f,rr,f*l + pz(M)) - l.(#-(a; M, Mo)p{Mo) - ffiW, M, Ms)e2(Ms))at," = o, 
^,t 

e c
(8)

exist.
Similar to Theorem 2 from [17] one can prove

Lemma l. If, for a certain I e G, problem (1)-(4) can haue only the triuial solution, then, for
the same B, system (7), (8) can haue only the triaial solution.

We should note that in [17] investigation was carried out in the class of densities which are
continuous by Htilder. In this situation, normal derivative on the contour is understood in the
usual sense. Investigation in the class of continuous densities is to be carried out in a similar way
if by the normal derivative on the contour C one means the correct normal derivative.

From Lemma 1 we immediately have

Theorem 2. If, for a certain 0 e G, system (7), (8) has a nontriuial solution, then a nontriuial
solution of problem (1)-(4) corresponds to it.

lFor special functions we use the notation from [16].

I

u(M): I.rr74M,Mo)p,(
u(M) = I.*r@rM,Mo)pr(

(5)

(6)
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2. Let the contour C be given parametrically 7 = r(t),, € [0,2n]. Passing to the integration
variable l, selecting explicitly the logarithmic singularity of the kernels Qr(M, M0), Q2(M, Ms), we
transform system (7), (8) to the form

So(t)+ p(r,t)1B1re) y p{r,z)1B)o(2) _ 0, te[0,211,
,(r) + 11Q,r)1B1rQ) 117Q,2)1B),0(z) - 0, t el0,2rl.

5"(r) - -! f" h, | ,in 
t I to 

lr,',, to)dto, t € [0,2n],2nJo | 2 I

p{t,il1B1r{i) = L 
lo'" 

n,,tr1r1;t,to)ri.D(to)dto, t e [0,2Tr1,

r(1)(r0) = (p{Mo) - pr(Mo))lr'(r0)1, r@(to) = p{Mo) + p2(Mo),

tQ,r)(g;t,ts) = 2r(G{r,r)1B;t,to) * GQ'r)(g;t, ro)),

hG,,) (F ; t, t o) - 2n (G{t,t) 19 ; t, t o) - GQ,r) ( fr ;r, r0 ) ) | 
r/ ( r0 ) l,

h?,t)(Bit,to) - 4r(G{2,t)1p;r, ro) * GQ,2)(B;I, ro)),

hQ,2) (B ; t, to) - 4tr (GQ,r) 19 ; t, t o) - GQ'') (B ;r, re) ) | 
r'(rs ) l,

6{t,il1B. t,ts) = ei(g; M, uo) * * t | 'r ?1,
6{z,il1B.t,to)- 

*r,r4,M,Mo), M = M(t), Mo- Mo(to).

Using the known properties of the }lankel function (see, e. g., in [16]), one can easily verify that
the following proposition is valid.

Lemma 2. The functions h(,i)(B;t,to), i, j = I,2, are analytic in the interual G - (ksn2,ksh)
with respect to the real parameter B for each point (t,to) e[0,2n) x [0,2n].

Each of the functioor 1r(;,j)(B' t,to), i, j : I,2,, considered first for real values of g e G, for each
point (t,ro) e [0,2tr]xl0,2n] admits the unique analytic continuation with respect to the complex
parameter B into the complex plane with cuts connecting the infinite point with the points ftsn1,
ksz2. Thus, for any interval G' C G in the complex plane with cuts, a neighborhood A exists such
that lcsn2, koU ( A. Thus, the following lemma takes place.

Lemma 3. The functions h('i)(Bit,to), i, j = I,2, are analytic in the domain h for each point
(t, ro) e lo,arl x [0, zzr].

By using the known properties of the Hankel functions, one can easily verify the follorving
proposition.

Lemma 4. The functions h(,i)(Bit,to), i, j = I,2, with any 0 e f are continuous and contin-
uously differentioble functions of (t,to) e [0,2tr]xl0,2nl.

In the construction and investigation of the numerical method, it is convenient to treat system
(9)-(10) as an operator equation in a certain Hilbert space. It is known (see, e.g., [11], p.10)
that the operator S : L2 + W; is continuously invertible, the inverse operator S-L : W) -+ L2 is
determined via the formula

(e)

( 10)

I{ere

s-'(y;r) = #*r_i_lklci(y)eikr,, y ew;,

10

(11)
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where

cr(y) = * Ir"" 
y(to)e-;ktodto

are the Fourier coefficients of the function gr, and

llS-'ll = z. (12)
Let us note that, for any I e /t, by virtue of Lemma 4 the operators l?(2,r)(f ), n{z,zt1B1 : L2 1 L2,
I"'t'@), nQ'4(B) : L2 -> w]'ari completely continuous. Thus, sysrem (9), (10) is equivalent tothe operator equation

A(F)y =(/+ B(0))y=0,
where

y - (y(L), y(2)), U(r) = Sr0 eWi, Ae) = xe) e Lz,
the operator B which acts in the Hilbert space .Ii - w; x ,L2, is defined via the equarity

By = (p(r't)5-tr(t) I pG,z)OQ), RQ,\S-ty(r) 1 7{z,z)r(z)1,
1 is the unit operator.

we denote bv p(A) = {0 : g e /r, 1A(0-t , H^j fI} a set of regular points of the operatorA(B), o(A) = A \ p(a) is i set of singular'poi't, of the-oie, aty A(B). By virtue of the completecontinuity of the operator B(B), for any F e L, the operator A(B) ir'fr"Jhor-, una, consequently,every singular point is a characteristic number of this operatol. By using the known properties ofintegral operators with weakly singular kernels 1.u", ".g., [11]), one can easily show that to anyeigenvector y e H of the operator A th"r" correspond. u .rootrirrial solution pr', prof problem (z),(8) from the space of continuous functions.
The approximate solutior !,, = (vlr), y[r)) of equation (13) will be sought in the form

ag|)= i of)",*,,n €N, j=7,2.
&=-n

we shall determine coeftcients o,f) ay means of the Galyorkin method:

j=-nr...ttu, k=I,2.
By virtue of (11) we have

s-'(y['); r) = # * r_i lk1af,,t",*,.

Therefore equalities (15) are equivalent to the system of linear algebraic equations

o5') + ,i ojl'"r odioP + i nlial4rf) - 0, j = -n,.. .,tu, (16)*=-n k=-n

o54 +,i r,j?',f Odio1+ i ni,ra(B)*f) - 0, i = -n,...,n. (12),t=-n &=-n
Here d; = {l/ln2for j =0,2ljlfot j l0},

n5'{)(p) = # Io'" Io'" 
h(t,^)(B;t,ts)e-;iteiktod,tdto.

Let I),,' be a set of all trigonometric polynomials of orq"T_.r,ot.-exceeding z. we denote by11" a subspace of r/ composea uy thu 
"l"m"r,t, (st\, ySDi, (yl't;;ir;t;"if w" introduce into

(13)

(14)

lo'" {'+u^1u)(qe-iitd,t - o, ( 15)

11
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consideration the projection operator pn: I{ -+ Hn: pnU = (O"y(l), Q^yQ)1, y - (y('), OQ)) e II,
where 

n

O"(p;t) = I "r(p)"'o'k=-n
is the Fourier operator. Clearly,

llp"ll = r. ( 18)

The system of linear algebraic equations (16), (17) is equivalent to the linear operator equation

A"(0)a" = p"A(0)v" = g + p"B(0))yn :- (I * B"(B))y" = g.

Ilere.4. : IIn -+ Hn, I is the unit operator in the space 11,.
We denote by p(A") -- {0, 0 e /v,i'A"(P)-t ; I{n -+ II,} aset of regular points of the operator

A"(P), o(A") = A \ p(A") is a set of singular points of the operator A"(B), which coincides (by
virtue of the operator being finite-dimensional) with the set of its characteristic numbers. Approximate
values B" of. the propagation constants B will be sought as characteristic numbers of the operator
A"(P), i. e., as zeros of the determinant of the matrix of system (16), (17).

3. As concerns the convergence of the method described in the previous item, the follorving
theorem takes place.

Theorem 3. The sets o(A) and o(A.) consist of isolated points. Let Ao e o(A), then a sequence

{0,}^ex, F, e o1A^), exists such that 0, -+ Ao, n € N. Let B^ € o(A,), 0^ -+ 0o € 1,
n e N' e N. Then 0o e o(A).

I{ere and in what follows we denote by ly'', N", and N"' infinite subsets of the set of natural
numbers N. By the convergence zn -+ z, n € N', we mean the convergence as ??. -+ oo, when the
index ?z runs over the set N'.

The validity of Theorem 3 follows from Theorem 1 in [12] and the following lemmas, where, in fact, we
verify the condition of this theorem.

Lemma 5. The operator pn : II -+ II, haue the properties:

llp"yllu +llylL', n€N Yv€H;
llp"@v + a'a') - (op^a 1 a'p^y')lln -+ 0, n € N Yy,y' e H, a,a' e C.

The first of the properties holds in view of the evident limit relations llQ"cll -+ llrll, n € lf ,

r € L2, W). The second one is a consequence of the linearity of the operator p,,.

Lemma 6. The operator functions A(B), A"(P) are holomorphic in the d,omain 4t.

Proof. The operator functionr R(,'t)(f), RQ,,)(P), n(t't)(B), and R(r'2)(B) are holomorphic in
the dornain A by virtue of Lemma 3 (see [9], p.71). Hence and from (12)-(14) we conclude that
A(B) is a holomorphic operator function in the domain A. Consequently, the same property is
possessed also by A"(B) = p"A(p). tr

Lemma 7. The following estimate takes place llA(B)ll < c(B), 0 e ly, where

c(9) : r + 2(c'z,,@) + a7,1B11+ + k?,@) + d,?,(il), * 2cz{g) * ",,(0)
is a function continuous in the domain lt. Here

"?i@) = h I"* I,'. ln{;,it1B.t,tilzd,tdto, i,i = t,2,

d?i@) = # l,^ I* lfto,',t,fo,t,to1l 
at ato, i - r,2.

12



Russian Malhemalics (Iz. VUZ) Vol. J3, No. 1

Proof. The validity of Lemma follows from the inequality

llA(B)ll <1+llntt'tl1p;"lls-'ll +llRtt'zr19)ll +llnt','r(B)ll lls-'ll +lln{z'zliB;',,

ecluality (12), and obvious (by virtue of Lemma 4) estimates

llatz,ir1r,,' 3 ",,i(g),
17{z,i)1p1: L2 _+ L2,

llart',1rr',2 S "?,t@) 
+ d?,i@), R(t'i)@) : L2 -+ W), j - r,2. E

f,bom the definition of the operator A"(P) and equality (18) one can derive

Lemma 8. The followins estimate takes placez ll/"(B)ll < ll/(B)ll, n € N, F e L.

Lemma 9. For any B e L, the sequence of operators {/"(f)}".r properly conuerges to the

operator A(B).

Proof. In correspondence with the delinition from [f Z] for the proof of Lemma we have to show

that with any B € A the following conditions are fulfilled:
1. the fact that the sequence {y,},er, Un e Hn P-converges to y € I/ implies that the sequence

{A^!n}nex P-converges to Ay;
2. the uniform boundedness of {y"}".ru, lly"ll ( const, z € N, and P-compactness of the

sequence {AnA^}^ew implies that the sequence {U"}"er is P-compact.
The P-convergence of {y"}"eiv to y € }f means that llg" -p"yll -* 0, n € N, and thus the validity

of the first condition follows from the estimate llA"U"-p"Ayll < lll"ll lly"-p"yll+llp"ll llnllllp"y-
vll,n € N, Lemmas 7,8, equality (18), and an evident limit relationllp"y - yll -) 0, n € N.

Let us verify the second of the conditions. The P-compactness of the sequence {Angn).ew means

that, for any N' e N, N" e N'exists such that the sequence {Anyn = Un*BnAn}..",, P-converges
to z € H.If lly"ll S const, n e N", then a weakly convergent subsequence {y'},,.;y,,,, N"'C N"
exists. The completely continuous operator B sends it to a strong convergent one: llBy" - zll -l 0,

n € N"', u € H. Hence by virtue of the inequality llB"A"-P"ull S llp"ll llBy"-zll and equality (18)

we conclude that the sequence {BnUn}neiy,,, P-converges to u € H. Thus, {An}nrn,,, P-converges
to y - z - u e I/, and the second condition is fulfilled. D

Lemma LO. The norms ll/"(B)ll are bounded uniformly with respect to n and B on each compact

AoCA.

The validity of this Lemma evidently follows from Lemmas 8 and 7.

Lernma LL. For any ks ) 0, n1 ) n2 in the interual G = (lconz, konr), B exist with which
problem (1){4) has only the triuial solution.

Proof. If I e G, then Xr ) 0, Xz = ipz, pz) 0. Letu beasolution of problem (1)-(4).
Applying in the domains S, So = {(c, y) 4S: r < B} the Green formula, by taking into account

conditions (1)-(3), we arrive at the equality

,7 
Ir^lul2d,s 

* 
lr^lvul2ds 

+ lrlvrf a" : 
I"^"4*0, + x? Irfuf d's.

From (19), (4) it follows that Ee exists such that for any E ) l?o the inequality takes place

fi Ir^lul2ds 
* 

I,^lvul2d,s 
*; I,lvulzds s x? l,lul2d,s.

Let us apply the embedding theorems (see, e. g., [18]):

(21)

(22)

(1e)

(20)

l,turo"( cs,r ( l,tr"ro, * I.tuf dt),

f"wro, 1 cs,z( /" to"t' o" * Ir^l,l'd").

13



Ilussian Mathematics (Iz. VUZ) Vol. /3, No. 1

Ilere.cs,1, c5,2 &r€ constants which can depend only on the domain S. By substituting (21), (22)
into (20), we get the inequality

b3- x?",,,,",,i f,^lulzd,s- (; - x?",,,) l,lr,l'0"+ (1 - x?cr,scz,s) f,^Ful,o"< 0. (23)

Let us require that in (23) all the factors at integrals be positive. This requirement will be fulfille<l
if

0 > y,_gyr1;.

B? = .ki."Z + 54:!, Bl = konl -' | 1*cs 1*cs

(24)

Ilere

2 
"r,r'

B! = kfinl- 
*, 

c5 = c1,5c2,5.

Clearly, for arbitrary ,ko ) 0, ?zr ) n2, the set B from the interval G, for which (2a) is fulfiiled, is
nonempty. To every such B only the trivial solution of problem (1)-(4) can correspond. Indeed,
from (23) it follows

t ful2d,s = o.
J sn'

Tlrus, 
"(M) = 0, M € .9n. Consequently, u(M) = 0, M e R2. fI

Lemma 12. The set p(A) is nonemqttA, i.e., o(A) I /t.

Result of this Lemma follows directly from Fredholm property of the operator A and Lemmas 11
and 1.

Thus, all the conditions of theorem 1 from [12] in the case under our consideration are ful{ille<i
and the assertions of Theorem 3 have been proved.

The method described above was applied to solving problems on eigenwaves of dielectric rvave-
guides, in both simplified statement considered here and in the complete electrodynamic statement
(see, e.g.' [1]) which leads to nonlinear spectral problems, for systems of singular equations with
the Cauchy kernel. Numerical experiments, partially described in [19], [20], show high efficiency
of the method. For example, to determine basic waves' propagation constants of waveguides of
various cross sectional shapes, it turned out to be sufficient to take at most three terms of the
trigonometric series.

I wish to thank N'B. Pleshchinskii for the statement of the problern and his continuous
attention.

References

1. N.N. Voitovich, B.Z. Katsenelenbaum, A.N. Sivov and A.D. Shatrov, Eigenwaves of dielectric
waveguides of complex cross sectional shape (survey), Radiotekhn. i eiektron., Vol.24, no.T,
pp.l245-L263, 1979.

2- Ye.N. Vasil'yev and V.V. Solodukhov, Numerical methods in problems of design of dielectric
waveguides, dielectric tesonators, and devices containing them, Nauchn. trudy Mosk. Energ.
fnst., no.19, pp.68-78, 1983.

3. Ye.M.Dianov, Fiber optics, problems and perspectives, Vestn. AN SSSR, no.10, pp.41-51,
1989.

4. A. Snyder and J. Love, Theory of Optical Waveguides, Radio i Svyaz', Moscow, 1g87 (Russ.
transl.).

5. L.Eyges and P.Gianino, Modes of dielectric waveguides of arbitrary cross sectional shape, J.
Opt. Soc. Am., Vol. 69, no. 9, pp. 1226-1235, Lg7g.

11

74



6.

7.

8.

9.

10.

11.

Russian Mathematics (Iz. VUZ) Vol. J3, No. 1

Ye.V. Zakharov, Kh.D.Ikramov and A.N. Sivov, Method for calculation of eigenwaves of dielec-
tric waveguides of arbitrary cross sectional shape, in: Vychisl. metody i programmir., Moscow
Univ. Press, vyp.32, pp.71-85, 1980.
A.V. Malov, V.V.Solodukhov and A.A. Churilin, Calculation of eigenwaves of dielectric wave-
guides of arbitrary cross sectional shape by the method of integral equations, in: Antenny,
Radio i Svyaz', Moscow, vyp.31, pp. 189-195, 1984.
A.S. l'inskii and Yu.G. Smirnov, Investigation of mathematical models of microband lines, in:
Metody matem. modelir., avtomatiz. obrabotki nablyudenii i ikh primeneniya, Moscow Univ.
Press, pp. 175-198, 1986.
A.S. l'inskii and Yu.V. Shestopalov, Application of Method of the Spectral Theory to Problems
of Wave Propagation, Moscow Univ. Press, 1989.

A.Ye. Poyedinchuk, Yu.A. Tuchkin and V.P. Shestopalov, On regularization of spectral problems
of wave dissipation over nonclosed shields, DAN SSSR, VoI.295, no. 6, pp. 1358-1382, 1987.
B.G. Gabdulkhayev, Direct Methods for Solving Singular Integral Equations of First Genus,
I(azan Univ. Press, 1994.

12. G.M.Vainikko and O.O.Karma, On convergence rate of approximate methods in the problem
on eigenvalues with a nonlinear parameter, Zhurn. vychisl. matem. i matem. fiziki, Vol.14,
no. 6, pp. 1393-1408, 1974.

13. B.Z.Katsenelenbaum, Symmetric excitation of infinite dielectric cylinder, Zhurn. tekhn. fiziki,
Vol. 19, no. 10, pp. 1168-1181, 1949.

14. V.V. Nikol'skiY, Electrodynamics and Propagation of Radio Waves, Nauka, Moscow, 1978.
15. D. Colton and R. Kress, Integral Equation Methods in the Scattering Theory, Mir, Moscow,

1987 (Russ. transl.).
16. D. Janke, F. Emde and F. Lcisch, Special Functions. Formulas, Graphics, Tables, Nauka,

Moscow, 1968 (Russ. transl.).
17. V.A. Tsetsokho, The problem on radiation of electromagnetic waves in layered medium with

axial symmetry, in: Vychisl. sistemy, Novosibirsk, vyp. 12, pp. 52-78,1964.
18. S.L. Sobolev, Some Applications of Functional Analysis to Mathematical Physics, Nauka,

Moscow, 1988.
Ye.M. Karchevskii, On a method for calculation of propagation constants for eigenwaves of
dielectric waveguides, Proc. of Internat. Conf. and Chebyshev Readings, Moscow Univ. Press,
Vol. 1, pp. 185-187, 1996.

, On determination of propagation constants of eigenwaves of dielectric waveguides by
the methods of the potential theory, Zhurn. vychisl. matem. i matem. fiziki, Vol.38, no. 1,

pp.136-140, 1998.

10 December 1996 Kazan State University

19.

20.

15


