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Abstract—Let a von Neumann algebra M of operators act on a Hilbert space H, and let τ
be a faithful normal semifinite trace on M. Let tτ l be the topology of τ -local convergence in
measure on the *-algebra S(M, τ) of all τ -measurable operators. We prove the tτ l-continuity
of the involution on the set of all normal operators in S(M, τ), investigate the tτ l-continuity of
operator functions on S(M, τ), and show that the map A �→ |A| is tτ l-continuous on the set of
all partial isometries in M.
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1. INTRODUCTION

Let a von Neumann algebra M of operators act on a Hilbert space H, and let τ be a faithful
normal semifinite trace on M. This paper continues the research initiated in [1, 3–8, 10, 11, 15, 16]
into the properties of the topologies tτ l and twτ l of τ -local and weakly τ -local convergence in measure,
respectively, on the *-algebra S(M, τ) of all τ -measurable operators. We prove the tτ l-continuity of
the involution on the subset of all normal operators in S(M, τ) (Theorem 4.8), study the tτ l-conti-
nuity of operator functions on S(M, τ) (Theorem 4.18) using some ideas and methods from [9, 13],
and show that the map A �→ |A| is tτ l-continuous on the subset of all partial isometries in the
algebra M (Corollary 4.3).

Note that the continuity of operator functions in the topology tτ of convergence in measure
on S(M, τ) was studied by the second author in [19], and on algebras of locally measurable operators,
by M. A. Muratov and V. I. Chilin in [14]. Some of our results are new even for the *-algebra
M = B(H) of all bounded linear operators on H equipped with the canonical trace τ = tr.

2. NOTATION AND DEFINITIONS

Let M be a von Neumann algebra of operators in a Hilbert space H, Mpr the lattice of ortho-
projections (P = P 2 = P ∗) in M, I the identity in M, P⊥ = I − P for P ∈ Mpr, and M+ the
cone of positive elements in M.

A map ϕ : M+ → [0,+∞] is called a trace if ϕ(X + Y ) = ϕ(X) + ϕ(Y ) and ϕ(λX) = λϕ(X)
for all X,Y ∈ M+ and λ ≥ 0 (with 0 · (+∞) ≡ 0) and in addition ϕ(Z∗Z) = ϕ(ZZ∗) for all Z ∈ M.
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A trace ϕ is said to be

• faithful if ϕ(X) > 0 for all X ∈ M+, X �= 0;
• semifinite if ϕ(X) = sup{ϕ(Y ) : Y ∈ M+, Y ≤ X, ϕ(Y ) < +∞} for all X ∈ M+;
• normal if whenever Xi ↗ X (Xi,X ∈ M+), one has ϕ(X) = supϕ(Xi)

(see [17, Ch. V, § 2]).
An operator on H (not necessarily bounded or densely defined) is said to be affiliated with the

von Neumann algebra M if it commutes with every unitary operator in the commutant M′ of M.
In what follows, τ is a faithful normal semifinite trace on M and Mpr

τ = {P ∈ Mpr : τ(P ) < ∞}.
A closed densely defined operator X affiliated with M, with domain D(X) in H, is said to be

τ -measurable if for every ε > 0 there exists a P ∈ Mpr such that PH ⊂ D(X) and τ(P⊥) < ε. The
set S(M, τ) of all τ -measurable operators is a *-algebra with respect to taking the adjoint operator,
multiplication by scalars, and the operations of strong addition and multiplication obtained by
closing the ordinary operations [18, Ch. IX]. Let S(M, τ)nor be the set of all normal (A∗A = AA∗)
operators in S(M, τ). For a family L ⊂ S(M, τ) we denote by L+ and Lh its positive and Hermitian
parts, respectively. The partial order in S(M, τ)h generated by the proper cone S(M, τ)+ will be
denoted by ≤. If X ∈ S(M, τ) and X = U |X| is the polar decomposition of X, then U ∈ M and
|X| =

√
X∗X ∈ S(M, τ)+. For operators A ∈ S(M, τ) we will also use the notation

ReA =
1

2
(A+A∗) and ImA =

1

2i
(A−A∗).

The *-algebra S(M, τ) is equipped with the topology tτ of convergence in measure [18, Ch. IX,
§ 2], for which a fundamental system of neighborhoods of zero is formed by the sets

U(ε, δ) =
{
X ∈ S(M, τ) : ∃Q ∈ Mpr (‖XQ‖ ≤ ε and τ(Q⊥) ≤ δ)

}
, ε > 0, δ > 0.

The algebra 〈S(M, τ), tτ 〉 is known to be a complete metrizable topological *-algebra, and the
algebra M is dense in 〈S(M, τ), tτ 〉. To denote the convergence of a net {Xj}j∈J ⊂ S(M, τ) to
an operator X ∈ S(M, τ) in the topology tτ , we write Xj

τ−→ X; in this case {Xj}j∈J is said to
converge to X in measure τ .

Let μ(X; t) denote the singular value function of an operator X ∈ S(M, τ), i.e., the nonincreas-
ing right continuous function μ(X; ·) : (0,∞) → [0,∞) defined as

μ(X; t) = inf
{
‖XP‖ : P ∈ Mpr, τ(P⊥) ≤ t

}
, t > 0.

The set S0(M, τ) = {X ∈ S(M, τ) : limt→∞ μ(X; t) = 0} of τ -compact operators is an ideal in the
*-algebra S(M, τ). The topology tτ is also generated by the F -norm ρτ (X) = inft>0 max{t, μ(X; t)}
for X ∈ S(M, τ).

Lemma 2.1 [12]. Let X,Y,Xj ∈ S(M, τ), j ∈ J . Then the following assertions hold :

(i) μ(X; t) = μ(|X|; t) = μ(X∗; t) for all t > 0;

(ii) μ(X∗X; t) = μ(XX∗; t) for all t > 0;

(iii) if |X| ≤ |Y |, then μ(X; t) ≤ μ(Y ; t) for all t > 0;

(iv) if X ∈ M, then limt→+0 μ(X; t) = supt>0 μ(X; t) = ‖X‖;
(v) μ(XY ; t+ s) ≤ μ(X; t)μ(Y ; s) for all t, s > 0;

(vi) μ(X + Y ; t+ s) ≤ μ(X; t) + μ(Y ; s) for all t, s > 0;

(vii) μ(|X|α; t) = μ(X; t)α for all α > 0 and t > 0;

(viii) Xj
τ−→ X if and only if μ(Xj −X; t) → 0 for every t > 0;

(ix) if A,Z ∈ M, then μ(AY Z; t) ≤ ‖A‖μ(Y ; t)‖Z‖ for all t > 0.
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3. TOPOLOGIES OF LOCAL CONVERGENCE IN MEASURE ON S(M, τ)

The topology tτ of convergence in measure can be localized as follows. For ε, δ > 0 and P ∈ Mpr
τ

we define the sets

V(ε, δ, P ) =
{
X ∈ S(M, τ) : ∃Q ∈ Mpr (Q ≤ P, ‖XQ‖ ≤ ε, τ(P −Q) ≤ δ

)}
,

W(ε, δ, P ) =
{
X ∈ S(M, τ) : ∃Q ∈ Mpr (Q ≤ P, ‖QXQ‖ ≤ ε, τ(P −Q) ≤ δ

)}
.

The space S(M, τ) becomes a topological vector space with respect to the topology tτ l of τ -lo-
cal convergence in measure, with a basis of neighborhoods of zero given by the family Θ =
{V(ε, δ, P )}ε,δ>0, P∈Mpr

τ
, as well as with respect to the topology twτ l of weak τ -local convergence

in measure, with a basis of neighborhoods of zero given by the family Θ = {W(ε, δ, P )}ε,δ>0, P∈Mpr
τ

.
We will write Xi

τ l−→ X and Xi
wτ l−−→ X to denote the tτ l- and twτ l-convergence, respectively. Using

the standard technique of reducing von Neumann algebras, one can show (see also [11, 16]) that
Xi

τ l−→ X if and only if XiP
τ−→ XP for all P ∈ Mpr

τ (cf. [8, p. 114]), and that Xi
wτ l−−→ X if

and only if PXiP
τ−→ PXP for all P ∈ Mpr

τ (cf. [8, p. 114] and [10, p. 746]). It is clear that
twτ l ≤ tτ l ≤ tτ and the twτ l-convergence coincides with the convergence in measure with respect
to 〈S(PMP ) = PS(M, τ)P, tτP 〉 for all P ∈ Mpr

τ , where τP (X) = τ(PXP ). The topologies
tτ l and twτ l can also be defined in terms of nonincreasing rearrangements. The family Θ̃ =
{Ṽ(ε, δ, P )}ε,δ>0, P∈Mpr

τ
with Ṽ(ε, δ, P ) = {X ∈ S(M, τ) : μ(XP ; δ) < ε} also defines a basis of

neighborhoods of zero for tτ l. If τ(I) < ∞, then tτ = tτ l = twτ l; note that tτ is the minimal
metrizable topology consistent with the ring structure in S(M, τ) (see [2]).

If M is the *-algebra B(H) of all bounded linear operators on H and τ = tr is the canonical trace,
then S(M, τ) and S0(M, τ) coincide with B(H) and with the ideal S∞(H) of compact operators
on H, respectively. The topology tτ coincides with the norm topology generated by the norm ‖·‖,
and tτ l and twτ l coincide with the topologies of strong and weak operator convergence, respectively.
We have μ(X; t) =

∑∞
n=1 sn(X)χ[n−1,n)(t), t > 0, where {sn(X)}∞n=1 is the sequence of s-numbers

of a completely continuous operator X and χA is the indicator of a set A ⊂ R.
If M is abelian (i.e., commutative), then M � L∞(Ω,Σ, ν) and τ(f) =

∫
Ω f dν, where (Ω,Σ, ν)

is a localizable measure space, and the algebra S(M, τ) coincides with the algebra of all measurable
complex functions f on (Ω,Σ, ν) that are bounded everywhere except for sets of finite measure. In
this case, the topology tτ is the ordinary topology of convergence in measure, and tτ l = twτ l coincide
with the well-known topology of convergence in measure on sets of finite measure.

4. ON THE CONTINUITY OF OPERATOR FUNCTIONS

Lemma 4.1 [1, Theorem 1, part 1]. Let a net {Aα} ⊂ S(M, τ) converge in the topology tτ l
to an operator A ∈ S(M, τ). Then AαB

τ l−→ AB for any B ∈ S(M, τ).

Using the definitions of tτ l- and twτ l-convergence and the tτ -continuity of the involution and
product in the algebra S(M, τ), we easily obtain the following.

Proposition 4.2. If A,Aα ∈ S(M, τ) and Aα
τ l−→ A, then |Aα|2 wτ l−−→ |A|2.

Note that by Lemma 3.1(i) in [3] the map A �→ |A| (A ∈ S(M, τ)) is tτ l-continuous at the
point A = 0.

Corollary 4.3. If operators A,Aα ∈ M are partial isometries and Aα
τ l−→ A, then |Aα| τ l−→ |A|.

Proof. Since |Aα|, |A| ∈ Mpr, we have |Aα| = |Aα|2 wτ l−−→ |A|2 = |A|, i.e., |Aα| wτ l−−→ |A|. Now
by Lemma 3.7(i) in [3] we obtain |Aα| τ l−→ |A|. �

Corollary 4.4. If Aα ∈ Mr := {X ∈ M : ‖X‖ ≤ r}, r > 0, and Aα
wτ l−−→ A ∈ S(M, τ), then

A ∈ Mr.

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 324 2024



CONTINUITY OF OPERATOR FUNCTIONS 47

Proof. Suppose that A /∈ Mr, i.e., r < ‖A‖ ≤ +∞. Since ‖A∗A‖ = ‖A‖2, we have r2 <
‖A∗A‖ ≤ +∞. There exists a spectral orthoprojection Q of the operator A∗A and a number a > r2

such that
A∗A ≥ aQ. (4.1)

Since the trace τ is semifinite, there exists a nonzero orthoprojection P ∈ Mpr
τ such that P ≤ Q.

Then from (4.1) we obtain PA∗AP ≥ aP . Since ‖A∗
αAα‖ ≤ r2, we have PA∗

αAαP ≤ r2P and

PA∗AP − PA∗
αAαP ≥ (a− r2)P.

Therefore, by Lemma 2.1(ii),

μ
(
PA∗AP − PA∗

αAαP ; t
)
≥ (a− r2)μ(P ; t) = (a− r2)χ(0,τ(P )](t).

Consequently, from Lemma 2.1(viii) we have PA∗
αAαP �τ−→ PA∗AP . Thus, we have arrived at a

contradiction. �
Theorem 4.5. Let A,An ∈ S(M, τ), An

wτ l−−→ A as n → ∞, and the sequence {An} be
tτ -bounded. Then BAn

τ l−→ BA as n → ∞ for every operator B ∈ S0(M, τ) and BAnC
τ−→ BAC

as n → ∞ for every pair of operators B,C ∈ S0(M, τ).
Proof. Let X,Xn ∈ S(M, τ). Then

Xn
wτ l−−→ X as n → ∞ ⇔ PXnQ

τ−→ PXQ as n → ∞ ∀P,Q ∈ Mpr
τ

(see [1, p. 20]). Since Xn
wτ l−−→ X as n → ∞ if and only if X∗

n
wτ l−−→ X∗ as n → ∞, we have

PA∗
n

τ l−→ PA∗ as n → ∞ for every P ∈ Mpr
τ . Now, by [1, Theorem 2] we get

PA∗
nB

∗ τ−→ PA∗B∗ as n → ∞ ∀P ∈ Mpr
τ , ∀B ∈ S0(M, τ) (4.2)

(recall that B∗ ∈ S0(M, τ)). Passing to the adjoint operators in (4.2) and taking into account the
tτ -continuity of the involution in S(M, τ), we have BAnP

τ−→ BAP as n → ∞. Since the ortho-
projection P ∈ Mpr

τ is arbitrary, we obtain BAn
τ l−→ BA as n → ∞. Applying [1, Theorem 2] once

again, we conclude that BAnC
τ−→ BAC as n → ∞ for every pair of operators B,C ∈ S0(M, τ). �

Corollary 4.6. Let A,An ∈ B(H), An → A as n → ∞ in the weak operator topology, and
the sequence {An} be ‖·‖-bounded. Then BAn → BA as n → ∞ in the strong operator topology
for every operator B ∈ S∞(H), and ‖B(An − A)C‖ → 0 as n → ∞ for every pair of operators
B,C ∈ S∞(H).

Example 4.7. The condition that the sequence {An} is tτ -bounded is essential in Theorem 4.5.
In the abelian von Neumann algebra M � L∞(R+,dν) with linear Lebesgue measure ν, consider
the faithful normal semifinite trace τ(f) =

∫
R+ f dν and set

fn = nχ[n,2n], n ∈ N.

Then fn
τ l−→ 0 as n → ∞ and for τ -compact g and h, g = h, given by the function min{1, x−1/2},

x ∈ R
+, we have μ(gfnh; t) ≥ χ(0,n](t)/2 �→ 0 as n → ∞ for every t > 0. Therefore, gfnh �τ−→ 0 as

n → ∞ by Lemma 2.1(viii).
Theorem 4.8. If A,Aα ∈ S(M, τ)nor and Aα

τ l−→ A, then A∗
α

τ l−→ A∗.
Proof. Step 1. We have PA∗

α
τ−→ PA∗ for every P ∈ Mpr

τ by the tτ -continuity of the involution
in S(M, τ). Therefore, by the tτ -continuity of the product in S(M, τ), we obtain

PAα · A∗
αP = PA∗

α · AαP
τ−→ PA∗ · AP = PA · A∗P

for every P ∈ Mpr
τ . Thus, μ(PAαA

∗
αP − PAA∗P ; t) → 0 for every t > 0 by Lemma 2.1(viii).
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Step 2. For every P ∈ Mpr
τ and t > 0 we estimate

μ(A∗
αP −A∗P ; t)2 = μ(|A∗

αP −A∗P |; t)2 = μ(|A∗
αP −A∗P |2; t)

= μ
(
(PAα − PA)(A∗

αP −A∗P ); t
)

= μ
(
PAαA

∗
αP + PAA∗P − PAαA

∗P − PAA∗
αP ; t

)

= μ
(
PA∗

αAαP + PA∗AP − 2Re(PAαA
∗P ); t

)

= μ
(
PA∗

αAαP + PA∗AP − 2Re(PA∗AP )− 2Re(PAαA
∗P − PA∗AP ); t

)

= μ
(
PA∗

αAαP − PA∗AP − 2Re(PAαA
∗P − PA∗AP ); t

)

≤ μ
(
PA∗

αAαP − PA∗AP ;
t

2

)
+ 2μ

(
Re(PAαA

∗P − PA∗AP );
t

2

)
(4.3)

by Lemma 2.1(vi), (vii). According to step 1 we have

μ
(
PA∗

αAαP − PA∗AP ;
t

2

)
→ 0

for every P ∈ Mpr
τ and t > 0. Let us estimate the second term in the last inequality in (4.3):

2μ
(
Re

(
PAαA

∗P − PA∗AP
)
;
t

2

)
= 2μ

(
P
(
Re(AαA

∗ −A∗A)P
)
;
t

2

)

= μ
(
P (Aα −A)A∗P + PA(A∗

α −A∗)P ;
t

2

)

≤ μ
(
P (Aα −A)A∗P ;

t

4

)
+ μ

(
PA(A∗

α −A∗)P ;
t

4

)

≤ ‖P‖μ
(
(Aα −A)A∗P ;

t

4

)
+ ‖P‖μ

(
PA(A∗

α −A∗);
t

4

)

= μ
(
(Aα −A)A∗P ;

t

4

)
+ μ

(
(PA(A∗

α −A∗))∗;
t

4

)

= 2μ
(
(Aα −A)A∗P ;

t

4

)
→ 0

by Lemma 2.1(vi), (ix), (viii) and the tτ -continuity of multiplication by the operator A∗ on the left
(see Lemma 4.1). Thus, μ(A∗

αP − A∗P ; t) → 0 for arbitrary t > 0 and P ∈ Mpr
τ . This completes

the proof of the theorem. �
For an operator A ∈ S(M, τ), let Rλ(A) denote its resolvent.
Lemma 4.9. If a net {Aα} in the *-algebra S(M, τ)h converges to A in the topology tτ l, then

Rλ(Aα)
τ l−→ Rλ(A) for every λ ∈ C \ R.

Proof. As is well known,

Rλ(A)−Rλ(Aα) = Rλ(Aα)(Aα −A)Rλ(A).

Take a Q ∈ Mpr
τ . Since Aα −A τ l−→ 0, we have (Aα −A)Rλ(A)

τ l−→ 0 by Lemma 4.1. Therefore,
(Aα −A)Rλ(A)Q

τ−→ 0, i.e., μ((Aα −A)Rλ(A)Q; s) → 0 for any s > 0. Now, using

μ
(
Rλ(Aα)(Aα −A)Rλ(A)Q; s

)
≤ ‖Rλ(Aα)‖μ

(
(Aα −A)Rλ(A)Q; s

)

≤ |Imλ|−1μ
(
(Aα −A)Rλ(A)Q; s

)
,

we obtain μ(Rλ(Aα)(Aα −A)Rλ(A)Q; s) → 0.
Thus, (Rλ(A)−Rλ(Aα))Q

τ−→ 0 for every Q ∈ Mpr
τ ; i.e., Rλ(Aα)

τ l−→ Rλ(A). �
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Lemma 4.10. Let f and g be two continuous functions from R (or C) to C, and let g be
bounded. If the operator functions f and g are tτ l-continuous on S(M, τ)h (on S(M, τ)nor), then
the operator function fg is also tτ l-continuous on S(M, τ)h (on S(M, τ)nor, respectively).

Proof. Let Aα
τ l−→ A. We can write

(gf)(A) − (gf)(Aα) = (g(A) − g(Aα))f(A) + g(Aα)(f(A)− f(Aα)).

Lemma 4.1 implies that (g(A) − g(Aα))f(A)
τ l−→ 0. Using the estimate

μ
(
g(Aα)(f(A)− f(Aα))Q; s

)
≤ |g|μ

(
(f(A)− f(Aα))Q; s

)

for Q ∈ Mpr
τ , we find that g(Aα)(f(A) − f(Aα))

τ l−→ 0. Thus, the operator function gf is tτ l-con-
tinuous. �

Lemma 4.11. Let a sequence (fn) of continuous functions acting from R (or C) to C converge
to a function f uniformly on R (on C, respectively). If the operator functions fn are tτ l-continuous
on S(M, τ)h (on S(M, τ)nor), then the operator function f is also tτ l -continuous on S(M, τ)h

(on S(M, τ)nor, respectively).
Proof. We will give a proof for functions on C.
Take an ε > 0 and choose n0 such that supx∈C|f(x) − fn0(x)| ≤ ε/3. Let Aα

τ l−→ A and
Q ∈ Mpr

τ . For s > 0, by Lemma 2.1(iv)–(vi), (ix) we have

μ
(
(f(A)− f(Aα))Q; s

)

= μ
((
f(A)− fn0(A)

)
Q+

(
fn0(A)− fn0(Aα)

)
Q+

(
fn0(Aα)− f(Aα)

)
Q; s

)

≤ μ
(
(f − fn0)(A)Q;

s

3

)
+ μ

((
fn0(A)− fn0(Aα)

)
Q;

s

3

)
+ μ

(
(f − fn0)(Aα)Q;

s

3

)

≤ ‖(f − fn0)(A)Q‖ + μ
((
fn0(A)− fn0(Aα)

)
Q;

s

3

)
+ ‖(f − fn0)(Aα)Q‖

≤ 2ε

3
+ μ

((
fn0(A)− fn0(Aα)

)
Q;

s

3

)
.

Since the operator function fn0 is tτ l-continuous, the second term in the last expression does not
exceed ε/3 for sufficiently large values of α. �

Proposition 4.12. Let f : R → R be a continuous function on R with f(x) = O(x) as x → ∞.
Then the operator function f is tτ l-continuous on S(M, τ)h.

Proof. Let us first consider the case where f(x) → 0 as x → ∞. If p(x) and q(x) are real
polynomials such that the degree of p(x) is less than the degree of q(x) and q(x) has no real roots,
then the rational function r(x) = p(x)/q(x) can be represented as a finite linear combination of
functions of the form (x − λ)−n (λ ∈ C \ R, n ∈ N). By Lemmas 4.9 and 4.10, we conclude that
the operator function r is tτ l-continuous. By Stone’s theorem, f(x) can be uniformly approximated
on R by a sequence of rational functions r(x) of the form considered above, and then Lemma 4.11
implies the tτ l-continuity of the operator function f .

Now we turn to the general case. Let us represent f in the form

f(x) = f(x)
1

1 + x2
+ f(x)

x2

1 + x2
.

Denote the first term by f1(x) and the second by f2(x). Then f1(x) → 0 as x → ∞; therefore, the op-
erator function f1 is tτ l-continuous on S(M, τ)h. Successive application of Lemma 4.10 to the func-
tions xf1(x) and x(xf1(x)) shows that the operator function f2 is tτ l-continuous on S(M, τ)h. �

Lemma 4.13. The maps A �→ ReA and A �→ ImA are tτ l-continuous on S(M, τ)nor.
Proof. This follows from Theorem 4.8. �
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Lemma 4.14. The map A �→ I + |ReA|+ |ImA| is tτ l-continuous on S(M, τ)nor.

Proof. Apply Lemma 4.13 and Proposition 4.12. �
Proposition 4.15. Let a continuous function f : C → C be O(|z|) as z → ∞. Then the

corresponding operator function f is tτ l-continuous on S(M, τ)nor.

Proof. Let A be the algebra of R-valued functions on C generated by functions of the form
f(Re z) and g(Im z) for continuous R-valued functions f(x) and g(x) on R that tend to zero as
x → ∞. By Stone’s theorem, the algebra A is uniformly dense in the algebra A of all contin-
uous functions from C to R that tend to zero at infinity. From Lemma 4.13, Proposition 4.12,
and Lemma 4.10, it follows that the operator functions corresponding to the functions in A are
tτ l-continuous, and by Lemma 4.11 the same holds for the functions in A.

Now let a continuous function f : C → R be O(|z|) as z → ∞. We can write

f(z) = (1 + |Re z|+ |Im z|)2 f(z)

(1 + |Re z|+ |Im z|)2

and apply Lemmas 4.14 and 4.10 twice.
Finally, let a continuous function f : C → C be O(|z|) as z → ∞. Then the functions Re f(z)

and Im f(z) act continuously from C to R and are O(|z|) as z → ∞. The corresponding operator
functions Re f(A) and Im f(A) are tτ l-continuous on S(M, τ)nor, and hence the operator function
f(A) = Re f(A) + i Im f(A) is tτ l-continuous on S(M, τ)nor. �

Corollary 4.16. The map A �→ |A| is tτ l-continuous on S(M, τ)nor.

The following result is a corollary to [3, Lemma 3.4].

Lemma 4.17. Let {Aα} and {Bα} be two nets in M+ such that {Aα} is uniformly bounded,
Aα

τ l−→ 0, and Bα ≤ Aα for all α. Then Bα
τ l−→ 0.

Next, for Ω ⊂ C we set S(M, τ)nor
Ω = {A ∈ S(M, τ)nor : Sp(A) ⊂ Ω}, where Sp(A) is the

spectrum of the operator A.

Theorem 4.18. Let Ω ⊂ C and A ∈ S(M, τ)nor
Ω . Let f : Ω → C be a function such that its

restriction to any bounded subset of Ω that is closed in C is Borel measurable, sup{|f(z)|/(1 + |z|) :
z ∈ Ω} < ∞, and f is continuous at every point in Sp(A). If a net {Aα} of operators in S(M, τ)nor

Ω

converges to A in the topology tτ l, then f(Aα)
τ l−→ f(A).

Proof. It suffices to prove the theorem for a real-valued function f , and we will do this in two
stages.

1. Suppose that f is bounded on Ω, say |f | ≤ 1, and is continuous at all points in Sp(A). By the
Tietze–Urysohn theorem, there exists a continuous function g : C → [−1, 1] that coincides with f
on Sp(A). By Proposition 4.15,

g(Aα)
τ l−→ g(A) = f(A).

According to [20, Lemma 2], there exists a bounded continuous function h on Ω such that h = 0
on Sp(A) and |f − g| ≤ h on Ω.

1a. Now assume additionally that Ω = C. Then h(Aα)
τ−→ h(A) = 0 by Proposition 4.15. Since

0 ≤ (f − g + h)(Aα) ≤ 2h(Aα), we have (f − g + h)(Aα)
τ l−→ 0 by Lemma 4.17. Hence,

f(Aα) = (f − g + h)(Aα) + g(Aα)− h(Aα)
τ l−→ f(A).

1b. If Ω �= C, then according to [20, Lemma 1] we construct a bounded function k : C → R

that extends h, is continuous at all points in Ω, and is upper semicontinuous on C (so it is Borel
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measurable). Using case 1a, we obtain

h(Aα) = k(Aα)
τ l−→ k(A) = h(A) = 0,

and it remains to repeat verbatim the last two sentences of the previous paragraph.
2. In the general case, we set g(z) = f(z)/(1 + |z|). Then g(Aα)

τ l−→ g(A) by the above and
I + |Aα| τ l−→ I + |A| by Proposition 4.15. Hence by [1, Theorem 3] we obtain

f(Aα) = g(Aα)(I + |Aα|) τ l−→ g(A)(I + |A|) = f(A). �

Corollary 4.19. Let Ω ⊂ C and f : Ω → C be a continuous function on Ω such that
sup{|f(z)|/(1 + |z|) : z ∈ Ω} < ∞. Then the corresponding operator function is continuous
on S(M, τ)nor

Ω in the topology tτ l.
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