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A. V. Kazantsev1* and M. I. Kinder1**

(Submitted by A. M. Elizarov)
1Kazan (Volga Region) Federal University, ul. Kremlevskaya 18, Kazan, 420008 Russia

Received June 21, 2018

Abstract—New conditions are constructed for the critical point of the conformal radius (hyperbolic
derivative) to be unique where the mapping function is holomorphic and locally univalent in the unit
disk. We use an approach based on the uniqueness research of the univalence conditions depending
on the additional parameters. Such a research has been carried out for the univalence criteria due to
Singhs, Szapiel and some other mathematicians.
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1. INTRODUCTION

Jack’s lemma in its original statement [1] asserts the existence of the real number k with the
properties k ≥ 1 and

ζ1w
′(ζ1) = kw(ζ1), (1)

where w(ζ) is the holomorphic function in the disk D = {ζ ∈ C : |ζ| < 1} with w(0) = 0, and the
modulus of this function, |w(ζ)|, attains its maximum value on the circle |ζ| = r(< 1) at a point ζ = ζ1.
On the base of this assertion it has been established in the article [2] that the condition

|w(ζ)|1−γ |ζw′(ζ)|γ < 1, ζ ∈ D, (2)

with some γ ≥ 0 for the just mentioned w(ζ) implies the inequality |w(ζ)| < 1, ζ ∈ D.
When

w(ζ) = f ′(ζ)− 1, (3)

the condition (2) gives the first of the theorems in the paper [2]. Namely, we have the following
Theorem S. If a holomorphic function f(ζ) in D with the normalization

f(0) = f ′(0)− 1 = 0 (4)

satisfies the condition

|f ′(ζ)− 1|1−γ |ζf ′′(ζ)|γ < 1, ζ ∈ D, (5)

for some γ ≥ 0, then f(ζ) is close-to-convex and bounded in D.
We are interested in the uniqueness criteria for the critical point of the hyperbolic derivative

hf (ζ) = (1− |ζ|2)|f ′(ζ)| (6)
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UNIQUENESS OF THE CRITICAL POINT 1371

of the holomorphic function f in D (conformal radius of the domain f(D)). In particular, we study
the question of whether the inequalities of the form (5) will be such conditions. It is well-known (see,
e.g., [3]) that the critical points of the function (6) are exactly the roots of the Gakhov equation

f ′′(ζ)/f ′(ζ) = 2ζ/(1 − |ζ|2). (7)

The series of the uniqueness conditions is traditionally opened by the case when the only root of (7) is
the zero. The presence of the latter is postulated by the condition

f ′′(0) = 0, (8)

which is by (3) equivalent to the equality

w′(0) = 0. (9)

However, not all of the functions w with (9) satisfy the inequality (2). This fact considerably
impoverishes the corresponding classes of functions f . So, for example, the function w(ζ) = ζn with
n ≥ 2 satisfies the inequality |w(ζ)| < 1 all over the unit disk, but the inequality in (2)—only on its part.
In order to correct the situation we have to make the above formulations more precise due to introduction
of the power n to them. The results are as follows. Let H be the class of all functions holomorphic in D,
let A be its subclass consisting of all functions f with normalization (4), and let H0 be the subclass of A
which elements f are locally univalent functions in D, i.e. f ′(ζ) �= 0 when ζ ∈ D. For a subclass X ⊂ H

we denote X̃ = {f ∈ X : f ′′(0) = 0}. Jack’s lemma will take the following form.

Lemma 1. Let w(ζ) = αζn + . . . ∈ H where n ∈ N and α �= 0. If the modulus |w(ζ)| attains its
maximum value on the circle |ζ| = r at a point ζ1, then the inequality (1) is fulfilled with the real
number k ≥ n.

Prototype of the following statement hasn’t been explicitly formulated in [2], but it has been contained
in the proof of Theorem S.

Lemma 2. Let w(ζ) = αζn + . . . be a holomorphic function in D satisfying the condition

|w(ζ)|1−γ |ζw′(ζ)|γ < nγ , ζ ∈ D,

where n ∈ N, α �= 0, and γ ≥ 0 are arbitrary fixed numbers. Then |w(ζ)| < 1, ζ ∈ D.

Now we reorientate Theorem S from univalence to uniqueness with adding the condition (8).

Theorem 1. If n ≥ 2 and a holomorphic function f(ζ) = ζ +
∑∞

k=n+1 akζ
k in D satisfies the

condition

|f ′(ζ)− 1|1−γ |ζf ′′(ζ)|γ < nγ , ζ ∈ D, (10)

for some γ ≥ 0, then f ∈ H0, and ζ = 0 is the only critical point of the function (6).

According to Lemma 2 the condition (10) implies the inequality

|f ′(ζ)− 1| < 1, ζ ∈ D, (11)

which is the uniqueness condition (see, e.g., [3]). By virtue of (11) close-to-convexity and boundedness
of the function f are also preserved when we passing from (5) to (10).

The other aspect of the generalization of the Theorem S is connected with the extension of the
inequality (11) to the subordination

f ′(ζ) ≺ 1 + βζ

1− αζ
, ζ ∈ D, (12)

where (α, β) varies over the triangle Δ = {(α, β) ∈ R
2 : α ≤ 1, β ≤ 1, α+ β > 0}. Inequality (11) is

equivalent to the condition (12) when α = 0, β = 1. This aspect develops in Section 2 of the present
note. In Section 3 we establish two-parametric extension of the Szapiel univalence condition (see [3]).
In Section 4 the uniqueness problem is solved for the classes T (α, β) which prototypes have been studied
in [4].
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2. LAMÉ CURVES AND QUASIHYPERBOLES

The following theorem has been proved in [3] by the use of the method that goes back to [5]. We will
give here another, geometric proof. Let us denote Δ∗ = {(α, β) ∈ Δ : α+ β ≤ 1} and δk = {(α, β) ∈
R
2 : |αk+1 − (−β)k+1| ≤ 1}, k ∈ N ∪ {0}.

Theorem 2. Let n ≥ 2, and let a holomorphic in D function f(ζ) = ζ +
∑∞

k=n+1 akζ
k satisfies

the condition (12). If (α, β) ∈ Δ∗, then the image f(D) has the only zero critical point of the
conformal radius except a strip, for which (α, β) = (1, 0).

Proof. Subordination (12) is equivalent to the relation

f ′(ζ) =
1 + βϕ(ζ)

1− αϕ(ζ)
, ζ ∈ D, (13)

where ϕ(ζ) = cζn + . . . satisfies the condition ϕ(D) ⊂ D. From (13) we obtain

f ′′(ζ)

f ′(ζ)
=

βϕ′

1 + βϕ
+

αϕ′

1− αϕ
= ϕ′

∞∑

k=0

[
αk+1 − (−β)k+1

]
ϕk, ϕ = ϕ(ζ), ζ ∈ D,

whence by the Schwarz lemma (see, for example, [6, p. 333])
∣
∣
∣
∣
f ′′(ζ)

f ′(ζ)

∣
∣
∣
∣ ≤

2|ζ|
1− |ζ|2 (1− |ϕ|)

∞∑

k=0

∣
∣
∣αk+1 − (−β)k+1

∣
∣
∣ |ϕ|k, ϕ = ϕ(ζ), ζ ∈ D. (14)

From (14) it is seen that for (α, β) ∈
⋂∞

k=0(δk ∩Δ) we have
∣
∣
∣
∣
f ′′(ζ)

f ′(ζ)

∣
∣
∣
∣ ≤

2|ζ|
1− |ζ|2 , ζ ∈ D. (15)

For even k each boundary ∂δk consists of the Lamé curve ([7, p. 179]) αk+1 + βk+1 = 1 and its
reflection αk+1 + βk+1 = −1 with respect to the asymptote α+ β = 0. There is a chain of inclusions
Δ∗ = δ0 ∩Δ ⊂ δ2 ∩Δ ⊂ δ4 ∩Δ ⊂ . . .. For odd k each boundary ∂δk consists of the quasihyperboles
αk+1 − βk+1 = ±1 with asymptotes α± β = 0. At the same time Δ∗ ⊂ δ2m+1, m = 0, 1, 2, . . .. Thus,⋂∞

k=0(δk ∩Δ) = Δ∗.
Since for any k ≥ 1 the relation ∂δk ∩Δ∗ = {(1, 0), (0, 1)} takes place, the assumption about the

equality in (7) (so, in (15)) for ζ = ζ0 ∈ D \ {0} leads to n = 2, and also to (α, β) = (1, 0) or (α, β) =
(0, 1), whence by the Schwarz lemma we obtain

ϕ(ζ) = εζ2, |ε| = 1. (16)

Solving the corresponding Gakhov equation (7) we conclude that initial assumption about the equality
may be fulfilled only in the case (α, β) = (1, 0) and only when f(D) is a strip.

Theorem 2 is proved.
Remark 1. When n = 2, the result of the Theorem 2 is sharp in the sense that if (α, β) ∈ Δ \Δ∗,

then there exists a function f ∈ Ã with the condition (12) such that the hyperbolic derivative (6) has
more than one critical point. Such a sharpness is established by the direct solution of the equation (7)
for the function f with the representation (13), (16) where (α, β) ∈ Δ \Δ∗.

Moreover, the just formulated addition about the sharpness remains valid if we remove the condition
n ≥ 2 in the statement of Theorem 2 given above, and if we demand only a2 = 0 in the Taylor expansion
of a function f(ζ) (i.e. the equality (8)). Such a modification of Theorem 2 wins in community, but loses
the connection with [2].

It remains only to note that in the conclusion

|ϕ′(ζ)| ≤ n|ζ|n−1

1− |ζ|2n (1− |ϕ(ζ)|2), ζ ∈ D,

of Theorem 5 in [6, p. 333], which we use under the name of the Schwarz lemma, the right hand side
increases with decreasing n.

Now we are able to establish the following analogy of Theorem 1.
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Theorem 3. If n ≥ 2 and a holomorphic function f(ζ) = ζ +
∑∞

k=n+1 akζ
k in D satisfies the

inequality

|f ′(ζ)− 1|1−γ |ζf ′′(ζ)|γ < (n/(α+ β))γ |αf ′(ζ) + β|1+γ , ζ ∈ D,

for some (α, β) ∈ Δ∗ and γ ≥ 0, and the derivative f ′(ζ) omit the value −β/α in D, then the
conformal radius of the domain f(D) has the only zero critical point except a strip, for which
(α, β) = (1, 0) and n = 2.

Proof. Let us define ϕ(ζ) = f ′(ζ)−1
αf ′(ζ)+β , where αf ′(ζ) + β �= 0, ζ ∈ D, by the theorem condition. As

ϕ′(ζ) =
(α+ β)f ′′(ζ)

(αf ′(ζ) + β)2
,

we find ourselves in the conditions of Lemma 2. Application of the latter immediately leads to the
condition (13), i.e. to the subordination (12), and the proof is completed by the use of Theorem 2.

Let us note that new uniqueness conditions may be similarly constructed from the other univalence
conditions in [2].

3. FIRST SZAPIEL’S CRITERION

The first Szapiel condition (there are three of them, see [3]) is a subordination of the form ln f ′(ζ) ≺
Aζ , ζ ∈ D; it was shown in [3] that if A = 1, then this subordination is the sharp condition for the
uniqueness of the zero critical point of the function (6). Here we consider two-parametric extension
of the first Szapiel condition, namely, the subordination

ln f ′(ζ) ≺ βζ

1− αζ
, ζ ∈ D, (17)

where the admissible intervals of varying of the parameters α and β form the semi-strip Π = {(α, β) ∈
R
2 : |α| < 1, β ≥ 0}. We have the following

Lemma 3. Let a function f ∈ Ã satisfies the condition (17) for (α, β) ∈ Π. Then the inequality

F(ζ; f) ≡ (1− |ζ|2)
∣
∣
∣
∣
1

ζ

f ′′(ζ)

f ′(ζ)

∣
∣
∣
∣ ≤ 2η(α, β), ζ ∈ D,

takes place where η(α, β) = β if |α| ≤ 1/2 and η(α, β) = β/ [4|α|(1 − |α|)] if |α| > 1/2.
Proof. Let us pass from the subordination (17) to the equivalent relation

ln f ′(ζ) =
βϕ(ζ)

1− αϕ(ζ)
, ζ ∈ D, (18)

where |ϕ(ζ)| ≤ |ζ|2. This implies an estimate for the pre-Schwarzian

f ′′(ζ)

f ′(ζ)
=

βϕ′(ζ)

(1− αϕ(ζ))2
,

namely, by the Schwarz lemma we obtain
∣
∣
∣
∣
f ′′(ζ)

f ′(ζ)

∣
∣
∣
∣ ≤

β

|1− αϕ|2
2|ζ|

1− |ζ|4 (1− |ϕ|2) ≤ H(Reϕ)
2|ζ|

1− |ζ|2 , ϕ = ϕ(ζ), ζ ∈ D, (19)

where H(t) = β(1− |t|)/(1− αt)2. Let us find a maximum η(α, β) of the function H(t) on the segment
[−1, 1]. We have H ′

|t|(t) = −β(1− αt)−3g(t), where g(t) = 1− 2αs+ αs|t| and s = sgnt.

If |α| ≤ 1/2, then obviously H ′
|t|(t) ≤ 0, hence η(α, β) = H(0) = β.

Now consider the case 1/2 < |α| < 1. If s = −sgnα, then maxt∈[0,−sgnα]H(t) = H(0) = β, and if
s = sgnα, then maxt∈[0,sgnα]H(t) = H((2|α| − 1)/α) = β/ [4|α|(1 − |α|)] > β. Therefore in this case
η(α, β) = β/ [4|α|(1 − |α|)], and Lemma 3 is proved.
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We call the set Ω ⊂ Π the uniqueness domain for the condition (17) if for any (α, β) ∈ Ω this
condition ensures the uniqueness of the (zero) critical point of the hyperbolic derivative of the function
f ∈ Ã that satisfies (17).

We introduce the sets Δ−1 = {(α, β) : −1 < α < −1/2, β ≤ 4|α|(1 − |α|)}, Δ0 = [−1/2,−1/2] ×
[0, 1] and Δ1 = {(α, β) : 1/2 < α < 1, β < 4|α|(1 − |α|)}. The following result is valid.

Theorem 4. The set Ω = Δ−1 ∪Δ0 ∪Δ1 is the uniqueness domain for the condition (17).
Proof. By Lemma 3 the uniqueness takes place for all (α, β) with η(α, β) < 1, i.e. when (α, β)

belongs to the interior of the domain Ω or to the interval (−1, 1) × {0}.
It remains to consider the equation η(α, β) = 1. When β = 4|α|(1 − |α|), −1 < α < −1/2, the

assumption about the existence of a non-zero root a of the equation (7) for a function f with (17) by
virtue of (19) leads to the contradiction: 0 < ϕ(a) = (2|α| − 1)/α < 0. When −1/2 ≤ α ≤ 1/2 and
β = 1, the uniqueness of the zero root also follows from the chain (19) since H(t) < H(0) for t �= 0 (see
the proof of Lemma 3). Finally, the curve β = 4|α|(1 − |α|), 1/2 < α < 1, is excluded from the domain
Δ1. Theorem 4 is proved.

Remark 2. We should comment on the elimination of the part of the curve η(α, β) = 1 over the
domain Δ1 from the statement of Theorem 4. This theme is connected with the sharpness problem
for the result of Theorem 4. As already noted, the assumption on the existence of an additional root
of the equation (7) according to (19) leads to a function of the form ϕ(ζ) = εζ2, |ε| = 1. Then the
condition (18) with this ϕ defines the function f for which Gakhov’s equation has some roots in D \ {0}.
Moreover, the uniqueness cannot be continued across the curve η(α, β) = 1 over α ∈ [−1/2, 1) out
of Δ0 ∪Δ1. This is not the case over Δ−1. Complete picture of solvability of Gakhov’s equation
for the function f ∈ Ã in (18) for ϕ(ζ) = ζ2 shows that the equation (7) hasn’t non-zero roots when
(α, β) ∈ Δ∗

−1 = (−1,−1/2) × [0, 1].
Hypothesis. Maximal (by inclusion) uniqueness domain for the condition (17) will be the

domain Ω∗ = Δ∗
−1 ∪Δ0 ∪Δ1.

4. UNIQUENESS IN CLASSES T : CREATION OF THE FOLKLORE

Let D = {(a, b) ∈ R
2
: |a− 1| ≤ b ≤ a}. Following [4] for any (a, b) ∈ D we consider the class

T (a, b) that consists of all functions f ∈ A satisfying the condition
∞∑

n=2

(n− a+ b)|an| ≤ b− |1− a|. (20)

Change of variables (see [5, 3])

a =
1 + αβ

1− α2
, b =

α+ β

1− α2
, (21)

transferring D into the set Δ, where Δ = {(a, b) ∈ R
2 : α+ β > 0, α ≤ 1, β ≤ 1}, allows us to rewrite

the inequality (20) as
∞∑

n=2

β + nα+ (n− 1)

1 + α
|an| ≤

α+ β

1 + |α| . (20′)

We will denote T (α, β) the class of functions f ∈ A satisfying (20′). Thus T (a, b) = T (α, β) if and only
if (a, b) and (α, β) are mapped by (21).

Mapping (21) is the orientation-preserving diffeomorphism on D0 = {(a, b) ∈ R
2 : |a− 1| < b < a}.

At the exit to the boundary ∂D the correspondence (21) keep its bijectivity only on the part of ∂D—
on the ray b = a, a ∈ (1/2,+∞) that goes into the interval β = 1, α ∈ (−1, 1) of the boundary ∂D.
Correspondence of the other parts of boundaries ∂D and ∂Δ is as follows. The point a = b = ∞
corresponds to the semi-segment α = 1, β ∈ (−1, 1], the ray b = a− 1, a ∈ (1,+∞)—to the point
(α, β) = (1,−1), the point (a, b) = (1, 0)—to the interval α+β = 0, α ∈ (−1, 1), and the semi-segment
b = 1− a, a ∈ [1/2, 1)—to the point (α, β) = (−1, 1).
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We exclude three latter parts of the boundary ∂D from our consideration when passing from D to
Δ: for these parts the condition (20) admits the unique function, namely f(ζ) = ζ ; the corresponding
conformal radius will be have the only critical point (maximum-ombilic).

Three Propositions below are possibly well-known, but since Theorem 5 crowning them is new, we
consider them to be folklore.

Proposition 1. If f ∈ T (α, β) for (α, β) ∈ Δ, then |an| ≤ 1/n, n ∈ N.
Proof. Let’s pass to appropriate T (a, b) by the help of (21). It follows from (20) that the inequality

|an| ≤
b− |1− a|
n− a+ b

, n ≥ 2, (22)

is valid. The right-hand side of (22) increases with b ≤ a. Substituting in (22) the value b = a, we will
obtain

|an| ≤
a− |1− a|

n
=

1

n
− |a− 1| − (a− 1)

n
≤ 1

n
, (23)

as required.
By the use of Haegi’s classification [8] we get the following

Corollary. If f ∈ T̃ (α, β) for (α, β) ∈ Δ, then ζ = 0 is elliptic or parabolic critical point of the
function (6).

Remark 3. When a2 = 0, the collection of inequalities |an| ≤ 1/n, n ∈ N, isn’t sufficient for the
uniqueness of the (zero) critical point of the function (6). To confirm this conclusion, it is enough
to consider the function f(ζ) = ζ − ζ3/3− ζ4/4− . . . for which the equation (7) has four roots in D;
logarithmic singularity at ζ = 1 plays the role of five critical point—maximum.

Proposition 1 admits the following complement.
Proposition 2. Let f ∈ T (α, β) for (α, β) ∈ Δ. Then
1) attainment of the equality in (22) at n = k(≥ 2) implies the vanishing of all an, n ≥ 2,

except k-th;
2) equality |an| = 1/n when n = k ≥ 2 is possible only in the case an = 0, n ≥ 2, n �= k, and

b = a ≥ 1.
Proof. 1) The desired conclusion follows from the chain

b− |1− a| = (k − a+ b)|ak| ≤
∞∑

n=2

(n− a+ b)|an| ≤ b− |1− a|.

2) It follows from (22) and (23) that for |an| = 1/n the relations b = a and a ≥ 1 take place. Under
given restrictions on a and b the desired equality follows from

1 = k|ak| ≤
∞∑

n=2

n|an| ≤ 1.

Proposition 3. The following inclusions are valid: 1) T (α, β) = T (1, 1) when α ≥ 0, β = 1;
2) if (α, β) ∈ Δ, then T (α, β) ⊂ T (α, 1) ⊂ T (|α|, 1) = T (1, 1);
3) T (1, 1) ⊂ R(0, 1) where R(α, β) is the class of functions f ∈ A satisfying (12).
Proof. The result of 1) is obtained by direct substituting the considered values to the definition of the

class T (α, β), as well as the last equality in 2).
Defining relation (20’) for T (α, β) is written in the form

∑∞
n=2 Fn(α, β)|an| ≤ 1, where

Fn(α, β) =
1 + |α|
1 + α

· β + nα+ (n− 1)

α+ β

is the decreasing function on β. The rest inclusions of 2) are consequences of the inequalities

Fn(α, β) ≥ Fn(α, 1) =
n(1 + |α|)
1 + α

≥ Fn(|α|, 1) = n = Fn(1, 1).
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3) Defining relation for the class T (1, 1) has the form
∑∞

n=2 n|an| ≤ 1 which immediately gives the
inequality (11), but this is the condition (12) for α = 0 and β = 1.

Now we are able to prove the following
Theorem 5. Maximal uniqueness domain for the condition (20’) when a2 = 0 is the triangle Δ.

Proof. Let (α, β) ∈ Δ, and let f ∈ T̃ (α, β). By virtue of Proposition 3, 3) the function f satisfies the
inequality (11) which provides the uniqueness of the zero critical point of the function (6).

Theorem 5 is proved.
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