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Summary. New evidence has stirred up a long-standing

but undeservedly forgotten interest in the role of ery-

throcytes, or red blood cells (RBCs), in blood clotting

and its disorders. This review summarizes the most

recent research that describes the involvement of RBCs

in hemostasis and thrombosis. There are both quantita-

tive and qualitative changes in RBCs that affect bleed-

ing and thrombosis, as well as interactions of RBCs

with cellular and molecular components of the hemo-

static system. The changes in RBCs that affect hemosta-

sis and thrombosis include RBC counts or hematocrit

(modulating blood rheology through viscosity) and qual-

itative changes, such as deformability, aggregation,

expression of adhesive proteins and phosphatidylserine,

release of extracellular microvesicles, and hemolysis. The

pathogenic mechanisms implicated in thrombotic and

hemorrhagic risk include variable adherence of RBCs to

the vessel wall, which depends on the functional state

of RBCs and/or endothelium, modulation of platelet

reactivity and platelet margination, alterations of fibrin

structure and reduced susceptibility to fibrinolysis, mod-

ulation of nitric oxide availability, and the levels of von

Willebrand factor and factor VIII in blood related to

the ABO blood group system. RBCs are involved

in platelet-driven contraction of clots and thrombi that

results in formation of a tightly packed array of poly-

hedral erythrocytes, or polyhedrocytes, which comprises

a nearly impermeable barrier that is important for

hemostasis and wound healing. The revisited notion of

the importance of RBCs is largely based on clinical

and experimental associations between RBCs and

thrombosis or bleeding, implying that RBCs are a

prospective therapeutic target in hemostatic and throm-

botic disorders.
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Introduction

The study of erythrocytes, or red blood cells (RBCs),

has been a major focus of hematology, as has been

hemostasis and thrombosis, but until recently, there has

been little overlap in these two areas, because most sci-

entists and clinicians have assumed that RBCs play a

largely passive and relatively unimportant role in

thrombosis and hemostasis. However, now it has

become apparent that RBCs have a variety of impor-

tant functions and have a substantial influence on blood

clotting, hemostasis and thrombosis that is clinically sig-

nificant (Table 1). This notion is based on the major

observations that include reduced bleeding at a high

hematocrit irrespective of the platelet count and predis-

position to thrombosis associated with an increase in

the RBC count, congenital erythroid diseases, and vari-

ous acquired pathological conditions that change the

properties of RBCs (Table 2). A relatively high inci-

dence of thrombotic complications after RBC transfu-

sions provides another strong argument for the

involvement of RBCs in blood clotting disorders,

although the thrombosis risk could also be ascribed to

the underlying disease, which may dampen the causality

of blood transfusion for thrombosis. In addition to clin-

ical observations and experimental studies, computa-

tional modeling of thrombosis with a focus on the

effects of RBCs has provided quantitative and mecha-

nistic insights [1]. This review will briefly summarize

what is currently known about the involvement of

RBCs in hemostasis and thrombosis and its underappre-

ciated importance.
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Table 1 Effects of red blood cells (RBCs) related to thrombosis and hemostasis and underlying mechanisms

Effects Mechanisms

Pro- or

antithrombotic References ##

Hemorheological

effects

RBCs increase blood viscosity because of a rise in hematocrit, an increase in RBC

aggregation or a decrease in RBC deformability (increasing flow resistance)

Pro [2–5]

Conversely, anemia is associated with low blood viscosity and bleeding tendency

as a result of reduced platelet margination toward endothelium and enhanced

NO availability

Anti [2–5]

RBCs undergo shear-dependent reversible aggregation mediated by plasma

proteins (mainly fibrinogen and immunoglobulins) and/or local osmotic gradient

Pro [14–16,70–74]

RBCs with increased rigidity occlude small vessels Pro [11,12]

Deformability of RBCs reduces frictional resistance to flow Anti [8,11–13]
RBCs maintain biconcave shape and a high surface-to-volume ratio as a result of

cytoskeleton and water/ions balance

Pro or anti [5]

RBCs migrate to the center of blood flow and push platelets toward the

endothelium (margination) in a hematocrit- and shear-dependent manner

Pro [59–61]

Effects on platelet

reactivity

RBCs increase platelet adhesion and aggregation by release of ADP and

thromboxane A2

Pro [66,67]

RBCs form aggregates with platelets via adhesive molecules (ICAM-4 and

fibrinogen with aIIbb3)
Pro [62–64]

Free hemoglobin released during hemolysis scavenges nitric oxide, a platelet

inhibitor and vasodilator

Pro [50,51,68,69]

Free hemoglobin suppresses platelet activation by release of S-nitrosothiols,

functional equivalents of NO

Anti [48,53]

Interactions with

vessel wall

RBCs bind directly to endothelium via adhesive molecules (Lutheran blood group/

basal cell adhesion molecule/band 3, integrin a4Bb1, CD36, ICAM-4,

phosphatidylserine, etc.)

Pro [10,54,55]

In FeCl3-induced thrombosis, RBCs bind to endothelium via unknown

mechanisms

Pro [57]

RBCs modulate endothelial cell activation through release of NO, NO equivalents

and ATP

Anti [49,52]

Thrombin generation Phosphatidylserine is exposed on RBCs by Ca2+-dependent scramblase in

response to high-shear stress, complement attack, oxidative stress, apoptosis, etc.

Pro [18–25]

RBCs release membrane-derived procoagulant microvesicles bearing

phosphatidylserine during in vivo aging and in vitro storage

Pro [28–31,33,34]

Meizothrombin, a protein C activator with low fibrinogen-cleaving activity, is

formed on RBCs and released into the blood

Anti [20]

Factor IX is activated directly by an elastase-like enzyme on the RBC membrane Pro

Structure and

properties of clots

and thrombi

RBCs make the fibrin network more porous Anti [65,79,80]

Variable deformability of RBCs affects blood clot mechanics Pro or anti

Factor XIIIa-mediated RBC retention increases thrombus size Pro [81–83]
Effects on fibrinolysis

and thrombolysis

RBCs reduce clot permeability Pro [84,86,87]

RBCs suppress tPA-induced plasminogen activation Pro

RBCs decrease fibrin fiber diameter and change the network structure, thus

reducing susceptibility to fibrinolysis

Pro

RBCs are potential transportation cargo for targeted delivery of thrombolytic

drugs

Anti [45]

Effects on clot

contraction

Compacted RBCs form impermeable seal Pro or anti [88,89]

RBCs undergo compressive deformation from biconcave to polyhedral and

intermediate forms

Pro or anti [91–93]

RBCs are redistributed in contracted clots toward the middle Pro or anti [89]

Hemostatic effects of

RBC transfusions

RBC transfusion stops bleeding associated with anemia and thrombocytopenia Pro [39,47]

RBC transfusion improves platelet responsiveness to stimulation Pro

Complications of RBC

transfusions

“Storage lesion” of RBCs includes:

• oxidative stress and membrane damage

• phosphatidylserine exposure

• release of microvesicles

• hemolysis

• increased membrane rigidity

• release of free hemoglobin

• activation of complement

• depletion of NO and its functional equivalents

• apoptosis (eryptosis)

Pro [31,32,34,36,37,

40–45,47–49]
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Quantitative and qualitative changes in RBCs related to
bleeding and thrombosis

Hematocrit and rheological effects

It has long been known that low hematocrits are associ-

ated with prolonged bleeding times, even if the platelet

counts are normal [2]. Consequently, many bleeding dis-

orders have been corrected by transfusion of RBCs,

despite normal or even low platelet levels. Conversely,

patients with an abnormally high hematocrit, such as

those with polycythemia vera or taking erythropoietin,

including healthy athletes involved in doping [3], are more

susceptible to thrombotic disorders [4]. Thus, for some

time there has been indirect but solid evidence that RBCs

do play some role in hemostasis and thrombosis and can

be procoagulant or prothrombotic.

Red blood cells contribute to blood viscosity, which

increases non-linearly with hematocrit and comprises a

pathogenic mechanism for thrombosis (Fig. 1). The

increased viscosity slows down the flow and can be a

strong prothrombotic factor as a component of Virchow’s

triad, which accounts for the pathophysiological mecha-

nisms of thrombosis as a combination of endothelial

damage, hypercoagulability and disturbance of blood

flow. Such increases in blood viscosity may promote plate-

let margination and have physical effects on the interac-

tion between platelets and the blood vessel walls, because

platelet adhesion increases with hematocrit. Therefore, the

physical effects of RBCs on hemostasis and thrombosis

depend on both the hematocrit and flow conditions [5].

The commonly observed direct correlation between

hematocrit and the prothrombotic phenotype has excep-

tions. Elevated hematocrit in animal models of poly-

cythemia vera or erythropoietin-induced erythrocytosis

did not correlate with thrombosis. Moreover, enhanced

FeCl3-induced thrombosis in polycythemia vera mice was

associated with an increased tail bleeding time, perhaps as

a result of simultaneous deficiency of GPVI and impaired

multimerization of von Willebrand factor [6]. The same

bleeding tendency was revealed in mice with extremely

high hematocrit (85%), whereas animals with a lower

hematocrit were indistinguishable from controls in a

thrombosis model, suggesting that the prothrombotic

effects of RBCs may be compensated for by other mecha-

nisms [7]. Therefore, the relationship of the RBC content

to thrombosis may be not straightforward and so worth

further investigation.

Table 2 (Pro)thrombotic pathologies with RBCs as a (major) pathogenic factor

Pathologies References

Erythroid diseases

Polycythemia vera J Intern Med 1998, 244: 49; Curr Opin Hematol 2014, 21: 186

Hereditary elliptocytosis Int J Lab Hematol 2017; 39 Suppl 1: 47

Hereditary stomatocytosis Br J Haematol 1996, 93: 303; Blood 1997, 89: 3451

Hereditary spherocytosis Blood 2009; 114: 2861; J Thromb Haemost 2008; 6: 1289; Curr Opin Hematol 2014, 21:

186

Hereditary xerocytosis Int J Lab Hematol 2017; 39 Suppl 1: 47; Rev Med Interne 2007; 28: 879

(Beta)-thalassemia Acta Hematol 1992, 87: 71; Stroke 1990, 21: 812; Am J Physiol 1996, 270: H1951

Sickle cell disease Thromb Haemost 1996, 76: 322; Curr Opin Hematol 1996, 3: 118; Microcirculation 2009,

16: 97

Paroxysmal nocturnal hemoglobinuria Blood Cells Mol Dis 2017, 65: 29; Br J Haematol 2011; 152: 631

Glucose-6-phosphate dehydrogenase deficiency

(favism)

Vox Sang 2013; 105: 271

Secondary erythrocytosis Sleep Breath 2010; 14: 193

Non-erythroid diseases

Immune hemolytic anemias Br J Haematol 2016, 172: 144

Atherosclerotic vascular disease Coron Artery Dis 1998, 9: 113; Clin Hemorheol Microcirc 2004, 31: 185

Cerebral infarction Lancet 1981, 2: 114

Coronary heart disease Blood 1997, 89: 4236

Myocardial infarction Clin Hemorheol Microcirc 1999, 20: 111

Complications of RBC transfusion Thromb Res 2015, 136: 1204

Retinal venous occlusions Am J Ophthalmol 1983, 96: 399; Br J Haematol 1990, 75: 127; Curr Opin Hematol 2014,

21: 186

Hypertension J Hypertens 1992, 10: S69; Clin Hemorheol Microcirc 1997, 17: 193

Diabetes mellitus J Biomed Eng 1993, 15: 155; Rom J Intern Med 2004, 42: 407; Biorheology 2009, 46: 63

Leg vein thrombosis Br J Haematol 1994, 88: 174

Stroke Curr Opin Neurol Neurosurg 1992, 5: 44

Malaria Science 1994, 264: 1878; Cell Microbiol 2013, 15: 1976

Acquired dysfibrinogenemia J Vasc Surg 1997, 26: 1061

Systemic inflammation (hypergammaglobulinemia) BBA Clin 2016, 5, 186; Cell Death Dis 2012, 3: 410

Bacterial sepsis J Mol Med 2007, 85: 269; Am J Respir Crit Care Med 1998, 157: 421

Gaucher disease Br J Haematol 2006, 134: 432; Curr Opin Hematol 2014, 21: 186
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Deformability

Physiologically, RBCs that are 7–8 lm in size must

change from their native biconcave shape to a bullet-like

shape every time they squeeze through 1–3-lm blood ves-

sels to maintain a high surface area necessary for efficient

exchange of oxygen and carbon dioxide between blood

and tissues. The efficacy of this diffusive exchange is

determined by maximizing the active contact area

between an RBC and the vessel wall, as a result of the

deformation of RBCs and a high surface-to-volume ratio.

The biconcave discoid shape, compared to a spherical

shape, provides approximately 40 lm2 (43%) of addi-

tional surface area. Deformability of RBCs depends
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Fig. 1. Potential contributions of normal and abnormal red blood cells (RBCs) to arterial and venous thrombosis/thromboembolism. (A) Arte-

rial thrombi arise in vessels with high shear rates, which promotes the rapid formation of platelet-rich thrombi. During arterial thrombosis,

RBCs promote platelet margination, increase platelet–thrombus interactions, and enhance platelet adhesion and activation. Although RBCs

increase blood viscosity, this effect is lessened in arteries by high shear-induced shape change. (B) Venous thrombi form slowly in stasis or low

flow (frequently in venous valve pockets) and are RBC and fibrin rich. In veins, RBC aggregation into stacked rouleaux structures increases

blood viscosity. RBCs can also directly or indirectly adhere to the vessel wall and may contribute to thrombin generation within thrombi. Once

incorporated into venous thrombi, RBCs increase thrombus size and reduce thrombus permeability and susceptibility to lysis. In disease states,

abnormal RBCs and RBC-derived microvesicles may also adhere to the endothelium or extracellular matrix, activate platelets and other cells,

and enhance local thrombin generation during thrombosis. [With permission from: Byrnes JR, Wolberg AS. Red blood cells in thrombosis.

Blood 2017, 130: 1795.]
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Fig. 2. Prothrombotic alteration of red blood cells (RBCs) in various

disease states and during storage. S/V = surface to volume ratio.
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mainly on cytoskeletal proteins and intracellular viscosity

[8]. RBCs have a remarkably soft cytoskeleton under the

plasma membrane that has a special dynamical molecular

structure comprised of non-covalent association of pro-

teins, namely spectrin, actin, ankyrin, Band 3, Band 4.1

and glycophorin C [9]. Structural alterations of trans-

membrane or cytoskeletal proteins or composition of

membrane phospholipids result in rupture of the RBC

membrane (hemolysis) or an increase in membrane stiff-

ness. In addition to a decrease in membrane flexibility,

increased RBC rigidity can be caused by changes in the

viscosity of the cytoplasm because of an increase in

hemoglobin concentration or a decrease in hemoglobin

solubility [10]. The intracellular content of ATP used by

the ion pumps to maintain the RBC volume through bal-

ance of the water-ion content, as well as increased Ca2+

concentration, also reduces RBC deformability. Irrespec-

tive of the underlying mechanisms, more rigid RBCs are

associated with thrombogenic potential, because they can

hardly squeeze through the microvasculature and they

also enhance platelet margination (Fig. 2).

There are a number of acquired pathological conditions

and inherited diseases with reduced RBC deformability,

such as autoimmune hemolytic anemia, sickle cell disease,

thalassemia, hereditary spherocytosis and xerocytosis. In

patients with sickle cell disease, the membrane of RBCs is

much stiffer than in normal cells [11]. Besides the

increased membrane rigidity, the overall stiffness of cells

increases dramatically as a result of intracellular polymer-

ization of mutated hemoglobin S, resulting in formation

of sickled RBCs. Increased stiffness of RBC membranes

combined with prothrombotic properties of RBCs has

been reported also in b-thalassemia, immune hemolytic

anemias, hereditary stomatocytosis, coronary heart dis-

ease, hypertension, diabetes and deep vein thrombosis

(Table 2). RBC membrane viscosity and rigidity have

been shown to correlate directly with RBC-derived reac-

tive oxygen species lipid peroxidation [12]; however, the

RBC deformability in conditions of oxidative stress is

preserved by nitric oxide [13]. During storage, the rigidity

of RBCs increases over time; this may be partly responsi-

ble for thrombotic complications of RBC transfusions

along with other RBC alterations and the thrombotic risk

associated with the primary disease.

RBC aggregation

Another example of the significance of locally altered

blood rheology is the formation of roleaux (linear arrays

of stacked cells) or three-dimensional aggregates with sta-

sis of blood or at low shear rates [14]. These aggregates

increase the blood viscosity and hydrodynamic resistance

in larger blood vessels with low shear, such as the veins

in the lower limbs [15], again confirming Virchow’s triad,

as these RBC aggregates promote venous thrombosis

(Fig. 1). In very small vessels, aggregated RBCs

concentrate along the flow axis and enhance platelet

margination, and cause a decreased local viscosity and

reduced flow resistance (Fahraeus effect) [16].

Two alternative mechanisms of RBC aggregation have

been conceived, namely a bridging model and local osmo-

tic gradient model [10]. The former model implies that

the intercellular interactions are mediated by plasma pro-

teins, mainly fibrinogen and immunoglobulins. The local

osmotic gradient or depletion model attributes aggrega-

tion of RBCs to a lower protein concentration near the

cell membrane compared with the ambient solution,

resulting in an osmotic gradient or local depletion interac-

tion [17]. There is increasing evidence supporting the

osmotic gradient mechanism of RBC aggregation.

Phosphatidylserine exposure in RBC membrane

An essential component of blood clotting is a procoagu-

lant cellular or cell-derived phospholipid membrane with

exposed negatively charged phosphatidylserine that pro-

vides a matrix for assembly of coagulation complexes,

namely the intrinsic tenase and prothrombinase (Fig. 1).

In normal and quiescent cells, phosphatidylserine is

located in the inner leaflet of the plasma membrane to

separate this procoagulant phospholipid from plasma

coagulation factors. Phosphatidylserine becomes exposed

by the protein scramblase that abolishes natural mem-

brane phospholipid asymmetry in response to Ca2+-

induced inactivation of translocase and flippase, which

sustain this asymmetry [18]. The exposure of phos-

phatidylserine and its role in blood clotting has been

mostly studied on platelets, but recent data provide evi-

dence that RBCs can expose phosphatidylserine on their

membrane and promote thrombin formation [19]. How-

ever, it has been proposed that RBCs may have dual pro-

and anticoagulant activity, because they, unlike platelets,

generate a-thrombin through an intermediate

meizothrombin, a strong protein C activator with low fib-

rinogen- and PAR-cleaving activity, although the relative

significance of the procoagulant effects is greater [19,20].

RBCs lose membrane asymmetry and expose phos-

phatidylserine under conditions of cell damage induced

by high shear rates, inflammation or oxidative stress [21].

The exposure and shedding of phosphatidylserine medi-

ated by the intracellular influx of Ca2+ is a part of RBC

apoptosis and natural cell senescence [22]. The prothrom-

botic potential of phosphatidylserine exposure in RBCs is

largely a result of the high RBC count. Although ~0.5%–
0.6% of the RBC population normally expresses phos-

phatidylserine in healthy subjects and induces some

thrombin generation, the contribution of RBCs in patho-

logical conditions may reach 40% of the thrombin-gener-

ating potential of whole blood [23].

A substantial amount of phosphatidylserine is exposed

on RBC membranes in patients with sickle cell disease

and thalassemia [24]. In sickle cell disease, this exposure
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results from the repeated cell deformation into sickled

shapes and back to the biconcave shape as a result of

reversible polymerization of sickle hemoglobin. Interest-

ingly, in the blood of sickle cell disease patients, thrombin

generation has been shown to correlate inversely with

RBC phosphatidylserine exposure [25], implying that in

sickle cell disease, additional procoagulant mechanisms

exist unrelated to phosphatidylserine that are described

elsewhere [26]. In b-thalassemia, increased phos-

phatidylserine exposure on the surface of RBCs is associ-

ated with the cell death pathway named eryptosis [27].

RBC-derived microvesicles

Many cells, including RBCs, generate microscopic extra-

cellular membranous structures called microvesicles (MVs)

or microparticles as a result of activation, apoptosis or

aging. Membrane blebbing and formation of MVs is a

consequence of the loss of membrane phospholipid asym-

metry on RBCs, which is why MVs bear phosphatidylser-

ine on their surface [28]. MV generation in RBCs results

from a disturbance of the membrane-cytoskeleton interac-

tions [29]. Although MVs were once thought to be an

undesirable byproduct of these processes, it is now known

that they represent a means for intercellular communica-

tions in vivo, an important regulatory mechanism of physi-

ologic reactions, and a pathogenic component in many

thrombotic and hemostatic disorders (Fig. 2) [30]. Fur-

thermore, MVs from RBCs accumulate during storage of

whole blood [31], which might be partially responsible for

an increased incidence of deep vein thrombosis or other

thrombotic conditions after transfusion of RBCs stored

for longer times [32]. MVs from RBCs increase in sickle

cell disease and hemolytic anemia, and other prothrom-

botic states associated with RBCs [33]. Higher levels of

MVs in the plasma are associated with a dose- and time-

dependent increase in generation of thrombin and a reduc-

tion in clotting time, suggesting that they enhance hyper-

coagulability [34]. This enhanced thrombin generation has

been associated with expression of phosphatidylserine [28].

Alternatively, RBC-derived MVs can initiate thrombin

formation via a factor XII-dependent pathway without tis-

sue factor activity [35]. The circulating MVs can also pro-

mote vaso-occlusion by internalizing free heme and

transferring it to vascular endothelium, or activate the

complement system [36]. Altogether, RBC-derived MVs,

either formed in vivo or infused along with stored RBCs,

have prothrombotic effects with multiple underlying mech-

anisms [37,38]. With all of these procoagulant activities,

RBC-derived MVs could be a target for treatment of

thrombotic disorders [39].

RBC storage

During storage for transfusions, RBC preparations

develop multiple and diverse changes in their structure

and metabolism caused by the accumulation of their own

waste products, by enzymatic and oxidative injury, and

by programmed cell death [40]. These alterations are alto-

gether designated as “storage lesion” and include a

decrease in the content of 2,3-diphosphoglycerate and

ATP concentrations, membrane loss, shape changes, for-

mation of MVs, and release of toxic products, such as

extracellular hemoglobin associated with hemolysis,

lysophospholipids and iron ions [41]. Storage of RBCs is

accompanied by strong procoagulant changes, such as

exposure of phosphatidylserine on cells as well as on the

abundant RBC-derived MVs (Fig. 2) [40]. High concen-

trations of procoagulant phosphatidylserine-expressing

MVs formed in preparations of stored RBCs exaggerate

thrombotic complications after RBC transfusion [42]. In

addition, free extracellular hemoglobin resulting from

storage-related hemolysis binds and inactivates nitric

oxide in blood, a potent vasodilator and inhibitor of pla-

telet activation, which is another prothrombotic conse-

quence of RBC infusions [43]. Therefore, infusions of

RBCs, especially old ones, have adverse thrombotic

effects, among which deep vein thrombosis is one of the

most common [32]. In particular, perioperative RBC

transfusions have been shown to be associated with a

higher incidence of postoperative venous thromboem-

bolism on top of the risk associated with surgery itself

[44]. In addition to transfusions of normal stored RBCs,

chemically modified and loaded RBCs have been studied

intensively as cargo for targeted drug delivery [45].

Hemolysis

Hereditary and acquired hemolytic anemias, of which

immune hemolysis is the most common, arise from

hemolysis, with release of free, extracellular hemoglobin

into the blood (Fig. 2). Massive hemolysis followed by

thrombotic complications is a major pathogenic mecha-

nism in paroxysmal nocturnal hemoglobinuria [46] and in

adverse effects of RBC transfusions, provided they are

not caused by the underlying disease [47,48]. Hemolysis is

accompanied by (pro)thrombotic conditions that can

range from mild hypercoagulability detected by labora-

tory signs to life-threatening complications, such as dis-

seminated intravascular coagulation and venous

thromboembolism [49]. Hemolysis may result in such pro-

thrombotic conditions via several pathogenic mechanisms.

Hemolysis is commonly accompanied by a large release

of RBC-derived MVs, with all of the effects described

above [35]. Free hemoglobin and heme, which are toxic

to many cells and tissues, are released [50]. Furthermore,

extracellular hemoglobin sequesters NO and thus

enhances adhesion/aggregation of platelets and activation

of endothelial cells [51]. Free heme also generates reactive

oxygen species, upregulates heme oxygenase activity, and

directly activates macrophages and endothelial cells [52].

Finally, immune hemolysis is accompanied by activation
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of the complement cascade and production of TNF-a,
which induces tissue factor expression in endothelial cells

and decreases the endothelial expression of thrombomod-

ulin, downregulating the anti-coagulant pathway [49].

Although extracellular hemoglobin release during

hemolysis has been considered as a transporter and scav-

enger of nitric oxide (NO), an inhibitor of endothelial

cells and platelets and a vasodilator, it has been shown

recently that hemoglobin can preserve functional effects

of NO by formation of S-nitrosothiols bound reversibly

to the Cys-93 residue of the b-chain [53]. S-nitrosothiols

have antiplatelet activity similar to NO and therefore

lysed RBCs can enhance platelet aggregation either by

scavenging NO or inhibiting platelets through release of

functional equivalents of NO [48].

Interactions of RBCs with cellular and molecular
components of the hemostatic system

Vessel wall

The interaction of RBCs with endothelium under physio-

logical conditions is minimal, but they become adhesive

when RBCs and/or endothelial cells undergo pathological

perturbations, resulting in occlusion of the microvascula-

ture, often associated with thrombotic conditions.

Increased RBC adhesion to endothelium is mediated by a

number of adhesive molecules, such VCAM-1, a4b1, Lu/
BCAM, ICAM-4, etc. [10,54]. In addition to the interac-

tion of RBCs with activated endothelial cells, they can be

exposed and bind to subendothelial matrix when the

endothelium is damaged. The RBC–endothelium adhesive

interaction causing occlusion of small vessels has been

shown in a number of pathological conditions, such as

retinal venous occlusion, hypertension, diabetic mellitus

and stroke (Table 2). RBC adhesion to endothelium in

central retinal vein occlusion is mediated by the interac-

tion between phosphatidylserine exposed on the surface

of RBCs and endothelial phosphatidylserine receptor [55].

Prolonged storage followed by time-dependent alterations

of RBCs enhances the ability of infused RBCs to bind to

the endothelium and form microaggregates that impair

blood flow in the microvasculature [56]. In one of the

most commonly used vascular injury models in mice for

thrombosis using FeCl3, RBCs were shown to be the first

cells to adhere to the chemically injured endothelium, but

this interaction is an artifact of the FeCl3 [57]. It has been

shown recently that dysfunction or loss of CD59, a pro-

tective glycoprotein that prevents formation of the com-

plement-dependent membrane attack complex, is a major

arterial prothrombotic factor in paroxysmal nocturnal

hemoglobinuria. To alleviate consequences of massive

hemolysis under this pathological condition, CD59

reduces endothelial damage and platelet activation, as

well as their aggregation with leukocytes that exaggerate

vascular occlusion [58].

Platelets

A purely rheological effect of RBCs is that they preferen-

tially move down the center of blood vessels, causing

margination of platelets, so that they are adjacent to the

vessel wall, where they can interact to form a temporary

plug in case of injury [59]. This peripheral layer also con-

tains plasma with clotting factors and neutrophils, impor-

tant for hemostasis. As a result of the RBCs being in the

center of the channel and plasma at the periphery, there is

a decrease in viscosity at lower vessel diameters, except in

capillaries that are smaller than RBCs, where the viscosity

of the RBC-free layer increases because of the presence of

platelets, which have a greater viscosity than RBCs [60].

One consequence of an elevated hematocrit is increased

margination of platelets, enhancing their interactions with

the endothelium, perhaps accounting for increased throm-

botic complications. Another consequence of the reduced

viscosity near the vessel wall and decreased wall shear

stress is a reduction in NO release [61]. Because NO pre-

vents activation of endothelial cells and platelets, this NO

deficiency results in increased cellular activation.

RBCs can interact directly with platelets at venous

shear rates [62], which may be important in prothrom-

botic pathological conditions, such as thalassemia [63] or

sickle cell disease [64]. The ability of RBCs to directly

bind activated platelets may play some role in the unex-

pected prevalence of RBCs in arterial thrombi that have

been traditionally called “white” thrombi made mainly of

activated platelets and fibrin [65].

RBCs can also modulate platelet reactivity directly

through chemical signaling [66]. Under low oxygen pres-

sure, low pH, and in response to mechanical deformation,

RBCs release ATP and ADP, which activate platelets

[67]. Release of extracellular hemoglobin as a result of

damage to RBCs enhances platelet activation by lowering

NO bioavailability [68], because the hemoglobin is a

strong NO scavenger, preventing the suppressive effect of

nitric oxide on platelet activation [69]. An additional

effect is the release from damaged RBCs of arginase,

which cleaves L-arginine, a substrate for NO production

[68].

Fibrinogen and fibrin

Hyperfibrinogenemia is associated with aggregation of

RBCs in a form of roleaux, a morphological sign of

(pro)thrombotic conditions and a pathogenic mechanism

of microthrombosis [70]. The association between the fib-

rinogen plasma concentration and the erythrocyte ten-

dency to aggregate was reported in metabolic,

inflammatory and vascular diseases [71]. Formation of

the aggregates of RBCs occurs through fibrinogen that

bridges adjacent cells, similar to the role of fibrinogen in

platelet aggregation. It has been shown that binding of

fibrinogen to the RBC membrane may be mediated by
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an integrin-like receptor [72,73] or an integrin-associated

protein (CD47) [74]. The involvement of a b3 integrin of

RBCs is supported by the observation that in a patient

with mutated aIIbb3 (Glanzmann thrombasthenia) inter-

action of RBCs with fibrinogen is impaired [73].

Remarkably, the interactions of fibrinogen with RBCs

circulating in the blood for a longer time are gradually

reduced, perhaps because of desialization of membrane

proteins in older RBCs [75]. A recent paper showed that

the minor heterozygous fibrinogen variant containing

two splicing variants of the c chain called cA and c0

bound stronger to RBCs than the major homozygous

fibrinogen fraction cAcA [76]. Because fibrinogen and

fibrin share sites of binding to the integrin aIIbb3 [77],

the specificity of fibrinogen binding to RBCs can be sim-

ilar to RBC–fibrin interactions in blood clots and

thrombi. In addition, retention of RBCs in venous

thrombi at a low flow speed and stasis can be mediated

by their interaction with von Willebrand factor located

either on fibrin or another surface [78]. Understanding

the molecular nature of the RBC binding to fibrinogen

and fibrin is important because prevention and/or dis-

ruption of this interaction may be a novel antithrom-

botic therapeutic target similar to platelet–fibrin(ogen)
interactions.

Clot structure and fibrinolysis

RBCs are incorporated into all types of clots and thrombi

formed in vivo, especially in the venous system [79] but

even in arterial thrombi [65]. Thus, the effects of RBCs

on clot structure have been studied in vitro. Intermediate

RBC concentrations cause considerable heterogeneity in

the fiber network, with pockets of densely packed fibers

alongside regions where fibers are sparse [80]. With higher

levels of RBCs, fibers are more uniformly but loosely

arranged around the cells, and fiber diameters are larger.

RBCs embedded into a blood clot exclude fibrin and pla-

telets and thereby enlarge the pores of the fibrin network,

making it more permeable if they are washed out, but at

the same time they can make the entire clot less perme-

able because those RBCs that remain (especially those

compressed during contraction) make a physical barrier

or a seal that hampers diffusion or perfusion. The modu-

lation of clot structure and mechanical properties caused

by RBCs affects clot stability, embolization and the effi-

cacy of anticoagulation and therapeutic thrombolysis [80].

In a venous model, RBC retention within clots determines

thrombus size dependent on factor XIIIa activity [81,82],

via crosslinking of the fibrin a chains [83].

All of these effects of RBCs on the physical and chemi-

cal properties of clots have striking effects on clot dissolu-

tion via fibrinolysis. Overall, incorporation of RBCs

increases the resistance to lysis and decreases the perme-

ability of clots in a dose-dependent manner [84]. As

expected from in vitro studies demonstrating an increase

in mechanical stability and retardation of fibrinolysis,

similar effects were shown for thrombi in experimental

cerebral ischemia [85]. Alternatively, RBC-derived MVs

have a prominent fibrinolytic activity in vitro because of

the presence of plasminogen on their surface [86]. More-

over, a higher fraction of RBCs in cerebral thrombi has

been shown to correlate with better responsiveness to

intravenous thrombolysis [87]. Collectively, the effects of

RBCs on fibrinolysis are controversial and need further

attention.

Clot contraction

Clot contraction, also known as retraction, is the volume

shrinkage of the blood clot that occurs when activated

platelets pull on the fibrin network. Non-muscle myosin

IIa inside the platelet interacts with actin filaments

attached to the membrane-associated adhesive integrin

aIIbb3 via talin and kindlin. Fibrin or fibrinogen bind to

aIIbb3 outside the platelet to link other platelets into a

platelet-fibrin meshwork that undergoes mechanical com-

paction, causing compression of RBCs embedded into the

clot [88]. Clot contraction has a number of potential

pathophysiological implications. First, it is biologically

important that compaction of RBCs reduces the space

between cells, as a result of more efficient packing, which

helps to create an impermeable seal at the site of vessel

injury to prevent bleeding [89]. Second, contraction pulls

clots or thrombi closer to the vessel wall so that they are

less obstructive. Third, contraction can modulate effects

of the fibrinolytic enzymes by changing clot permeability

and spatial proximity of the fibrin fibers. Fourth, clot

contraction pulls together wound edges, making this pro-

cess important at the early stages of wound healing.

The kinetics and the extent of clot contraction depend

on variations in the molecular and cellular blood com-

position, including fibrinogen concentration, RBC and

platelet count [90]. Unlike thrombin activity, factor

XIIIa-catalyzed crosslinking of fibrin and platelet count,

which all enhance the rate and efficacy of clot contraction,

RBCs delay and reduce the process of clot compaction,

while increasing the mechanical force generated by the

activated platelets as a result of viscoelastic properties and

mechanical resilience of RBCs [82,83,90]. The examination

of how the presence of RBCs affects the compaction of a

thrombus, and consequently the blood flow past the

thrombus, has the potential to guide future therapeutic

applications and has clinical implications in patients with

pathological conditions associated with increased (poly-

cythemia) or reduced (anemia, hemodilution) RBC count

in the blood.

Platelet contraction propagated via the fibrin network

results in the compaction of erythrocytes to the core of

the clots and redistribution of platelets and fibrin toward

the outside of the clot [89]. The erythrocytes amassed in

the core of the contracting clot undergo a shape
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transformation from their native biconcave shape to that

of polyhedral (Fig. 3), hence they are named polyhedro-

cytes [89]. This remarkable polyhedral shape of erythro-

cytes is a natural morphological form of erythrocytes in

addition to echinocytes, acanthocytes, spheroechinocytes,

ovalocytes, elliptocytes, stomatocytes, and more. Polyhe-

drocytes have been observed in ex vivo clots and thrombi

obtained from human and murine samples and can be

used as a morphological sign of intravital contraction of

clots, thrombi and thrombotic emboli. In particular, poly-

hedrocytes have been observed in human arterial and

especially venous thrombi, and pulmonary emboli, taken

from patients [89,91–93]. Unexpectedly, the rate and

extent of clot contraction has been found to be impaired

in a number of (pro)thrombotic conditions, such as

ischemic stroke [94], deep vein thrombosis [95] and sys-

temic lupus erythematosus [96], and may be considered

an underappreciated factor that increases the risk and/or

exaggerates the course and outcome of thrombosis.

Altogether these data suggest that the extent of clot com-

paction and the formation of compressed RBCs (polyhe-

drocytes) comprise an important pathogenic mechanism

of thrombosis and could have a diagnostic and/or predic-

tive value in (pro)thrombotic states.

Factor VIII and von Willebrand factor

An understudied and underappreciated mechanism of the

effects of RBCs on bleeding and thrombosis is modula-

tion of the levels of von Willebrand factor and factor

VIII in blood, which is related to the ABO blood group

system [97]. In subjects that have A and B antigens, the

concentrations of factor VIII and, especially, von Wille-

brand factor are substantially higher than in O group

individuals. This difference has been attributed to the

posttranslational glycosylation of the proteins stimulated

by the A and B antigens via an unknown mechanism

[98]. Presumably, the extent of glycosylation could

determine the clearance rate of factor VIII and von Wille-

brand factor, which results in faster elimination in

O-blood-type subjects than in non-O individuals [99]. The

higher levels of von Willebrand factor (and to a lesser

extent of factor VIII) might underlie the association

between the ABO blood group and the risk of thrombosis

or bleeding [100].

Conclusions

There are both quantitative and qualitative changes in

RBCs that affect bleeding and thrombosis, as well as

interactions of RBCs with cellular and molecular compo-

nents of the hemostatic system. Low hematocrits are

associated with bleeding, whereas high hematocrits are

associated with thrombosis, as is the formation of RBC

aggregates. Both the stiffness of RBCs and the exposure

of phosphatidylserine to form a procoagulant surface

that enhances thrombin generation can contribute to

thrombosis. MVs from stored RBCs or from some

pathological conditions have strong procoagulant effects,

as do extracellular hemoglobin and heme as a result of

hemolysis. Rheological effects of RBCs include their

being concentrated in the center of blood vessels with

consequent platelet margination, including effects on vis-

cosity. RBCs interact with endothelial cells and platelets,

both of which may be significant for thrombosis. RBCs

also interact with fibrin(ogen) and affect the structure,

mechanical properties, and hence the lytic resistance, of

clots and thrombi. Clot contraction may be important

for hemostasis and wound healing because contracted

clots form an impermeable barrier made of tightly

packed polyhedrocytes. Furthermore, clot contraction

restores blood flow past otherwise obstructive thrombi,

although in some prothrombotic conditions platelet acti-

vation and exhaustion lead to a lower extent of clot con-

traction. In summary, the ability of RBCs to affect

A

B

Fig. 3. Three-dimensional confocal microscopy images of a native

biconcave red blood cell (RBC) (A) and a compressed multifaceted

polyhedral RBC, or polyhedrocyte (B), formed as a result of blood

clot contraction. Magnification bars = 1 lm.
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hemostasis and thrombosis is multifactorial and has mul-

tiple underlying mechanisms: modulating blood viscosity

via hematocrit, deformability and aggregation; variable

adherence to the vessel wall that depends on the func-

tional state of RBCs and/or endothelium; modulation of

platelet reactivity; platelet margination; release of MVs;

membrane composition (expression of adhesive proteins

and phosphatidylserine); modulation of nitric oxide

availability; and expression of blood group antigens

implicated in thrombotic and hemorrhagic risk. Most of

these effects (summarized in Figs. 1 and 2) are pro-

thrombotic and result in promotion of arterial and

venous thrombosis. However, the RBC-related influences

are much more complex and may be either pro- or

antithrombotic (Table 1), making analysis of the biologi-

cal role of RBCs not straightforward and emphasizing

the need for further investigation.
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