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INVESTIGATION OF A NUMERICAL METHOD FOR SOLVING
THE SPECTRAL PROBLEM OF THE THEORY
OF DIELECTRIC WAVEGUIDES

Ye.M. Karchevskii
T T TR N R

Investigation of spectral problems of the theory of dielectric waveguides and development of
numerical methods attract large attention (see, e.g., [1]-[4]). In [5]-[7] numerical methods were
suggested for searching eigenwaves of cylindric dielectric waveguides on the basis of the represen-
tation of their amplitudes as a superposition of potentials of simple and double layers. During the
last years in solving a series of spectral problems of electrodynamics authors successfully apply
representation of fields in the form of potentials of a simple layer (see, e.g., [8]-[10]). This enables
to shorten essentially computer time.

The present article is devoted to the investigation of a numerical method for searching constants
of propagation of surface eigenwaves of cylindric dielectric waveguides with a smooth contour of
the cross section, which is based on representation of the desired functions in the form of potentials
of simple layer. Under assumption of closeness of the refractive indices of the waveguide and the
environment, the problem is reduced to a nonlinear spectral problem for a system of singular integral
equations. On the basis of the known regularization procedure (see, e.g., [11], p. 14), we construct
the system of the Galyorkin method. Zeros of the determinant of the matrix of this system are
taken in the capacity of approximate solution of this problem. For investigation of the convergence
of the method we use the results of [12]. A similar approach was applied to substantiation of the
method for calculation of microband lines in [8], [9].

1. The problem of determination of the constants of propagation of eigen surface waves of a
cylindric dielectric waveguide under assumption of closeness of the refractive indices of the wave-
guide and environment can be reduced (see [1], item 2) to the search of values of the parameter 3, under
which nontrivial solutions u(x, y) of the boundary problem

Au+xiu=0, (z,y) €S, (1)
Au+xyu =0, (z,y) ¢S5, (2)
dut  Ou~
ks, WiGWS TG -
e, L Gyec, 3)
u exponentially decreases as r = \/z2+ y2 — 00 (4)

exist. Here S is a bounded domain with the boundary C, x? = k2n? — 32, k% = w?eopo, & is the
electric constant, p, is the magnetic constant, w is the frequency of electromagnetic oscillations,
ny1, ny are values of the refractive indices of waveguide and environment, du/dv is the correct
normal derivative, f+ (f~) is the limit value of the function f inside (outside) the contour C.
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We shall seek solution of problem (1)-(4) in the class of functions continuous in S and R?\ S
and twice continuously differentiable in R?\ C. In what follows we shall assume that the contour
C is a twice continuously differentiable curve, ky > 0, n; > n,.

It is well known that in the simplest case where the contour C' is a circumference, nontrivial
solutions of the problem under consideration can exist only if kgny < 8 < kgn;. Moreover, the
corresponding values of the constants of propagation 3 can be easily computed in this situation as
the roots of the transcendent equation (see, e.g., [13]). In the present article we investigate the
case of a contour C' of arbitrary form.

As usual, we shall assume that Re 3 > 0 (see, e.g., [14], p. 265). Consider multivalued functions

xi(B) =4/ kgn;‘-’ — 32 of the complex variable . On the complex plane we make cuts which connect

the bifurcation points kon;, —kon; of the functions x; via the infinite point. Let us agree to choose
in what follows univalent branches of the functions x; such that Im x; > 0 for 8 > kon;.
Analogous to Theorem 3.40 in [15] one can prove

Theorem 1. For any ko > 0, ny > n,, nontrivial solutions of problem (1)—(4) can ezist only
for real B which are on the segment kon, < < kgn,.

We shall seek solutions of equations (1) and (2) in the form of potential of simple layer (see [15])
with the continuous densities ¢; and ¢,, respectively:

u(M) = [ &:(8;M, M)pu(Mo)dlasy, M € 5, 5)

w(M) = /C 8(8; M, My)pa(My)dlys,, M ¢ S. (6)

Here ! )
i !
®;(8; M, M) = ZHrgl)(XjTMMo), i=12, M=(z,y), Mo= (z0,0)

The function u(z,y), given by (6), satisfies condition (4) for any B € G = (kon,, kony). Using the
boundary conditions (3) and limit properties of potentials of simple layer (see [15]), we obtain the
problem: Find 8 € G, for which the nontrivial continuous solutions ¢;, ¢, of the system of integral
equations

/C (8:(8; M, Mo)py (My) — ®5(8; M, Mo)pa(My))dlag, = 0, (7)
300 +ea)+ [ (G205 M, Moy (Me) = 52 (55 M, Mo)pa(My) ) dias, = 0, M € C

(8)

exist.
Similar to Theorem 2 from [17] one can prove

Lemma 1. If, for a certain § € G, problem (1)—(4) can have only the trivial solution, then, for
the same (3, system (7), (8) can have only the trivial solution.

We should note that in [17] investigation was carried out in the class of densities which are
continuous by Holder. In this situation, normal derivative on the contour is understood in the
usual sense. Investigation in the class of continuous densities is to be carried out in a similar way
if by the normal derivative on the contour C one means the correct normal derivative.

From Lemma 1 we immediately have

Theorem 2. If, for a certain f € G, system (7), (8) has a nontrivial solution, then a nontrivial
solution of problem (1)—(4) corresponds to it.

For special functions we use the notation from [16].
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2. Let the contour C' be given parametrically r = r(t), ¢t € [0,2n]. Passing to the integration
variable ¢, selecting explicitly the logarithmic singularity of the kernels ®,(M, M), ®,(M, M,), we
transform system (7), (8) to the form

Sz® + RED(F)zM + RED(B)z® = 0, ¢t € [0, 2n], (9)
z® + REV(B)zM) 4 RED(B)z® =0, ¢t € [0,2n]. (10)

2
Sz() = ——1—/ In
27 0

& L1 :
RE9)(B)e) = 2_7r/o R (5, t0)a D (to)dto, t € [0, 2],

zM(to) = (p1(Mo) — @a(Mo))|r'(to), (ko) = p1(Mo) + 2 Mo),
R (B8, t0) = 2m(GUD(B5t, t0) + G265, 1)),
KE2(B;t,t0) = 2m(GAD (B3, 1) — GHD(Bt, o))l (to)),
RED(B;¢,t0) = 4m(GPD(B;, t0) + G285, 1)),
KB 1) = dm(GED(Bi 1 1) — GED(Bit, ) (1),
t—to "

Here

t
2l2W(ty)dty, t € [0,2n],

g U
sin

GM(B;t,te) = ®;(8; M, My) + —21?111 sin

G®9)(B;t,t0) = a o 2(Ai M, M), M = M(t), Mo = Mo(to).

Using the known properties of the Hankel function (see, e.g., in [16]), one can easily verify that
the following proposition is valid.

Lemma 2. The functions h(:9)(B;¢,1,), i, = 1,2, are analytic in the interval G = (kony, kony)
with respect to the real parameter 3 for each point (t,t,) € [0, 27] x [0, 2~].

Each of the functions h()(B;t,t,), 1,5 = 1,2,, considered first for real values of 8 € G, for each
point (t,t,) € [0,27] X [0,27] admits the unique analytic continuation with respect to the complex
parameter 3 into the complex plane with cuts connecting the infinite point with the points kon,,
kony. Thus, for any interval G’ C G in the complex plane with cuts, a neighborhood A exists such
that kono, kony ¢ A. Thus, the following lemma takes place.

Lemma 3. The functions hU9)(B;t,t,), 1,5 = 1,2, are analytic in the domain A for each point
(t,t0) € [0,27] x [0, 2n].

By using the known properties of the Hankel functions, one can easily verify the following
proposition.

Lemma 4. The functions h(:9)(B;t,t,), 1,7 = 1,2, with any B € A are continuous and contin-
uously differentiable functions of (t,t,) € [0,27] x [0, 27].

In the construction and investigation of the numerical method, it is convenient to treat system
(9)-(10) as an operator equation in a certain Hilbert space. It is known (see, e.g., [11], p.10)
that the operator S : L, — W is continuously invertible, the inverse operator S=! : W) — L, is
determined via the formula

st = 2D Ly Y klal)e, yews, (11)

k=-o00
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where
1 2w -
a(y) = g/o y(to)e~*todt,

are the Fourier coefficients of the function Y, and
1511 = 2. (12)

Let us note that, for any 8 € A, by virtue of Lemma 4 the operators R(21)(3), R&3BY 2 By —5 F.
RL(B), RA3)(@) : L, — W3 are completely continuous. Thus, system (9), (10) is equivalent to
the operator equation

A(B)y= I+ B(B))y =0, (13)
where
y=D, y®), YO =50 e} yO=mcp,
the operator B which acts in the Hilbert space H = W} X L,, is defined via the equality

By = (RAV§-1yM) 4 R(2y@) | p1g-1,0) 4 Ry, (14)

I is the unit operator.

We denote by p(A) = {: 8 € A, JA(B)~! : H — H} a set of regular points of the operator
A(B), (A) = A\ p(A) is a set of singular points of the operator A(8). By virtue of the complete
continuity of the operator B(8), for any 8 € A, the operator A(B) is Fredholm, and, consequently,
every singular point is a characteristic number of this operator. By using the known properties of
integral operators with weakly singular kernels (see, e.g., [11]), one can easily show that to any
eigenvector y € H of the operator A there corresponds a nontrivial solution ¢, 2 of problem (7),
(8) from the space of continuous functions.

The approximate solution y, = (y(», y{?) of equation (13) will be sought in the form

u(t)= 3 o™, nenN, j=12.

k=-n

We shall determine coefficients a,ij) by means of the Galyorkin method:
2m .
(Ay,) B (t)e~tdt = 0, j=-n,...,n, k=1,2. (15)
0

By virtue of (11) we have

(1) n
o ik
STV = 5 42 3 [klaDet,
In2 Sl

Therefore equalities (15) are equivalent to the system of linear algebraic equations

o+ 30 WGV B)e® + Y K B)aP =0, j= -n,.. ., (16)
k=-n k=-n

o + 37 hGD(B)del’ + 3 hEI(B)a® =0, = —n,...,n. (17)
k=—n k=—n

Here d; = {1/1n2 for j = 0, 2|j| for j # 0},

1 2m 2m L
W) = — /0 /0 RO™) (B8, to)e it etktogy d,,

Let I be a set of all trigonometric polynomials of order not exceeding n. We denote by
H, a subspace of H composed by the elements (Y5, ¥$2), (yO, y@) € HT. We introduce into
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consideration the projection operator p, : H = H,: p,y = (2,y1, &,y®), y = (yV), y®) € H,

where
n

@a(pit) = ) clp)e’™

k=—n

is the Fourier operator. Clearly,

llpnll = 1. (18)
The system of linear algebraic equations (16), (17) is equivalent to the linear operator equation

An(B)yn = pnA(B)Yn = (I 4 puB(B))yn = (I + B.(B))yn = 0.

Here A,, : H, — H,, I is the unit operator in the space H,.

We denote by p(A,) = {f:8 € A, JA,.(8)"* : H, = H,} a set of regular points of the operator
An(B), 0(An) = A\ p(An) is a set of singular points of the operator A, (), which coincides (by
virtue of the operator being finite-dimensional) with the set of its characteristic numbers. Approximate
values (3, of the propagation constants § will be sought as characteristic numbers of the operator
An(B), i.e., as zeros of the determinant of the matrix of system (16), (17).

3. As concerns the convergence of the method described in the previous item, the following
theorem takes place.

Theorem 3. The sets 0(A) and o(A,,) consist of isolated points. Let B, € o(A), then a sequence
{Bn}nen, Bn € 0(Ay), exists such that B, — fo, n € N. Let 8, € 0(A,), Bn — Bo € A,
n € N'CN. Then f, € o(A).

Here and in what follows we denote by N’, N”, and N infinite subsets of the set of natural
numbers N. By the convergence z, — z, n € N’, we mean the convergence as n — oo, when the
index m runs over the set N’.

The validity of Theorem 3 follows from Theorem 1 in [12] and the following lemmas, where, in fact, we
verify the condition of this theorem.

Lemma 5. The operator p, : H — H, have the properties:
|pnylle = llylle, €N Vye€ H;
lpn(oy + o'y') = (apay + &/'puy’)ly = 0, n€ N Vy,y' € H, a,o' €C.

The first of the properties holds in view of the evident limit relations ||®,z|| — ||z||, n € N,
z € Ly, W}. The second one is a consequence of the linearity of the operator p,.

Lemma 6. The operator functions A(f), A.(B) are holomorphic in the domain A.

Proof. The operator functions R(>1)(8), R?(B3), R&1(B3), and R4?)(B) are holomorphic in
the domain A by virtue of Lemma 3 (see [9], p. 71). Hence and from (12)-(14) we conclude that
A(pB) is a holomorphic operator function in the domain A. Consequently, the same property is
possessed also by A, (8) = p,A(B). O

Lemma 7. The following estimate takes place ||A(B)|| < ¢(B), B € A, where
c(B) = 1+ 2(c}1(B) + di1(8))* + (c}5(B) + d3a(8))* + 2¢21(B) + c22(B)

s a function continuous in the domain A. Here

1 2 2 coh o
C?j(ﬂ) = m/{) /0 Ih( '1)(ﬂ;t,t0)|2dtdt0, 1,0 = 1,2,

dfj(ﬂ)zalﬁfoh /ozn

2
dith(l'i)(ﬁ;t,to) dtdty, j=1,2.

12
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Proof. The validity of Lemma follows from the inequality

AN < 14+ IRED@BNNSTH + IRED @) + IREDAN IS + IRED(B)I,
equality (12), and obvious (by virtue of Lemma 4) estimates

IRED(B)]] < e2,5(B), RE(B) : Ly = L,

RSB < 2 ,(8) + d2,(8), ROP(B):Lo— Wi, j=1,2 O
From the definition of the operator A,(f8) and equality (18) one can derive
Lemma 8. The following estimate takes place: |A.(B)|| < ||A(B)||, n € N, B € A.

Lemma 9. For any 3 € A, the sequence of operators {A,(8)}nen properly converges to the
operator A(f).

Proof. In correspondence with the definition from [12] for the proof of Lemma we have to show
that with any 8 € A the following conditions are fulfilled:

1. the fact that the sequence {y, }nen, yn € H, P-converges to y € H implies that the sequence
{AnYn}nen P-converges to Ay;

2. the uniform boundedness of {y,}nen, ||yn]| < const, » € N, and P-compactness of the
sequence {A,yn }nen implies that the sequence {yn}nen is P-compact.

The P-convergence of {y, }nen to y € H means that ||y, —p,y|| = 0,7 € N, and thus the validity
of the first condition follows from the estimate ||A,yn — P AY|| < ||Anll 1¥n — 2oyl +||2all Al ||Pny —
y|l, » € N, Lemmas 7, 8, equality (18), and an evident limit relation ||p,y — y|| =+ 0, n € N.

Let us verify the second of the conditions. The P-compactness of the sequence {A, Y, }neny means
that, for any N’ C N, N” C N’ exists such that the sequence {A,Y, = Yn+BnYn}nen» P-converges
to z € H. If ||ya]| < const, n € N”, then a weakly convergent subsequence {y, }nenm, N C N”
exists. The completely continuous operator B sends it to a strong convergent one: ||By, —u|| = 0,
n € N”,u € H. Hence by virtue of the inequality ||B,yn —pnt|| < ||Pal| || Byn —u|| and equality (18)
we conclude that the sequence {B,y, }nenn P-converges to u € H. Thus, {yn}nenw P-converges
toy = z— u € H, and the second condition is fulfilled. O

Lemma 10. The norms ||A,(B)|| are bounded uniformly with respect to n and 8 on each compact
Ay CA.

The validity of this Lemma evidently follows from Lemmas 8 and 7.

Lemma 11. For any kg > 0, n; > ny in the interval G = (kona, koni), B ezist with which
problem (1)—(4) has only the trivial solution.

Proof. If B € G, then x; > 0, X2 = ipa, p2 > 0. Let u be a solution of problem (1)-(4).
Applying in the domains S, Sg = {(z,y) ¢ S : r < R} the Green formula, by taking into account
conditions (1)—(3), we arrive at the equality

pgf (u[*ds +/ Vul?ds +/ Vul?ds = / i & X'—;/ lu|?ds. (19)
Sr Sr s Cr 81‘ S
From (19), (4) it follows that R, exists such that for any R > R, the inequality takes place
p%/ |u|2ds+/ |Vu|*ds + l/ |Vu|?ds < xf/ |u|?ds. (20)
Sr Sr 2 S S

Let us apply the embedding theorems (see, e.g., [18]):

/|u|2ds§c5,1(/ |Vu|2ds+/ |u|2dl>, (21)
s s c

/ lul?dl < cs,z(/ IVu]zds+/ |u|2ds). (22)
c Sr Sr
13



Russian Mathematics (Iz. VUZ) Vol. 43, No. 1

Here cs,1, cs o are constants which can depend only on the domain S. By substituting (21), (22)
into (20), we get the inequality

1t
(p2 - Xfcl,scz,s)/s |ul*ds + (5 — xfcl,s) /s |Vul®ds + (1- XfC1,sC2,s)/s [Vul?ds < 0. (23)

Let us require that in (23) all the factors at integrals be positive. This requirement will be fulfilled
if

> max f;. (24)
Here
B? = kgn} kinics B2 = k2n? — 11
P l4es  I4es’ TP O 24
ﬁ§ = kﬁnf — —y Cs=2C5Cy5.
Cs

Clearly, for arbitrary ko > 0, n; > ny, the set B from the interval G, for which (24) is fulfilled, is
nonempty. To every such § only the trivial solution of problem (1)-(4) can correspond. Indeed,

from (23) it follows
/ |u|?ds = 0.
Sr

Thus, (M) = 0, M € Sg. Consequently, u(M) =0, M € R2. O
Lemma 12. The set p(A) is nonempty, i.e., o(A) # A.

Result of this Lemma follows directly from Fredholm property of the operator A and Lemmas 11
and 1.

Thus, all the conditions of theorem 1 from [12] in the case under our consideration are fulfilled
and the assertions of Theorem 3 have been proved.

The method described above was applied to solving problems on eigenwaves of dielectric wave-
guides, in both simplified statement considered here and in the complete electrodynamic statement
(see, e.g., [1]) which leads to nonlinear spectral problems, for systems of singular equations with
the Cauchy kernel. Numerical experiments, partially described in [19], [20], show high efficiency
of the method. For example, to determine basic waves’ propagation constants of waveguides of
various cross sectional shapes, it turned out to be sufficient to take at most three terms of the
trigonometric series.

I wish to thank N.B. Pleshchinskii for the statement of the problem and his continuous
attention.
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