Continuity of Operator Functions in the Topology of Local Convergence in Measure

A. M. Bikchentaev^{*a*} and O. E. Tikhonov^{*a*}

Received June 20, 2023; revised October 5, 2023; accepted October 6, 2023

Dedicated to Academician A. S. Holevo on the occasion of his 80th birthday

Abstract—Let a von Neumann algebra \mathcal{M} of operators act on a Hilbert space \mathcal{H} , and let τ be a faithful normal semifinite trace on \mathcal{M} . Let $t_{\tau 1}$ be the topology of τ -local convergence in measure on the *-algebra $S(\mathcal{M}, \tau)$ of all τ -measurable operators. We prove the $t_{\tau 1}$ -continuity of the involution on the set of all normal operators in $S(\mathcal{M}, \tau)$, investigate the $t_{\tau 1}$ -continuity of operator functions on $S(\mathcal{M}, \tau)$, and show that the map $A \mapsto |A|$ is $t_{\tau 1}$ -continuous on the set of all partial isometries in \mathcal{M} .

Keywords—Hilbert space, linear operator, von Neumann algebra, normal trace, measurable operator, local convergence in measure, continuity of operator functions.

MSC: 46L10, 46L51, 46L52

DOI: 10.1134/S008154382401005X

1. INTRODUCTION

Let a von Neumann algebra \mathcal{M} of operators act on a Hilbert space \mathcal{H} , and let τ be a faithful normal semifinite trace on \mathcal{M} . This paper continues the research initiated in [1, 3–8, 10, 11, 15, 16] into the properties of the topologies $t_{\tau 1}$ and $t_{w\tau 1}$ of τ -local and weakly τ -local convergence in measure, respectively, on the *-algebra $S(\mathcal{M}, \tau)$ of all τ -measurable operators. We prove the $t_{\tau 1}$ -continuity of the involution on the subset of all normal operators in $S(\mathcal{M}, \tau)$ (Theorem 4.8), study the $t_{\tau 1}$ -continuity of operator functions on $S(\mathcal{M}, \tau)$ (Theorem 4.18) using some ideas and methods from [9, 13], and show that the map $A \mapsto |A|$ is $t_{\tau 1}$ -continuous on the subset of all partial isometries in the algebra \mathcal{M} (Corollary 4.3).

Note that the continuity of operator functions in the topology t_{τ} of convergence in measure on $S(\mathcal{M}, \tau)$ was studied by the second author in [19], and on algebras of locally measurable operators, by M. A. Muratov and V. I. Chilin in [14]. Some of our results are new even for the *-algebra $\mathcal{M} = \mathcal{B}(\mathcal{H})$ of all bounded linear operators on \mathcal{H} equipped with the canonical trace $\tau = \text{tr.}$

2. NOTATION AND DEFINITIONS

Let \mathcal{M} be a von Neumann algebra of operators in a Hilbert space \mathcal{H} , \mathcal{M}^{pr} the lattice of orthoprojections $(P = P^2 = P^*)$ in \mathcal{M} , I the identity in \mathcal{M} , $P^{\perp} = I - P$ for $P \in \mathcal{M}^{\text{pr}}$, and \mathcal{M}^+ the cone of positive elements in \mathcal{M} .

A map $\varphi \colon \mathcal{M}^+ \to [0, +\infty]$ is called a *trace* if $\varphi(X + Y) = \varphi(X) + \varphi(Y)$ and $\varphi(\lambda X) = \lambda \varphi(X)$ for all $X, Y \in \mathcal{M}^+$ and $\lambda \ge 0$ (with $0 \cdot (+\infty) \equiv 0$) and in addition $\varphi(Z^*Z) = \varphi(ZZ^*)$ for all $Z \in \mathcal{M}$.

^a N. I. Lobachevsky Institute of Mathematics and Mechanics, Kazan Federal University, Kremlevskaya ul. 35, Kazan, 420008 Russia.

[🖾] Airat.Bikchentaev@kpfu.ru (A. M. Bikchentaev), Oleg.Tikhonov@kpfu.ru (O. E. Tikhonov).

A trace φ is said to be

- faithful if $\varphi(X) > 0$ for all $X \in \mathcal{M}^+, X \neq 0$;
- semifinite if $\varphi(X) = \sup\{\varphi(Y) \colon Y \in \mathcal{M}^+, Y \leq X, \varphi(Y) < +\infty\}$ for all $X \in \mathcal{M}^+$;
- normal if whenever $X_i \nearrow X$ $(X_i, X \in \mathcal{M}^+)$, one has $\varphi(X) = \sup \varphi(X_i)$

 $(see [17, Ch. V, \S 2]).$

An operator on \mathcal{H} (not necessarily bounded or densely defined) is said to be *affiliated with the* von Neumann algebra \mathcal{M} if it commutes with every unitary operator in the commutant \mathcal{M}' of \mathcal{M} . In what follows, τ is a faithful normal semifinite trace on \mathcal{M} and $\mathcal{M}_{\tau}^{\mathrm{pr}} = \{P \in \mathcal{M}^{\mathrm{pr}} : \tau(P) < \infty\}.$

A closed densely defined operator X affiliated with \mathcal{M} , with domain $\mathcal{D}(X)$ in \mathcal{H} , is said to be τ -measurable if for every $\varepsilon > 0$ there exists a $P \in \mathcal{M}^{\mathrm{pr}}$ such that $P\mathcal{H} \subset \mathcal{D}(X)$ and $\tau(P^{\perp}) < \varepsilon$. The set $S(\mathcal{M}, \tau)$ of all τ -measurable operators is a *-algebra with respect to taking the adjoint operator, multiplication by scalars, and the operations of strong addition and multiplication obtained by closing the ordinary operations [18, Ch. IX]. Let $S(\mathcal{M}, \tau)^{\mathrm{nor}}$ be the set of all normal $(A^*A = AA^*)$ operators in $S(\mathcal{M}, \tau)$. For a family $\mathcal{L} \subset S(\mathcal{M}, \tau)^{\mathrm{nor}}$ be the set of all normal $(A^*A = AA^*)$ and respectively. The partial order in $S(\mathcal{M}, \tau)^{\mathrm{h}}$ generated by the proper cone $S(\mathcal{M}, \tau)^+$ will be denoted by \leq . If $X \in S(\mathcal{M}, \tau)$ and X = U|X| is the polar decomposition of X, then $U \in \mathcal{M}$ and $|X| = \sqrt{X^*X} \in S(\mathcal{M}, \tau)^+$. For operators $A \in S(\mathcal{M}, \tau)$ we will also use the notation

$$\operatorname{Re} A = \frac{1}{2}(A + A^*)$$
 and $\operatorname{Im} A = \frac{1}{2i}(A - A^*)$

The *-algebra $S(\mathcal{M}, \tau)$ is equipped with the topology t_{τ} of convergence in measure [18, Ch. IX, §2], for which a fundamental system of neighborhoods of zero is formed by the sets

$$\mathcal{U}(\varepsilon,\delta) = \left\{ X \in S(\mathcal{M},\tau) \colon \exists Q \in \mathcal{M}^{\mathrm{pr}} (\|XQ\| \le \varepsilon \text{ and } \tau(Q^{\perp}) \le \delta) \right\}, \qquad \varepsilon > 0, \quad \delta > 0.$$

The algebra $\langle S(\mathcal{M},\tau), t_{\tau} \rangle$ is known to be a complete metrizable topological *-algebra, and the algebra \mathcal{M} is dense in $\langle S(\mathcal{M},\tau), t_{\tau} \rangle$. To denote the convergence of a net $\{X_j\}_{j \in J} \subset S(\mathcal{M},\tau)$ to an operator $X \in S(\mathcal{M},\tau)$ in the topology t_{τ} , we write $X_j \xrightarrow{\tau} X$; in this case $\{X_j\}_{j \in J}$ is said to converge to X in measure τ .

Let $\mu(X;t)$ denote the singular value function of an operator $X \in S(\mathcal{M},\tau)$, i.e., the nonincreasing right continuous function $\mu(X;\cdot): (0,\infty) \to [0,\infty)$ defined as

$$\mu(X;t) = \inf\{\|XP\|: P \in \mathcal{M}^{\mathrm{pr}}, \ \tau(P^{\perp}) \le t\}, \qquad t > 0.$$

The set $S_0(\mathcal{M}, \tau) = \{X \in S(\mathcal{M}, \tau) : \lim_{t \to \infty} \mu(X; t) = 0\}$ of τ -compact operators is an ideal in the *-algebra $S(\mathcal{M}, \tau)$. The topology t_{τ} is also generated by the *F*-norm $\rho_{\tau}(X) = \inf_{t>0} \max\{t, \mu(X; t)\}$ for $X \in S(\mathcal{M}, \tau)$.

Lemma 2.1 [12]. Let $X, Y, X_j \in S(\mathcal{M}, \tau), j \in J$. Then the following assertions hold:

(i)
$$\mu(X;t) = \mu(|X|;t) = \mu(X^*;t)$$
 for all $t > 0$;

- (ii) $\mu(X^*X;t) = \mu(XX^*;t)$ for all t > 0;
- (iii) if $|X| \leq |Y|$, then $\mu(X;t) \leq \mu(Y;t)$ for all t > 0;
- (iv) if $X \in \mathcal{M}$, then $\lim_{t \to +0} \mu(X; t) = \sup_{t > 0} \mu(X; t) = ||X||$;
- (v) $\mu(XY; t+s) \le \mu(X; t) \mu(Y; s)$ for all t, s > 0;
- (vi) $\mu(X+Y;t+s) \le \mu(X;t) + \mu(Y;s)$ for all t, s > 0;
- (vii) $\mu(|X|^{\alpha};t) = \mu(X;t)^{\alpha}$ for all $\alpha > 0$ and t > 0;
- (viii) $X_j \xrightarrow{\tau} X$ if and only if $\mu(X_j X; t) \to 0$ for every t > 0;
- (ix) if $A, Z \in \mathcal{M}$, then $\mu(AYZ; t) \leq ||A|| \mu(Y; t) ||Z||$ for all t > 0.

3. TOPOLOGIES OF LOCAL CONVERGENCE IN MEASURE ON $S(\mathcal{M}, \tau)$

The topology t_{τ} of convergence in measure can be localized as follows. For $\varepsilon, \delta > 0$ and $P \in \mathcal{M}_{\tau}^{\mathrm{pr}}$ we define the sets

$$\mathcal{V}(\varepsilon,\delta,P) = \left\{ X \in S(\mathcal{M},\tau) \colon \exists Q \in \mathcal{M}^{\mathrm{pr}} \left(Q \leq P, \|XQ\| \leq \varepsilon, \ \tau(P-Q) \leq \delta \right) \right\},\\ \mathcal{W}(\varepsilon,\delta,P) = \left\{ X \in S(\mathcal{M},\tau) \colon \exists Q \in \mathcal{M}^{\mathrm{pr}} \left(Q \leq P, \|QXQ\| \leq \varepsilon, \ \tau(P-Q) \leq \delta \right) \right\}.$$

The space $S(\mathcal{M},\tau)$ becomes a topological vector space with respect to the topology $t_{\tau 1}$ of τ -local convergence in measure, with a basis of neighborhoods of zero given by the family $\Theta = \{\mathcal{V}(\varepsilon, \delta, P)\}_{\varepsilon,\delta>0, P \in \mathcal{M}_{\tau}^{\mathrm{pr}}}$, as well as with respect to the topology $t_{w\tau 1}$ of weak τ -local convergence in measure, with a basis of neighborhoods of zero given by the family $\Theta = \{\mathcal{W}(\varepsilon, \delta, P)\}_{\varepsilon,\delta>0, P \in \mathcal{M}_{\tau}^{\mathrm{pr}}}$, we will write $X_i \xrightarrow{\mathsf{Tl}} X$ and $X_i \xrightarrow{\mathsf{w\tau l}} X$ to denote the $t_{\tau 1}$ - and $t_{\mathsf{w\tau l}}$ -convergence, respectively. Using the standard technique of reducing von Neumann algebras, one can show (see also [11, 16]) that $X_i \xrightarrow{\mathsf{Tl}} X$ if and only if $X_i P \xrightarrow{\tau} XP$ for all $P \in \mathcal{M}_{\tau}^{\mathrm{pr}}$ (cf. [8, p. 114]), and that $X_i \xrightarrow{\mathsf{w\tau l}} X$ if and only if $PX_i P \xrightarrow{\tau} PXP$ for all $P \in \mathcal{M}_{\tau}^{\mathrm{pr}}$ (cf. [8, p. 114]). It is clear that $t_{w\tau 1} \leq t_{\tau 1} \leq t_{\tau}$ and the $t_{w\tau 1}$ -convergence coincides with the convergence in measure with respect to $\langle S(P\mathcal{M}P) = PS(\mathcal{M}, \tau)P, t_{\tau_P} \rangle$ for all $P \in \mathcal{M}_{\tau}^{\mathrm{pr}}$, where $\tau_P(X) = \tau(PXP)$. The topologies $t_{\tau 1}$ and $t_{w\tau 1}$ can also be defined in terms of nonincreasing rearrangements. The family $\widetilde{\Theta} = \{\widetilde{\mathcal{V}}(\varepsilon, \delta, P)\}_{\varepsilon,\delta>0, P \in \mathcal{M}_{\tau}^{\mathrm{pr}}}$ with $\widetilde{\mathcal{V}}(\varepsilon, \delta, P) = \{X \in S(\mathcal{M}, \tau): \mu(XP; \delta) < \varepsilon\}$ also defines a basis of neighborhoods of zero for $t_{\tau 1}$. If $\tau(I) < \infty$, then $t_{\tau} = t_{\tau 1} = t_{w\tau 1}$; note that t_{τ} is the minimal metrizable topology consistent with the ring structure in $S(\mathcal{M}, \tau)$ (see [2]).

If \mathcal{M} is the *-algebra $\mathcal{B}(\mathcal{H})$ of all bounded linear operators on \mathcal{H} and $\tau = \text{tr}$ is the canonical trace, then $S(\mathcal{M}, \tau)$ and $S_0(\mathcal{M}, \tau)$ coincide with $\mathcal{B}(\mathcal{H})$ and with the ideal $\mathfrak{S}_{\infty}(\mathcal{H})$ of compact operators on \mathcal{H} , respectively. The topology t_{τ} coincides with the norm topology generated by the norm $\|\cdot\|$, and $t_{\tau 1}$ and $t_{w\tau 1}$ coincide with the topologies of strong and weak operator convergence, respectively. We have $\mu(X;t) = \sum_{n=1}^{\infty} s_n(X)\chi_{[n-1,n]}(t), t > 0$, where $\{s_n(X)\}_{n=1}^{\infty}$ is the sequence of *s*-numbers of a completely continuous operator X and χ_A is the indicator of a set $A \subset \mathbb{R}$.

If \mathcal{M} is abelian (i.e., commutative), then $\mathcal{M} \simeq L^{\infty}(\Omega, \Sigma, \nu)$ and $\tau(f) = \int_{\Omega} f \, d\nu$, where (Ω, Σ, ν) is a localizable measure space, and the algebra $S(\mathcal{M}, \tau)$ coincides with the algebra of all measurable complex functions f on (Ω, Σ, ν) that are bounded everywhere except for sets of finite measure. In this case, the topology t_{τ} is the ordinary topology of convergence in measure, and $t_{\tau l} = t_{w\tau l}$ coincide with the well-known topology of convergence in measure on sets of finite measure.

4. ON THE CONTINUITY OF OPERATOR FUNCTIONS

Lemma 4.1 [1, Theorem 1, part 1]. Let a net $\{A_{\alpha}\} \subset S(\mathcal{M}, \tau)$ converge in the topology $t_{\tau 1}$ to an operator $A \in S(\mathcal{M}, \tau)$. Then $A_{\alpha}B \xrightarrow{\tau 1} AB$ for any $B \in S(\mathcal{M}, \tau)$.

Using the definitions of $t_{\tau l}$ - and $t_{w\tau l}$ -convergence and the t_{τ} -continuity of the involution and product in the algebra $S(\mathcal{M}, \tau)$, we easily obtain the following.

Proposition 4.2. If $A, A_{\alpha} \in S(\mathcal{M}, \tau)$ and $A_{\alpha} \xrightarrow{\tau l} A$, then $|A_{\alpha}|^2 \xrightarrow{w\tau l} |A|^2$.

Note that by Lemma 3.1(i) in [3] the map $A \mapsto |A|$ $(A \in S(\mathcal{M}, \tau))$ is $t_{\tau l}$ -continuous at the point A = 0.

Corollary 4.3. If operators $A, A_{\alpha} \in \mathcal{M}$ are partial isometries and $A_{\alpha} \xrightarrow{\tau l} A$, then $|A_{\alpha}| \xrightarrow{\tau l} |A|$.

Proof. Since $|A_{\alpha}|, |A| \in \mathcal{M}^{\mathrm{pr}}$, we have $|A_{\alpha}| = |A_{\alpha}|^2 \xrightarrow{\mathrm{wtl}} |A|^2 = |A|$, i.e., $|A_{\alpha}| \xrightarrow{\mathrm{wtl}} |A|$. Now by Lemma 3.7(i) in [3] we obtain $|A_{\alpha}| \xrightarrow{\tau \mathrm{l}} |A|$. \Box

Corollary 4.4. If $A_{\alpha} \in \mathcal{M}_r := \{X \in \mathcal{M} : ||X|| \leq r\}, r > 0, and A_{\alpha} \xrightarrow{\mathrm{wtl}} A \in S(\mathcal{M}, \tau), then A \in \mathcal{M}_r.$

Proof. Suppose that $A \notin \mathcal{M}_r$, i.e., $r < ||A|| \le +\infty$. Since $||A^*A|| = ||A||^2$, we have $r^2 < ||A^*A|| \le +\infty$. There exists a spectral orthoprojection Q of the operator A^*A and a number $a > r^2$ such that

$$A^*A \ge aQ. \tag{4.1}$$

Since the trace τ is semifinite, there exists a nonzero orthoprojection $P \in \mathcal{M}_{\tau}^{\mathrm{pr}}$ such that $P \leq Q$. Then from (4.1) we obtain $PA^*AP \geq aP$. Since $||A_{\alpha}^*A_{\alpha}|| \leq r^2$, we have $PA_{\alpha}^*A_{\alpha}P \leq r^2P$ and

$$PA^*AP - PA^*_{\alpha}A_{\alpha}P \ge (a - r^2)P.$$

Therefore, by Lemma 2.1(ii),

$$\mu (PA^*AP - PA^*_{\alpha}A_{\alpha}P; t) \ge (a - r^2)\mu(P; t) = (a - r^2)\chi_{(0,\tau(P)]}(t).$$

Consequently, from Lemma 2.1(viii) we have $PA^*_{\alpha}A_{\alpha}P \xrightarrow{\tau} PA^*AP$. Thus, we have arrived at a contradiction. \Box

Theorem 4.5. Let $A, A_n \in S(\mathcal{M}, \tau)$, $A_n \xrightarrow{w\tau l} A$ as $n \to \infty$, and the sequence $\{A_n\}$ be t_{τ} -bounded. Then $BA_n \xrightarrow{\tau l} BA$ as $n \to \infty$ for every operator $B \in S_0(\mathcal{M}, \tau)$ and $BA_nC \xrightarrow{\tau} BAC$ as $n \to \infty$ for every pair of operators $B, C \in S_0(\mathcal{M}, \tau)$.

Proof. Let $X, X_n \in S(\mathcal{M}, \tau)$. Then

$$X_n \xrightarrow{\mathrm{wrl}} X \text{ as } n \to \infty \quad \Leftrightarrow \quad PX_nQ \xrightarrow{\tau} PXQ \text{ as } n \to \infty \quad \forall P, Q \in \mathcal{M}_{\tau}^{\mathrm{pr}}$$

(see [1, p. 20]). Since $X_n \xrightarrow{w\tau l} X$ as $n \to \infty$ if and only if $X_n^* \xrightarrow{w\tau l} X^*$ as $n \to \infty$, we have $PA_n^* \xrightarrow{rl} PA^*$ as $n \to \infty$ for every $P \in \mathcal{M}_{\tau}^{\mathrm{pr}}$. Now, by [1, Theorem 2] we get

$$PA_n^*B^* \xrightarrow{\tau} PA^*B^*$$
 as $n \to \infty$ $\forall P \in \mathcal{M}_{\tau}^{\mathrm{pr}}, \quad \forall B \in S_0(\mathcal{M}, \tau)$ (4.2)

(recall that $B^* \in S_0(\mathcal{M}, \tau)$). Passing to the adjoint operators in (4.2) and taking into account the t_{τ} -continuity of the involution in $S(\mathcal{M}, \tau)$, we have $BA_nP \xrightarrow{\tau} BAP$ as $n \to \infty$. Since the orthoprojection $P \in \mathcal{M}_{\tau}^{\mathrm{pr}}$ is arbitrary, we obtain $BA_n \xrightarrow{\tau 1} BA$ as $n \to \infty$. Applying [1, Theorem 2] once again, we conclude that $BA_nC \xrightarrow{\tau} BAC$ as $n \to \infty$ for every pair of operators $B, C \in S_0(\mathcal{M}, \tau)$. \Box

Corollary 4.6. Let $A, A_n \in \mathcal{B}(\mathcal{H}), A_n \to A$ as $n \to \infty$ in the weak operator topology, and the sequence $\{A_n\}$ be $\|\cdot\|$ -bounded. Then $BA_n \to BA$ as $n \to \infty$ in the strong operator topology for every operator $B \in \mathfrak{S}_{\infty}(\mathcal{H})$, and $\|B(A_n - A)C\| \to 0$ as $n \to \infty$ for every pair of operators $B, C \in \mathfrak{S}_{\infty}(\mathcal{H})$.

Example 4.7. The condition that the sequence $\{A_n\}$ is t_{τ} -bounded is essential in Theorem 4.5. In the abelian von Neumann algebra $\mathcal{M} \simeq L^{\infty}(\mathbb{R}^+, d\nu)$ with linear Lebesgue measure ν , consider the faithful normal semifinite trace $\tau(f) = \int_{\mathbb{R}^+} f \, d\nu$ and set

$$f_n = n\chi_{[n,2n]}, \qquad n \in \mathbb{N}.$$

Then $f_n \xrightarrow{\tau 1} 0$ as $n \to \infty$ and for τ -compact g and h, g = h, given by the function $\min\{1, x^{-1/2}\}$, $x \in \mathbb{R}^+$, we have $\mu(gf_nh; t) \ge \chi_{(0,n]}(t)/2 \not\to 0$ as $n \to \infty$ for every t > 0. Therefore, $gf_nh \xrightarrow{\tau} 0$ as $n \to \infty$ by Lemma 2.1(viii).

Theorem 4.8. If $A, A_{\alpha} \in S(\mathcal{M}, \tau)^{\text{nor}}$ and $A_{\alpha} \xrightarrow{\tau 1} A$, then $A_{\alpha}^* \xrightarrow{\tau 1} A^*$.

Proof. Step 1. We have $PA^*_{\alpha} \xrightarrow{\tau} PA^*$ for every $P \in \mathcal{M}^{\mathrm{pr}}_{\tau}$ by the t_{τ} -continuity of the involution in $S(\mathcal{M}, \tau)$. Therefore, by the t_{τ} -continuity of the product in $S(\mathcal{M}, \tau)$, we obtain

$$PA_{\alpha} \cdot A_{\alpha}^* P = PA_{\alpha}^* \cdot A_{\alpha} P \xrightarrow{\tau} PA^* \cdot AP = PA \cdot A^* P$$

for every $P \in \mathcal{M}_{\tau}^{\mathrm{pr}}$. Thus, $\mu(PA_{\alpha}A_{\alpha}^*P - PAA^*P; t) \to 0$ for every t > 0 by Lemma 2.1(viii).

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 324 2024

Step 2. For every $P \in \mathcal{M}_{\tau}^{\mathrm{pr}}$ and t > 0 we estimate

$$\mu (A_{\alpha}^{*}P - A^{*}P; t)^{2} = \mu (|A_{\alpha}^{*}P - A^{*}P|; t)^{2} = \mu (|A_{\alpha}^{*}P - A^{*}P|^{2}; t)$$

$$= \mu ((PA_{\alpha} - PA)(A_{\alpha}^{*}P - A^{*}P); t)$$

$$= \mu (PA_{\alpha}A_{\alpha}^{*}P + PAA^{*}P - PA_{\alpha}A^{*}P - PAA_{\alpha}^{*}P; t)$$

$$= \mu (PA_{\alpha}^{*}A_{\alpha}P + PA^{*}AP - 2\operatorname{Re}(PA_{\alpha}A^{*}P); t)$$

$$= \mu (PA_{\alpha}^{*}A_{\alpha}P + PA^{*}AP - 2\operatorname{Re}(PA^{*}AP) - 2\operatorname{Re}(PA_{\alpha}A^{*}P - PA^{*}AP); t)$$

$$= \mu (PA_{\alpha}^{*}A_{\alpha}P - PA^{*}AP - 2\operatorname{Re}(PA_{\alpha}A^{*}P - PA^{*}AP); t)$$

$$\leq \mu (PA_{\alpha}^{*}A_{\alpha}P - PA^{*}AP; \frac{t}{2}) + 2\mu (\operatorname{Re}(PA_{\alpha}A^{*}P - PA^{*}AP); \frac{t}{2})$$

$$(4.3)$$

by Lemma 2.1(vi), (vii). According to step 1 we have

$$\mu \left(PA_{\alpha}^*A_{\alpha}P - PA^*AP; \frac{t}{2} \right) \to 0$$

for every $P \in \mathcal{M}_{\tau}^{\mathrm{pr}}$ and t > 0. Let us estimate the second term in the last inequality in (4.3):

$$2\mu \Big(\operatorname{Re} \big(PA_{\alpha}A^*P - PA^*AP \big); \frac{t}{2} \Big) = 2\mu \Big(P \big(\operatorname{Re} (A_{\alpha}A^* - A^*A)P \big); \frac{t}{2} \Big) \\ = \mu \Big(P(A_{\alpha} - A)A^*P + PA(A_{\alpha}^* - A^*)P; \frac{t}{2} \Big) \\ \leq \mu \Big(P(A_{\alpha} - A)A^*P; \frac{t}{4} \Big) + \mu \Big(PA(A_{\alpha}^* - A^*)P; \frac{t}{4} \Big) \\ \leq \|P\| \, \mu \Big((A_{\alpha} - A)A^*P; \frac{t}{4} \Big) + \|P\| \, \mu \Big(PA(A_{\alpha}^* - A^*); \frac{t}{4} \Big) \\ = \mu \Big((A_{\alpha} - A)A^*P; \frac{t}{4} \Big) + \mu \Big((PA(A_{\alpha}^* - A^*))^*; \frac{t}{4} \Big) \\ = 2\mu \Big((A_{\alpha} - A)A^*P; \frac{t}{4} \Big) \to 0$$

by Lemma 2.1(vi), (ix), (viii) and the t_{τ} -continuity of multiplication by the operator A^* on the left (see Lemma 4.1). Thus, $\mu(A^*_{\alpha}P - A^*P; t) \to 0$ for arbitrary t > 0 and $P \in \mathcal{M}^{\mathrm{pr}}_{\tau}$. This completes the proof of the theorem. \Box

For an operator $A \in S(\mathcal{M}, \tau)$, let $R_{\lambda}(A)$ denote its resolvent.

Lemma 4.9. If a net $\{A_{\alpha}\}$ in the *-algebra $S(\mathcal{M}, \tau)^{\mathrm{h}}$ converges to A in the topology $t_{\tau \mathrm{l}}$, then $R_{\lambda}(A_{\alpha}) \xrightarrow{\tau \mathrm{l}} R_{\lambda}(A)$ for every $\lambda \in \mathbb{C} \setminus \mathbb{R}$.

Proof. As is well known,

$$R_{\lambda}(A) - R_{\lambda}(A_{\alpha}) = R_{\lambda}(A_{\alpha})(A_{\alpha} - A)R_{\lambda}(A).$$

Take a $Q \in \mathcal{M}_{\tau}^{\mathrm{pr}}$. Since $A_{\alpha} - A \xrightarrow{\tau 1} 0$, we have $(A_{\alpha} - A)R_{\lambda}(A) \xrightarrow{\tau 1} 0$ by Lemma 4.1. Therefore, $(A_{\alpha} - A)R_{\lambda}(A)Q \xrightarrow{\tau} 0$, i.e., $\mu((A_{\alpha} - A)R_{\lambda}(A)Q; s) \to 0$ for any s > 0. Now, using

$$\mu (R_{\lambda}(A_{\alpha})(A_{\alpha} - A)R_{\lambda}(A)Q;s) \leq ||R_{\lambda}(A_{\alpha})|| \mu ((A_{\alpha} - A)R_{\lambda}(A)Q;s)$$
$$\leq |\mathrm{Im}\,\lambda|^{-1}\mu ((A_{\alpha} - A)R_{\lambda}(A)Q;s),$$

we obtain $\mu(R_{\lambda}(A_{\alpha})(A_{\alpha} - A)R_{\lambda}(A)Q;s) \to 0.$ Thus, $(R_{\lambda}(A) - R_{\lambda}(A_{\alpha}))Q \xrightarrow{\tau} 0$ for every $Q \in \mathcal{M}_{\tau}^{\mathrm{pr}}$; i.e., $R_{\lambda}(A_{\alpha}) \xrightarrow{\tau l} R_{\lambda}(A).$

Lemma 4.10. Let f and g be two continuous functions from \mathbb{R} (or \mathbb{C}) to \mathbb{C} , and let g be bounded. If the operator functions f and g are t_{τ_1} -continuous on $S(\mathcal{M}, \tau)^{\rm h}$ (on $S(\mathcal{M}, \tau)^{\rm nor}$), then the operator function fg is also t_{τ_1} -continuous on $S(\mathcal{M}, \tau)^{\rm h}$ (on $S(\mathcal{M}, \tau)^{\rm nor}$, respectively).

Proof. Let $A_{\alpha} \xrightarrow{\tau_1} A$. We can write

$$(gf)(A) - (gf)(A_{\alpha}) = (g(A) - g(A_{\alpha}))f(A) + g(A_{\alpha})(f(A) - f(A_{\alpha})).$$

Lemma 4.1 implies that $(g(A) - g(A_{\alpha}))f(A) \xrightarrow{\tau l} 0$. Using the estimate

$$\mu(g(A_{\alpha})(f(A) - f(A_{\alpha}))Q; s) \le |g| \,\mu((f(A) - f(A_{\alpha}))Q; s)$$

for $Q \in \mathcal{M}_{\tau}^{\mathrm{pr}}$, we find that $g(A_{\alpha})(f(A) - f(A_{\alpha})) \xrightarrow{\tau \mathbf{l}} 0$. Thus, the operator function gf is $t_{\tau \mathbf{l}}$ -continuous. \Box

Lemma 4.11. Let a sequence (f_n) of continuous functions acting from \mathbb{R} (or \mathbb{C}) to \mathbb{C} converge to a function f uniformly on \mathbb{R} (on \mathbb{C} , respectively). If the operator functions f_n are $t_{\tau 1}$ -continuous on $S(\mathcal{M}, \tau)^{\rm h}$ (on $S(\mathcal{M}, \tau)^{\rm nor}$), then the operator function f is also $t_{\tau 1}$ -continuous on $S(\mathcal{M}, \tau)^{\rm h}$ (on $S(\mathcal{M}, \tau)^{\rm nor}$, respectively).

Proof. We will give a proof for functions on \mathbb{C} .

Take an $\varepsilon > 0$ and choose n_0 such that $\sup_{x \in \mathbb{C}} |f(x) - f_{n_0}(x)| \leq \varepsilon/3$. Let $A_{\alpha} \xrightarrow{\tau_1} A$ and $Q \in \mathcal{M}_{\tau}^{\mathrm{pr}}$. For s > 0, by Lemma 2.1(iv)–(vi), (ix) we have

$$\mu ((f(A) - f(A_{\alpha}))Q;s)$$

$$= \mu ((f(A) - f_{n_{0}}(A))Q + (f_{n_{0}}(A) - f_{n_{0}}(A_{\alpha}))Q + (f_{n_{0}}(A_{\alpha}) - f(A_{\alpha}))Q;s)$$

$$\leq \mu ((f - f_{n_{0}})(A)Q;\frac{s}{3}) + \mu ((f_{n_{0}}(A) - f_{n_{0}}(A_{\alpha}))Q;\frac{s}{3}) + \mu ((f - f_{n_{0}})(A_{\alpha})Q;\frac{s}{3})$$

$$\leq \|(f - f_{n_{0}})(A)Q\| + \mu ((f_{n_{0}}(A) - f_{n_{0}}(A_{\alpha}))Q;\frac{s}{3}) + \|(f - f_{n_{0}})(A_{\alpha})Q\|$$

$$\leq \frac{2\varepsilon}{3} + \mu ((f_{n_{0}}(A) - f_{n_{0}}(A_{\alpha}))Q;\frac{s}{3}).$$

Since the operator function f_{n_0} is $t_{\tau 1}$ -continuous, the second term in the last expression does not exceed $\varepsilon/3$ for sufficiently large values of α . \Box

Proposition 4.12. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function on \mathbb{R} with f(x) = O(x) as $x \to \infty$. Then the operator function f is $t_{\tau l}$ -continuous on $S(\mathcal{M}, \tau)^{h}$.

Proof. Let us first consider the case where $f(x) \to 0$ as $x \to \infty$. If p(x) and q(x) are real polynomials such that the degree of p(x) is less than the degree of q(x) and q(x) has no real roots, then the rational function r(x) = p(x)/q(x) can be represented as a finite linear combination of functions of the form $(x - \lambda)^{-n}$ ($\lambda \in \mathbb{C} \setminus \mathbb{R}$, $n \in \mathbb{N}$). By Lemmas 4.9 and 4.10, we conclude that the operator function r is $t_{\tau 1}$ -continuous. By Stone's theorem, f(x) can be uniformly approximated on \mathbb{R} by a sequence of rational functions r(x) of the form considered above, and then Lemma 4.11 implies the $t_{\tau 1}$ -continuity of the operator function f.

Now we turn to the general case. Let us represent f in the form

$$f(x) = f(x)\frac{1}{1+x^2} + f(x)\frac{x^2}{1+x^2}.$$

Denote the first term by $f_1(x)$ and the second by $f_2(x)$. Then $f_1(x) \to 0$ as $x \to \infty$; therefore, the operator function f_1 is $t_{\tau 1}$ -continuous on $S(\mathcal{M}, \tau)^{\rm h}$. Successive application of Lemma 4.10 to the functions $xf_1(x)$ and $x(xf_1(x))$ shows that the operator function f_2 is $t_{\tau 1}$ -continuous on $S(\mathcal{M}, \tau)^{\rm h}$. \Box

Lemma 4.13. The maps $A \mapsto \operatorname{Re} A$ and $A \mapsto \operatorname{Im} A$ are $t_{\tau l}$ -continuous on $S(\mathcal{M}, \tau)^{\operatorname{nor}}$.

Proof. This follows from Theorem 4.8. \Box

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 324 2024

Lemma 4.14. The map $A \mapsto I + |\operatorname{Re} A| + |\operatorname{Im} A|$ is $t_{\tau l}$ -continuous on $S(\mathcal{M}, \tau)^{\operatorname{nor}}$.

Proof. Apply Lemma 4.13 and Proposition 4.12. \Box

Proposition 4.15. Let a continuous function $f: \mathbb{C} \to \mathbb{C}$ be O(|z|) as $z \to \infty$. Then the corresponding operator function f is $t_{\tau 1}$ -continuous on $S(\mathcal{M}, \tau)^{\text{nor}}$.

Proof. Let \mathcal{A} be the algebra of \mathbb{R} -valued functions on \mathbb{C} generated by functions of the form $f(\operatorname{Re} z)$ and $g(\operatorname{Im} z)$ for continuous \mathbb{R} -valued functions f(x) and g(x) on \mathbb{R} that tend to zero as $x \to \infty$. By Stone's theorem, the algebra \mathcal{A} is uniformly dense in the algebra $\overline{\mathcal{A}}$ of all continuous functions from \mathbb{C} to \mathbb{R} that tend to zero at infinity. From Lemma 4.13, Proposition 4.12, and Lemma 4.10, it follows that the operator functions corresponding to the functions in \mathcal{A} are $t_{\tau l}$ -continuous, and by Lemma 4.11 the same holds for the functions in $\overline{\mathcal{A}}$.

Now let a continuous function $f: \mathbb{C} \to \mathbb{R}$ be O(|z|) as $z \to \infty$. We can write

$$f(z) = (1 + |\operatorname{Re} z| + |\operatorname{Im} z|)^2 \frac{f(z)}{(1 + |\operatorname{Re} z| + |\operatorname{Im} z|)^2}$$

and apply Lemmas 4.14 and 4.10 twice.

Finally, let a continuous function $f: \mathbb{C} \to \mathbb{C}$ be O(|z|) as $z \to \infty$. Then the functions $\operatorname{Re} f(z)$ and $\operatorname{Im} f(z)$ act continuously from \mathbb{C} to \mathbb{R} and are O(|z|) as $z \to \infty$. The corresponding operator functions $\operatorname{Re} f(A)$ and $\operatorname{Im} f(A)$ are $t_{\tau l}$ -continuous on $S(\mathcal{M}, \tau)^{\operatorname{nor}}$, and hence the operator function $f(A) = \operatorname{Re} f(A) + \operatorname{i} \operatorname{Im} f(A)$ is $t_{\tau l}$ -continuous on $S(\mathcal{M}, \tau)^{\operatorname{nor}}$. \Box

Corollary 4.16. The map $A \mapsto |A|$ is $t_{\tau 1}$ -continuous on $S(\mathcal{M}, \tau)^{\text{nor}}$.

The following result is a corollary to [3, Lemma 3.4].

Lemma 4.17. Let $\{A_{\alpha}\}$ and $\{B_{\alpha}\}$ be two nets in \mathcal{M}^+ such that $\{A_{\alpha}\}$ is uniformly bounded, $A_{\alpha} \xrightarrow{\tau l} 0$, and $B_{\alpha} \leq A_{\alpha}$ for all α . Then $B_{\alpha} \xrightarrow{\tau l} 0$.

Next, for $\Omega \subset \mathbb{C}$ we set $S(\mathcal{M}, \tau)^{\text{nor}}_{\Omega} = \{A \in S(\mathcal{M}, \tau)^{\text{nor}} \colon \text{Sp}(A) \subset \Omega\}$, where Sp(A) is the spectrum of the operator A.

Theorem 4.18. Let $\Omega \subset \mathbb{C}$ and $A \in S(\mathcal{M}, \tau)_{\Omega}^{\text{nor}}$. Let $f: \Omega \to \mathbb{C}$ be a function such that its restriction to any bounded subset of Ω that is closed in \mathbb{C} is Borel measurable, $\sup\{|f(z)|/(1+|z|): z \in \Omega\} < \infty$, and f is continuous at every point in $\operatorname{Sp}(A)$. If a net $\{A_{\alpha}\}$ of operators in $S(\mathcal{M}, \tau)_{\Omega}^{\text{nor}}$ converges to A in the topology t_{τ_1} , then $f(A_{\alpha}) \xrightarrow{\tau_1} f(A)$.

Proof. It suffices to prove the theorem for a real-valued function f, and we will do this in two stages.

1. Suppose that f is bounded on Ω , say $|f| \leq 1$, and is continuous at all points in Sp(A). By the Tietze–Urysohn theorem, there exists a continuous function $g: \mathbb{C} \to [-1,1]$ that coincides with f on Sp(A). By Proposition 4.15,

$$g(A_{\alpha}) \xrightarrow{\tau_1} g(A) = f(A).$$

According to [20, Lemma 2], there exists a bounded continuous function h on Ω such that h = 0 on $\operatorname{Sp}(A)$ and $|f - g| \leq h$ on Ω .

1a. Now assume additionally that $\Omega = \mathbb{C}$. Then $h(A_{\alpha}) \xrightarrow{\tau} h(A) = 0$ by Proposition 4.15. Since $0 \leq (f - g + h)(A_{\alpha}) \leq 2h(A_{\alpha})$, we have $(f - g + h)(A_{\alpha}) \xrightarrow{\tau l} 0$ by Lemma 4.17. Hence,

$$f(A_{\alpha}) = (f - g + h)(A_{\alpha}) + g(A_{\alpha}) - h(A_{\alpha}) \xrightarrow{\tau_{1}} f(A).$$

1b. If $\Omega \neq \mathbb{C}$, then according to [20, Lemma 1] we construct a bounded function $k \colon \mathbb{C} \to \mathbb{R}$ that extends h, is continuous at all points in Ω , and is upper semicontinuous on \mathbb{C} (so it is Borel

measurable). Using case 1a, we obtain

$$h(A_{\alpha}) = k(A_{\alpha}) \xrightarrow{\tau_1} k(A) = h(A) = 0$$

and it remains to repeat verbatim the last two sentences of the previous paragraph.

2. In the general case, we set g(z) = f(z)/(1+|z|). Then $g(A_{\alpha}) \xrightarrow{\tau l} g(A)$ by the above and $I + |A_{\alpha}| \xrightarrow{\tau l} I + |A|$ by Proposition 4.15. Hence by [1, Theorem 3] we obtain

$$f(A_{\alpha}) = g(A_{\alpha})(I + |A_{\alpha}|) \xrightarrow{\tau \mathbf{l}} g(A)(I + |A|) = f(A). \quad \Box$$

Corollary 4.19. Let $\Omega \subset \mathbb{C}$ and $f: \Omega \to \mathbb{C}$ be a continuous function on Ω such that $\sup\{|f(z)|/(1+|z|): z \in \Omega\} < \infty$. Then the corresponding operator function is continuous on $S(\mathcal{M}, \tau)_{\Omega}^{\text{nor}}$ in the topology $t_{\tau 1}$.

FUNDING

This work was supported within the Strategic Academic Leadership Program of the Kazan Federal University "Priority-2030."

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

REFERENCES

- A. M. Bikchentaev, "The continuity of multiplication for two topologies associated with a semifinite trace on von Neumann algebra," Lobachevskii J. Math. 14, 17–24 (2004).
- 2. A. M. Bikchentaev, "Minimality of convergence in measure topologies on finite von Neumann algebras," Math. Notes **75** (3), 315–321 (2004) [transl. from Mat. Zametki **75** (3), 342–349 (2004)]. €
- A. M. Bikchentaev, "Local convergence in measure on semifinite von Neumann algebras," Proc. Steklov Inst. Math. 255, 35–48 (2006) [transl. from Tr. Mat. Inst. Steklova 255, 41–54 (2006)].
- 4. A. M. Bikchentaev, "Local convergence in measure on semifinite von Neumann algebras. II," Math. Notes 82 (5–6), 703–707 (2007) [transl. from Mat. Zametki 82 (5), 783–786 (2007)]. €
- 5. A. Bikchentaev and F. Sukochev, "When weak and local measure convergence implies norm convergence," J. Math. Anal. Appl. 473 (2), 1414–1431 (2019). €
- 6. A. M. Bikchentaev, "Convergence in measure and τ-compactness of τ-measurable operators, affiliated with a semifinite von Neumann algebra," Russ. Math. 64 (5), 79–82 (2020) [transl. from Izv. Vyssh. Uchebn. Zaved., Mat., No. 5, 89–93 (2020)]. ⁶
- A. M. Bikchentaev, "The topologies of local convergence in measure on the algebras of measurable operators," Sib. Math. J. 64 (1), 13–21 (2023) [transl. from Sib. Mat. Zh. 64 (1), 17–27 (2023)].
- 8. L. J. Ciach, "Some remarks on the convergence in measure and on a dominated sequence of operators measurable with respect to a semifinite von Neumann algebra," Colloq. Math. 55 (1), 109–121 (1988).
- 9. E. B. Davies, "A generalisation of Kaplansky's theorem," J. London Math. Soc., Ser. 2, 4 (3), 435–436 (1972). 🚭
- P. G. Dodds, T. K.-Y. Dodds, and B. de Pagter, "Noncommutative Köthe duality," Trans. Am. Math. Soc. 339 (2), 717–750 (1993).
- 11. P. G. Dodds, T. K. Dodds, F. A. Sukochev, and O. Ye. Tikhonov, "A non-commutative Yosida-Hewitt theorem and convex sets of measurable operators closed locally in measure," Positivity 9 (3), 457–484 (2005).
- 12. T. Fack and H. Kosaki, "Generalized s-numbers of τ -measurable operators," Pac. J. Math. **123** (2), 269–300 (1986).
- 13. R. V. Kadison, "Strong continuity of operator functions," Pac. J. Math. 26 (1), 121–129 (1968). 😳
- M. A. Muratov and V. I. Chilin, "Topological algebras of measurable and locally measurable operators," J. Math. Sci. 239 (5), 654–705 (2019) [transl. from Sovrem. Mat., Fundam. Napr. 61, 115–163 (2016)].
- G. Sh. Skvortsova, "Weak sequential completeness of factor spaces of the space of integrable operators," Russ. Math. 46 (9), 68–71 (2002) [transl. from Izv. Vyssh. Uchebn. Zaved., Mat., No. 9, 71–74 (2002)]. Mathematical completeness of factor spaces of the space of integrable operators," Russ.
- G. Sh. Skvortsova and O. E. Tikhonov, "Convex sets in noncommutative L₁-spaces, closed in the topology of local convergence in measure," Russ. Math. 42 (8), 46–52 (1998) [transl. from Izv. Vyssh. Uchebn. Zaved., Mat., No. 8, 48–55 (1998)]. Maket

A. M. BIKCHENTAEV, O. E. TIKHONOV

- 17. M. Takesaki, *Theory of Operator Algebras. I* (Springer, Berlin, 2002), Encycl. Math. Sci. **124**: Operator Algebras and Non-commutative Geometry **5**.
- 18. M. Takesaki, *Theory of Operator Algebras. II* (Springer, Berlin, 2003), Encycl. Math. Sci. **125**: Operator Algebras and Non-commutative Geometry **6**.
- O. E. Tikhonov, "Continuity of operator functions in topologies connected to a trace on a von Neumann algebra," Sov. Math. **31** (1), 110–114 (1987) [transl. from Izv. Vyssh. Uchebn. Zaved., Mat., No. 1, 77–79 (1987)]. Mat.kt
- 20. O. E. Tikhonov, "On convergence of functions of normal operators in strong operator topology," Funct. Anal. Appl. 41 (3), 245–246 (2007) [transl. from Funkts. Anal. Prilozh. 41 (3), 93–95 (2007)]. €

Translated by K. Shubik

Publisher's note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.