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Êîìïüþòåðíàÿ ãðàôèêà. Äîëãîâ Ä.À., ÊÑÀÈÒ, ÈÂÌèÈÒ ÊÔÓ

1. Ââåäåíèå

Êîìïüþòåðíàÿ ãðàôèêà ïðåäíàçíà÷åíà äëÿ ïåðåäà÷è è ìàíèïóëèðî-
âàíèÿ èíôîðìàöèåé â ãðàôè÷åñêîé ôîðìå. Èíôîðìàöèÿ âèçóàëèçèðó-
åòñÿ ïîñðåäñòâîì ôèãóð, çíàêîâ, öâåòà. Êîìïüþòåðíàÿ ãðàôèêà ïðåä-
ñòàâëÿåò ñîáîé êðîññ-äèñöèïëèíàðíóþ íàóêó. Â íå¼ âõîäèò ìàòåìàòèêà,
ôèçèêà, áèîëîãèÿ, äèçàéí, è äð.

Çà÷åì èçó÷àòü êîìïüþòåðíóþ ãðàôèêó?

1) Äëÿ �ïðàâèëüíîãî� ñîçäàíèÿ è êîððåêöèè èçîáðàæåíèé (íåóäà÷íàÿ
öâåòîïåðåäà÷à, ìóòíîå èçîáðàæåíèå è ò.ï.).

2) Ïîíèìàíèå ïðèíöèïîâ óñòðîéñòâà çðåíèÿ, îáðàáîòêè öâåòà êîìïüþ-
òåðîì ïîçâîëÿåò ïîíÿòü óñòðîéñòâî ïðèâû÷íûõ íàì âåùåé: îò ôî-
òîãðàôèé è òåëåâèäåíèÿ äî àëãîðèòìîâ ñæàòèÿ è ãðàôè÷åñêèõ ðå-
äàêòîðîâ.

Êîìïþòåðíàÿ ãðàôèêà èìååò ìíîãî ðàçíûõ îáëàñòåé ïðèìåíåíèÿ:

� Êèíåìàòîãðàôèÿ (ñïåöýôôåêòû)

� Êîìïüþòåðíûå èãðû

� Âèðòóàëüíàÿ ðåàëüíîñòü è äîïîëíåííàÿ ðåàëüíîñòü

� Ðàçðàáîòêà ÏO (ñîçäàíèå èíòåðôåéñîâ)

� Àâòîìîáèëåñòðîåíèå (ðàçðàáîòêà ýñêèçà, ìîäåëèðîâàíèå ïîâåäåíèÿ
äåòàëåé)

� Ìåäèöèíà (Òîìîãðàôèÿ)

� Àðõèòåêòóðà (CAD ñèñòåìû)

� Õèìèÿ (âèçóàëüíîå ïðåäñòàâëåíèå ìîëåêóë)

� Âèðóñîëîãèÿ

� Big Data (âèçóàëèçàöèÿ äàííûõ)

� Ñòåãàíîãðàôèÿ è.ò.ä.

Ìåòîäè÷åñêîå ïîñîáèå äàåò íåîáõîäèìûå îñíîâû àëãåáðû è ãåîìåò-
ðèè, íåîáõîäèìûõ äëÿ âûïîëíåíèÿ ëàáîðàòîðíûõ è äîìàøíèõ ðàáîò.
Çäåñü ïðåäñòàâëåíû ïðèìåðû ðèñîâàíèÿ ãåîìåòðè÷åñêèõ ôèãóð, ñîçäà-
íèå àíèìàöèè. Ïðîãðàììíûé êîä íàïèñàí íà ÿçûêå ïðîãðàììèðîâàíèÿ
Python ñ èñïîëüçîâàíèåì áèáëèîòåê NumPy, matplotlib.
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Êîìïüþòåðíàÿ ãðàôèêà. Äîëãîâ Ä.À., ÊÑÀÈÒ, ÈÂÌèÈÒ ÊÔÓ

2. Ðàáîòà ñ NumPy

NumPy � áèáëèîòåêà ñ îòêðûòûì èñõîäíûì êîäîì äëÿ ÿçûêà ïðî-
ãðàììèðîâàíèÿ Python. Âîçìîæíîñòè: ïîääåðæêà ìíîãîìåðíûõ ìàññè-
âîâ (âêëþ÷àÿ ìàòðèöû); ïîääåðæêà âûñîêîóðîâíåâûõ ìàòåìàòè÷åñêèõ
ôóíêöèé, ïðåäíàçíà÷åííûõ äëÿ ðàáîòû ñ ìíîãîìåðíûìè ìàññèâàìè. Áèá-
ëèîòåêà NumPy ïðåäîñòàâëÿåò ðåàëèçàöèè âû÷èñëèòåëüíûõ àëãîðèòìîâ (â
âèäå ôóíêöèé è îïåðàòîðîâ), îïòèìèçèðîâàííûå äëÿ ðàáîòû ñ ìíîãîìåð-
íûìè ìàññèâàìè. Â ðåçóëüòàòå ëþáîé àëãîðèòì,p êîòîðûé ìîæåò áûòü
âûðàæåí â âèäå ïîñëåäîâàòåëüíîñòè îïåðàöèé íàä ìàññèâàìè (ìàòðèöà-
ìè) è ðåàëèçîâàííûé ñ èñïîëüçîâàíèåì NumPy, ðàáîòàåò òàê æå áûñòðî,
êàê ýêâèâàëåíòíûé êîä, âûïîëíÿåìûé â MATLAB.

NumPy � áèáëèîòåêà äëÿ ðàáîòû ñ ìàññèâàìè. Îñíîâíàÿ ñòðóêòóðà
- ìàññèâ (array) îïðåäåëåííîãî òèïà. Ïîääåðæèâàþòñÿ îñíîâíûå òèïû
äàííûõ: np.int8, np.int16, np.int32, np.�oat16, np.�oat32, �oat64, np.uint8,
np.complex64, np.bool è äð.

Äëÿ óñòàíîâêè NumPy â Pycharm âûáåðèòå File -> Settings, ïîñëå ÷å-
ãî íàæìèòå íà
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Êîìïüþòåðíàÿ ãðàôèêà. Äîëãîâ Ä.À., ÊÑÀÈÒ, ÈÂÌèÈÒ ÊÔÓ

Óñòàíîâêà áèáëèîòåêè matplotlib ïðîèñõîäèò òàêèì æå îáðàçîì.

2.1. Ñîçäàíèå ìàññèâà

Ïðèìåð 1.

import numpy as np

a=np.array([[1,2,3],[4,-5,8],[3,6,8]])

print(a)

Ïðèìåð 2.

import numpy as np

b = np.array([1,2,3], dtype = np.float32)

print(b)

Ïðèìåð 3. Êàæäûé ìàññèâ èìååò îïðåäåëåííûé íàáîð àòðèáóòîâ: ðàç-
ìåð, êîëè÷åñòâî ýëåìåíòîâ, òèï è äð. Äëÿ ïîëó÷åíèÿ çíà÷åíèé àòðèáóòîâ
ìîæíî âîñïîëüçîâàòüñÿ ñëåäóþùèìè ôóíêöèÿìè shape, size, dtype.

import numpy as np

a=np.array([[1,2,3],[4,-5,8],[3,6,8]])

print(a)

print('shape:', a.shape)

print('size:', a.size)

print('type:', a.dtype)
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Êîìïüþòåðíàÿ ãðàôèêà. Äîëãîâ Ä.À., ÊÑÀÈÒ, ÈÂÌèÈÒ ÊÔÓ

Ïðèìåð 4. Ôóíêöèè zeros, ones ïîçâîëÿþò ñîçäàâàòü ìàññèâû çàïîë-
íåííûå îïðåäåëåííûìè çíà÷åíèÿìè. Â êà÷åñòâå àðãóìåíòà óêàçûâàþòñÿ
ðàçìåðû ñîçäàâàåìîãî ìàññèâà.

import numpy as np

z=np.zeros((2,3))

print('zero array', z)

o=np.ones((3,4))

print('ones array', o)

Ïðèìåð 5. Äëÿ ñîçäàíèÿ ìàññèâà èç ïîñëåäîâàòåëüíûõ çíà÷åíèé ìîæíî
âîñïîëüçîâàòüñÿ ôóíêöèÿìè np.arange() è np.linspace(). Ïåðâàÿ ôóíêöèÿ
ÿâëÿåòñÿ àíàëîãîì îïåðàòîðà range â ÿçûêå Python. Ìîæåò ïðèíèìàòü
äî 3-õ àðãóìåíòîâ. Ôîðìèðóåò ìàññèâ ñîñòîÿùèé èç ïîñëåäîâàòåëüíûõ
ýëåìåíòîâ, îïðåäåëåííûõ àðãóìåíòàìè ôóíêöèè: íà÷àëî, êîíåö, øàã.

import numpy as np

ar = np.arange(10)

print(ar)

ar2 = np.arange(10,20)

print(ar2)

ar3 = np.arange(10,20,2)

print(ar3)

Ïðèìåð 6. Ôóíêöèÿ linspace() ïîçâîëÿåò ñîçäàâàòü ðàâíîìåðíî ðàçáè-
åíèå èíòåðâàëà íà N òî÷åê. Â êà÷åñòâå àðãóìåíòà ôóíêöèÿ ïðèíèìàåò
íà÷àëî èíòåðâàëà, êîíåö èíòåðâàëà è êîëè÷åñòâî òî÷åê ðàâíîìåðíî ðàñ-
ïîëîæåííûõ òî÷åê íà èíòåðâàëå. Íà âûõîäå ìàññèâ êîëè÷åñòâî ýëåìåí-
òîâ â êîòîðîì ñîâïàäàåò ñ êîëè÷åñòâîì òî÷åê, ïåðâûé ýëåìåíò ñîâïàäàåò
ñ íà÷àëîì èíòåðâàëà, ïîñëåäíèé ñ êîíöîì èíòåðâàëà, à îñòàëüíûå ýëå-
ìåíòû ðàâíîìåðíî ìåæäó íà÷àëîì è êîíöîì.

import numpy as np

t = np.linspace(0,1,11)

print(t)

Ïðèìåð 7. Ñëåäóþùèå ôóíêöèè ïîçâîëÿþò ñîçäàâàòü ìàññèâû ñî ñëó-
÷àéíûìè çíà÷åíèÿìè îïðåäåëåííîãî ðàñïðåäåëåíèÿ. Â êà÷åñòâå àðãóìåí-
òîâ ïîäàþòñÿ ðàçìåðû ñîçäàâàåìûõ ìàññèâîâ. Ôóíêöèÿ np.random.rand(10,10)
çàäàåò ðàâíîìåðíîå ðàñïðåäåëåíèå U(0,1), ïîëó÷àåì ìàòðèöó 10*10. Ôóíê-
öèÿ np.random.randn(10,10) çàäàåò íîðìàëüíîå ðàñïðåäåëåíèå N(0,1), ïî-
ëó÷àåì ìàòðèöó 10*10.
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Êîìïüþòåðíàÿ ãðàôèêà. Äîëãîâ Ä.À., ÊÑÀÈÒ, ÈÂÌèÈÒ ÊÔÓ

import numpy as np

r = np.random.rand(10,10)

print(r)

r2 = np.random.randn(10,10)

print(r2)

Ïðèìåð 8. Numpy ïîääåðæèâàåò âåêòîðíûå âû÷èñëåíèÿ. Ñòàíäàðòíûå
ìàòåìàòè÷åñêèå îïåðàöèè +,-,*,/ ïðè ýòîì âûïîëíÿþòñÿ ïîýëåìåíòíî,
íåîáõîäèìî òîëüêî îáåñïå÷èâàòü ñîãëàñîâàííîñòü ðàçìåðîâ.

import numpy as np

a = np.arange(5)

b = np.ones((5))

c = a+b

print(c)

Ïðèìåð 9. Íàäî ïîìíèòü, ÷òî ïðèìåíèè * ïðîèçâîäèò ïîýëåìåíòíîå,
à íå ìàòðè÷íîå óìíîæåíèå ìàññèâîâ. Äëÿ ìàòðè÷íîãî óìíîæåíèÿ äâóõ
ìàññèâîâ ìîæíî âîñïîëüçîâàòüñÿ ôóíêöèåé np.dot() èëè îïåðàòîðîì @:

import numpy as np

r = np.random.rand(10,10)

print(r)

r2 = np.random.randn(10,10)

m = np.dot(r, r2)

print(m)

m2 = r @ r2

print(m2)

Ïðèìåð 10. Êðîìå ýòîãî ñóùåñòâóåò áîëüøîå êîëè÷åñòâî ôóíêöèé, êî-
òîðûå ïîçâîëÿþò âû÷èñëÿòü îïðåäåëåííûå õàðàêòåðèñòèêè ìàññèâà.

import numpy as np

r2 = np.random.randn(10,10)

print(np.max(r2))

print(np.min(r2))

print(np.mean(r2))

print(np.var(r2))

print(np.median(r2))

Ïðèìåð 11. Îáðàùåíèå ïî èíäåêñàì â Numpy ïðîèñõîäèò àíàëîãè÷íî
ñïèñêàì.

import numpy as np
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Êîìïüþòåðíàÿ ãðàôèêà. Äîëãîâ Ä.À., ÊÑÀÈÒ, ÈÂÌèÈÒ ÊÔÓ

r2 = np.random.randn(10,10)

print(r2[0,0])

print(r2[3,:])

print(r2[2:7, 3:9])

print(r2[2:7:2, 3:9:3])

Ïðèìåð 12. Çäåñü ðàçìåðû inds ñîâïàäàþò ñ ðàçìåðàìè r2, çíà÷åíèÿ
True ñòîÿò â òåõ ÿ÷åéêàõ, ãäå ýëåìåíòû r2 áîëüøå íóëÿ. Â ïîñëåäíåé
ñòðîêå ýëåìåíòû ìàññèâà r2, ðàñïîëîæåííûå â òåõ æå ïîçèöèÿõ, ÷òî è
ýëåìåíòû True ìàññèâà inds, îáíóëÿþòñÿ.

import numpy as np

r2 = np.random.randn(10,10)

inds = r2 > 0

r2[inds] = 0

print(r2)

Ïðèìåð 13. Â Numpy åñòü âîçìîæíîñòü èçìåíèòü ðàçìåð ìàññèâà ñ
ïîìîùüþ ôóíêöèè np.reshape(). Ïðè ýòîì íóæíî îáåñïå÷èòü, ÷òîáû ðàç-
ìåðû íîâîãî ìàññèâà äàâàëè òàêîå æå êîëè÷åñòâî ýëåìåíòîâ. np.hstack()
� êîíêàòåíàöèÿ â ãîðèçîíòàëüíîì íàïðàâëåíèè, à np.vstack() � â âåðòè-
êàëüíîì.

import numpy as np

d = np.arange(9)

f = np.reshape(d, (3,3))

print(f)

h = np.hstack((f,f))

print(h)

v = np.vstack((f,f))

print(v)

3. Ðèñîâàíèå ñ ïîìîùüþ áèáëèîòåêè matplotlib

matplotlib � áèáëèîòåêà, êîòîðàÿ ïðåäîñòàâëÿåò âîçìîæíîñòü âèçóà-
ëèçèðîâàòü äàííûå. Íèæå ïðèâåäåí ïðèìåð ïîñòðîåíèÿ ïðîñòîãî ãðàôè-
êà ïàðàáîëû.
Ïðèìåð 1. Ôóíêöèÿ plt.�gure() îòâå÷àåò çà ñîçäàíèå ãðàôè÷åñêîãî îêíà.
Ôóíêöèÿ plt.plot(x,y) îòâå÷àåò çà ðèñîâàíèå ãðàôèêà. Ôóíêöèÿ plt.show()
îòâå÷àåò çà îòîáðàæåíèå íà ýêðàíå.

import matplotlib.pyplot as plt
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import numpy as np

x = np.linspace(-3,3,100)

y = x**2

plt.figure()

plt.plot(x,y)

plt.show()

Ïðèìåð 2. Ïðèìåð îòîáðàæåíèÿ çåëåíîãî êâàäðàòà íà ÷åðíîì õîëñòå
è åãî ñîõðàíåíèÿ. Ïðè ïîìîùè np.zeros ñîçäàåì ÷åðíûé õîëñò. Ïîòîì
ïðè ïîìîùè çàäàííîãî ñðåçà ðèñóåì çåëåíûé êâàäðàò íà ÷åðíîì õîëñòå.
Ôóíêöèÿ plt.imsave îòâå÷àåò çà ñîõðàíåíèå èçîáðàæåíèÿ.

import matplotlib.pyplot as plt

import numpy as np

img = np.zeros((1024, 1024, 3), dtype = np.uint8)

img[300:700, 300:700, 1] = 255

plt.figure()

plt.imshow(img)

plt.show()

plt.imsave('simple_image.png', img)

4. Ðèñîâàíèå òðåóãîëüíèêà

4.1. Àôèííûå ïðåîáðàçîâàíèÿ

Ðàññìàòðèâàþòñÿ ïðåîáðàçîâàíèÿ ñ íåâûðîæäåííîé ìàòðèöåé ñëåäó-
þùåãî âèäà: (

x′

y′

)
=

(
a11 a12
a21 a22

)(
x
y

)
+

(
b1
b2

)
Â ìàòðè÷íîé ôîðìå ïðåîáðàçîâàíèå çàïèøåòñÿ â âèäå:

X ′ = A ∗X +B, det(A) ̸= 0

Àôôèííîå ïðåîáðàçîâàíèå ïðèìåíÿåòñÿ ê êàæäîé êîîðäèíàòå ãåî-
ìåòðè÷åñêîé ìîäåëè. Â ðåçóëüòàòå ïðîèñõîäèò òðàíñôîðìàöèÿ ìîäåëè.
Ðåçóëüòàò òðàíñôîðìàöèè çàâèñèò îò âèäà ìàòðèöû A è âåêòîðà B. Â
îáùåì ñëó÷àå ïðåîáðàçîâàíèå ïðåäñòàâëÿåò ñîáîé ëèíåéíîå ïðåîáðàçî-
âàíèå è ïàðàëëåëüíûé ïåðåíîñ. B � âåêòîð, íà êîòîðûé ïðîèçâîäèòñÿ
ïàðàëëåëüíûé ïåðåíîñ. Åñëè íóëåâîé, òî ïåðåíîñà íåò. A � ìàòðèöà ëè-
íåéíîãî ïðåîáðàçîâàíèÿ. Â çàâèñèìîñòè îò âèäà ìàòðèöû A îñóùåñòâëÿ-
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þòñÿ ðàçëè÷íûå ëèíåéíûå ïðåîáðàçîâàíèÿ. Âûäåëÿþò ñëåäóþùèå ñïå-
öèàëüíûå ñëó÷àè: A=I - áóäåò ëèíåéíûé ïåðåíîñ íà âåêòîð B. A � äèàãî-
íàëüíàÿ. Ïðîèçâîäèòñÿ ìàñøòàáèðîâàíèå ôèãóðû. Ýëåìåíòû äèàãîíàëè
îòâå÷àþò çà ìàñøòàáèðîâàíèå ïî ñîîòâåòñòâóþùèì îñÿì. A � îðòîãî-
íàëüíàÿ. Ïðîèçâîäèòñÿ ïîâîðîò âîêðóã íà÷àëà êîîðäèíàò!

A =

(
cos(α) − sin(α)
sin(α) cos(α)

)
det(A) > 0 : ñîõðàíÿåòñÿ îáõîä âåðøèí. det(A) < 0 : îáõîä âåðøèí

ìåíÿåòñÿ.
Àôôèííîå ïðåîáðàçîâàíèå ìîæíî êîìïàêòíî çàïèñàòü ñ ïîìîùüþ

ïðîåêòèâíûõ êîîðäèíàò.
Ïåðåõîä îò îáû÷íûõ êîîðäèíàò ê ïðîåêòèâíûì è íàîáîðîò îñóùåñòâ-

ëÿåòñÿ ñ ïîìîùüþ ôîðìóë:

(x, y) = (x, y, 1)

(x1, x2, x3)

(
x1

x3

,
x2

x3

)
Àôôèííîå ïðåîáðàçîâàíèå â ïðîåêòèâíûõ êîîðäèíàòàõ:x1

′

x2
′

x3
′

 =

a11 a12 b1
a21 a22 b2
0 0 1

x1

x2

x3


Ò.ê. òðåòüÿ êîîðäèíàòà x3 ïðè ïåðåõîäå îò äåêàðòîâûõ êîîðäèíàò ðàâ-

íà 1, òî ïðåäñòàâëåííàÿ ôîðìóëà ñîâïàäàåò ïî çíà÷åíèÿì ñ ðåçóëüòàòîì
ôîðìóëû äëÿ äåêàðòîâûõ êîîðäèíàò. Áëàãîäàðÿ êîìïàêòíîìó ïðåäñòàâ-
ëåíèþ â ïðîåêòèâíûõ êîîðäèíàòàõ âîçìîæíî ïðèìåíåíèÿ àôôèííîãî
ïðåîáðàçîâàíèÿ êî âñåì âåðøèíàì ìîäåëè ïðåäñòàâëåííûõ â ìàòðèöå
ñ âûïèñàííûìè ïî ñòðîêàì êîîðäèíàòàìè:x11

′ · · · x1n
′

x21
′ · · · x2n

′

x31
′ · · · x3n

′

 =

a11 a12 b1
a21 a22 b2
0 0 1

x11 · · · x1n

x21 · · · x2n

x31 · · · x3n


X- ìàòðèöà, ñîñòîÿùàÿ èç êîîðäèíàò âåðøèí ãåîìåòðè÷åñêîé ìîäåëè

â ïðîåêòèâíîé ôîðìå, âûïèñàííûõ ïî ñòîëáöàì.
X'- ìàòðèöà, ñîñòîÿùàÿ èç êîîðäèíàò âåðøèí òðàíñôîðìèðîâàííîé

ãåîìåòðè÷åñêîé ìîäåëè â ïðîåêòèâíîé ôîðìå, âûïèñàííûõ ïî ñòîëáöàì.
Ñ ïîìîùüþ òàêîãî ïðåäñòàâëåíèÿ äàííîé îïåðàöèè ìîæíî ðåàëèçî-

âàòü ðàñïàðàëëåëèâàíèå ïðîöåññà âû÷èñëåíèÿ íà ãðàôè÷åñêèõ âèäåîêàð-
òàõ.
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4.2. Ïðèìåð

Íèæå ïðèâåäåíû ïðèìåðû àôôèííîãî ïðåîáðàçîâàíèÿ ïðîñòîãî ãåî-
ìåòðè÷åñêîãî ïðèìèòèâà â âèäå òðåóãîëüíèêà.
Ïðèìåð 1.

# Transform

import numpy as np

import matplotlib.pyplot as plt

def bVec():

b = np.array([0, 0])

return b

def rotMatr(ang):

mtr = np.array([[np.cos(ang), -np.sin(ang)], [np.sin(ang),

np.cos(ang)]])

return mtr

def diagMatr():

mtr = np.array([[2, 0], [0, 2]])

return mtr

def detPos():

mtr = np.array([[1.5, 1], [0.5, 1.2]])

return mtr

def detNeg():

mtr = np.array([[0.5, 1], [1.5, -1]])

return mtr

def to_proj_coords(x):

r,c = x.shape

x = np.concatenate([x, np.ones((1,c))], axis = 0)

return x

def to_cart_coords(x):

x = x[:-1]/x[-1]

return x

pt0 = [1, 1]

pt1 = [3, 3]

pt2 = [5, 2]

12



Êîìïüþòåðíàÿ ãðàôèêà. Äîëãîâ Ä.À., ÊÑÀÈÒ, ÈÂÌèÈÒ ÊÔÓ

x = np.array([pt0, pt1, pt2], dtype = np.float32).T

x_proj = to_proj_coords(x)

# linear transform matrix

a = rotMatr(np.pi/4) # change rotation angle

# a = diagMatr()

# a = detPos()

# a = detNeg()

# shift vector

b = bVec() # change to non-zero

m = np.zeros((3,3))

m[:2,:2] = a

m[:2,-1] = b

m[-1,-1] = 1

x_new_proj = m @ x_proj

x_new = to_cart_coords(x_new_proj)

# drawing

plt.figure()

# plt axes

plt.plot([-10, 10],[0,0], 'k')

plt.plot([0,0],[-10, 10], 'k')

# plot initial figure

plt.plot(x[0, [0,1,2,0]], x[1, [0,1,2,0]], 'r')

plt.plot(x[0,0], x[1,0], 'or')

plt.plot(x[0,1], x[1,1], 'og')

plt.plot(x[0,2], x[1,2], 'ob')

# plot transformed figure

plt.plot(x_new[0, [0,1,2,0]], x_new[1, [0,1,2,0]], 'g')

plt.plot(x_new[0,0], x_new[1,0], 'or')

plt.plot(x_new[0,1], x_new[1,1], 'og')

plt.plot(x_new[0,2], x_new[1,2], 'ob')

plt.show()
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5. Ñîçäàíèå àíèìàöèè

Ðàññìîòðèì çàäà÷ó àíèìàöèè îòðåçêà, âðàùàþùåãîñÿ âîêðóã ñâîåãî
öåíòðà. Äëÿ ðåøåíèÿ çàäà÷è íåîáõîäèìî çàäàòü ðÿä àôôèííûõ ïðåîá-
ðàçîâàíèé, îñóùåñòâëÿþùèõ óêàçàííîå ïðåîáðàçîâàíèå. Àíèìàöèÿ áóäåò
ïðåäñòàâëÿòü ñîáîé íàáîð êàäðîâ, íà êàæäîì èç êîòîðûõ ïðåäñòàâëåí
îáðàç îòðåçêà, ïîñëå ïðèìåíåíèÿ àôôèííîãî ïðåîáðàçîâàíèÿ ñ ïàðàìåò-
ðàìè ìåíÿþùèìèñÿ ñî âðåìåíåì. Ïðèìåíÿòü ìàòðèöó âðàùåíèÿ íàïðÿ-
ìóþ ê êîîðäèíàòàì îòðåçêà íåëüçÿ, ò.ê. âðàùåíèå îñóùåñòâëÿåòñÿ âîêðóã
íà÷àëà êîîðäèíàò. Íåîáõîäèìî ñíà÷àëà ñäâèíóòü öåíòð îòðåçêà â íà÷à-
ëî êîîðäèíàò, äàëåå îñóùåñòâèòü ïîâîðîò, ïîñëå ÷åãî ñäâèíóòü íà÷àëî
ïîâåðíóòîãî îòðåçêà â íà÷àëüíóþ òî÷êó. Ïîëó÷èâøèéñÿ îòðåçîê ìîæíî
ðèñîâàòü. Óãîë ïîâîðîò äîëæåí ìåíÿòüñÿ îò êàäðà ê êàäðó (âîçðàñòàòü),
÷òîáû ïîëó÷èëàñü àíèìàöèÿ. Åñëè ðàáîòàòü â ïðîåêòèâíûõ êîîðäèíàòàõ,
òî ìîæíî çàïèñàòü ïîñëåäîâàòåëüíîñòü ïðåîáðàçîâàíèé â âèäå óìíîæå-
íèÿ òðåõ ìàòðèö. T � ìàòðèöà ñäâèãà â íà÷àëî êîîðäèíàò

T =

1 0 b1
0 1 b2
0 0 1


R � ìàòðèöà ïîâîðîòà.

R =

(
cos(α) − sin(α)
sin(α) cos(α)

)
T−1 � ìàòðèöà îáðàòíîãî ñäâèãà.

X ′ = T−1RTX

Äëÿ îáúåäèíåíèÿ íàáîðà êàäðîâ â àíèìàöèþ ïðèìåíÿþòñÿ ñïåöèàëü-
íûå ôóíêöèè èç áèáëèîòåêè Matplotlib, ïîçâîëÿþùèå ñîõðàíèòü àíèìà-
öèþ â âèäå âèäåîôàéëà èëè èçîáðàæåíèÿ ôîðìàòà gif. Äëÿ ñîçäàíèÿ
âèäåîôàéëà íåîáõîäèìî íàëè÷èå ñïåöèàëüíûõ êîäåêîâ. Â ïðèìåðå íè-
æå (ïðèìåð ïðåäñòàâëåí äëÿ ÎÑ Windows) ÿâíî óêàçûâàåòñÿ ïóòü äî
èñïîëíÿåìîãî ôàéëà ñ óêàçàííûìè êîäåêàìè. Äëÿ ñîçäàíèå gif ôàéëà
íåîáõîäèìî íàëè÷èå óñòàíîâëåííîé áèáëèîòåêè Pillow. Pillow âõîäèò â
ñîñòàâ Anoconda è óñòàíàâëèâàåòñÿ âìåñòå ñ íåé.

Íèæå ïðèâåäåí ïðèìåð ñîçäàíèÿ àíèìàöèè âðàùàþùåãîñÿ îòðåçêà.

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.animation as animation

from matplotlib.animation import PillowWriter
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plt.rcParams['animation.ffmpeg_path'] = 'ffmpeg.exe'

def shiftMatr(vec):

mtr = np.array([[1, 0, vec[0]], [0, 1, vec[1]], [0, 0, 1]])

return mtr

def rotMatr(ang):

mtr = np.array([[np.cos(ang), -np.sin(ang), 0], [np.sin(ang),

np.cos(ang), 0], [0, 0, 1]])

return mtr

def to_proj_coords(x):

r,c = x.shape

x = np.concatenate([x, np.ones((1,c))], axis = 0)

return x

def to_cart_coords(x):

x = x[:-1]/x[-1]

return x

pt0 = [50, 50]

pt1 = [50, 150]

x = np.array([pt0, pt1], dtype = np.float32).T

center = np.sum(x, axis=1)/2

x_proj = to_proj_coords(x)

N = 100 # frames count

size = 256

color = np.array([0,255,0], dtype=np.uint8)

frames = []

fig = plt.figure()

for i in range(N):

# get coords of transformed line

ang = i*2*np.pi/N

T = shiftMatr(-center)

R = rotMatr(ang)

x_proj_new = np.linalg.inv(T) @ R @ T @ x_proj

x_new = to_cart_coords(x_proj_new)
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# draw line

img = np.zeros((size, size, 3), dtype=np.uint8)

line_points_count = np.int32(np.max(np.abs(x_new[:,0] -

x[:,1])) + 1)

t = np.linspace(0,1,line_points_count)

a = x_new[:, 0].reshape(-1, 1)

b = x_new[:, 1].reshape(-1, 1)

t = t.reshape(1, -1)

line_points = (1 - t) * a + t * b # not clean lines, use

Bresehnam instead

line_points = np.int32(np.round(line_points))

img[line_points[0], line_points[1]] = color

im = plt.imshow(img)

frames.append([im])

print('Frames creation finshed.')

#mp4 animation creation

ani = animation.ArtistAnimation(fig, frames, interval=40,

blit=True, repeat_delay=0)

Writer = animation.writers['ffmpeg']

writer = Writer(fps=24, metadata=dict(artist='Me'), bitrate=1800)

ani.save('line.mp4', writer)

# ani.save('simple_animation.mp4')

# gif animation creation

ani = animation.ArtistAnimation(fig, frames, interval=40,

blit=True, repeat_delay=0)

writer = PillowWriter(fps=24)

ani.save("line.gif", writer=writer)

plt.show()

6. Ïîñòðîåíèå êóáè÷åñêîãî ñïëàéíà

Ðàññìàòðèâàåòñÿ çàäà÷à ïîñòðîåíèÿ êóáè÷åñêîãî ñïëàéíà (ñïëàéíà
Ýðìèòà). Äàíû N+1 òî÷êà íà ïëîñêîñòè èìåþùèå êîîðäèíàòû (xi, yi)
è çíà÷åíèå ïðîèçâîäíîé â ýòîé òî÷êå di = 0, i ∈ [0, N ]. Ïðåäïîëàãàåòñÿ,
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÷òî x0 < . . . < xN . Òðåáóåòñÿ äëÿ êàæäîãî èíòåðâàëà xi, xI+1 îïðåäåëèòü
ïîëèíîì òðåòüåé ñòåïåíè, óäîâëåòâîðÿþùèé ñëåäóþùèì óñëîâèÿì:

fi(x) = ai0 + ai1x+ ai2x
2 + ai3x

3

fi(xi) = yi

fi(xi+1) = yi+1

fi
′(xi) = di

fi
′(xi+1) = di+1

Äëÿ íàõîæäåíèÿ êîýôôèöèåíòîâ ïîëèíîìà ïðåäëàãàåòñÿ ïîñòðîèòü
ñèñòåìó ëèíåéíûõ àëãåáðàè÷åñêèõ óðàâíåíèé íà îñíîâå ïðèâåäåííûõ âû-
øå óñëîâèé. Ïîëó÷èì ñëåäóþùåå:

ai0 + ai1xi + ai2xi
2 + ai3xi

3 = yi

ai0 + ai1xi+1 + ai2xi+1
2 + ai3xi+1

3 = yi+1

ai00 + ai1 + 2ai2xi + 3ai3xi
2 = di

ai00 + ai1 + 2ai2xi+1 + 3ai3xi+1
2 = di+1

Äàííóþ ñèñòåìó ìîæíî ïåðåïèñàòü â ìàòðè÷íîé ôîðìå:

MA = B

M =


1 xi xi

2 xi
3

1 xi+1 xi+1
2 xi+1

3

0 1 2xi 3xi
2

0 1 2xi+1 3xi+1
2

 , A =


ai0
ai1
ai2
ai3

 , B =


yi
yi+1

di
di+1


Ðåøåíèå ñèñòåìû íàõîäèòñÿ ñëåäóþùèì îáðàçîì:

A = M−1B.

Íèæå ïðèâåäåí ïðèìåð ðåàëèçóþùèé ïðåäñòàâëåííûé ìåòîä. Èçìå-
íÿÿ çíà÷åíèÿ ïðîèçâîäíûõ ìîæíî óïðàâëÿòü ôîðìîé ñïëàéíà.

import numpy as np

import matplotlib.pyplot as plt

from matplotlib.image import imsave
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def create_image(heigh, widht, background_color):

img = np.zeros((heigh, widht, 4), np.uint8)

img[:, :, :3] = background_color

img[:, :, 3] = 255

return img

def set_color(img, x, y, color):

img[x, y, :3] = color

return img

def draw_line(img, x0, y0, x1, y1, color):

# Bresenham algorithm

steps_num = int(np.max([np.abs(x0-x1), np.abs(y0-y1)]))

sp = np.linspace(0, 1, steps_num + 1)

x_coords = np.int32(np.round(x0*sp + x1*(1-sp)))

y_coords = np.int32(np.round(y0 * sp + y1 * (1 - sp)))

x_ind = (x_coords>0) & (x_coords < img.shape[0])

y_ind = (y_coords > 0) & (y_coords < img.shape[0])

ind = x_ind & y_ind

x_coords = x_coords[ind]

y_coords = y_coords[ind]

img = set_color(img, x_coords, y_coords, color)

return img

def show_image(img):

img = np.flipud(img)

plt.figure()

plt.imshow(img)

plt.show()

return 0
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def save_image(img, name):

img = np.flipud(img)

imsave(name, img)

return 0

def create_hermite_spline():

h = 1024

w = 1024

black = np.array([0, 0, 0], np.uint8)

green = np.array([0, 255, 0], np.uint8)

red = np.array([255, 0, 0], np.uint8)

img = create_image(h, w, black)

N = 10 # points number

x = np.random.randint(50, w-50, 10)

x = np.sort(x)

y = np.random.randint(50, h-50, 10)

d = 20*np.random.rand(10)-10

for i in range(N-1):

m = np.array([[1, x[i], x[i]**2, x[i]**3], [1, x[i+1], x[i+1]**2,

x[i+1]**3], [0, 1, 2*x[i], 3*x[i]**2], [0, 1, 2*x[i+1],

3*x[i+1]**2]])

b = np.array([y[i], y[i+1], d[i], d[i+1]]).T

a = np.linalg.inv(m).dot(b)

for j in range(x[i], x[i+1]+1):

y_j = a[0] + a[1]*j + a[2]*j**2 + a[3]*j**3

y_j_1 = a[0] + a[1]*(j+1) + a[2]*(j+1)**2 + a[3]*(j+1)**3

draw_line(img, j, y_j, j+1, y_j_1, green)

set_color(img, x, y, red)

set_color(img, x+1, y, red)

set_color(img, x-1, y, red)

set_color(img, x, y+1, red)

set_color(img, x, y-1, red)

img = np.transpose(img, axes = (1,0,2))
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#save_image(img, 'hermite_spline.tga')

show_image(img)

if __name__ == '__main__':

create_hermite_spline()

7. Ðàçíûå ïðèìåðû

7.1. Èìèòèðîâàíèå êàïåëü äîæäÿ íà ïîâåðõíîñòè

Áàçîâûé êëàññ àíèìàöèè animation èìååò äåëî ñ àíèìàöèîííîé ÷à-
ñòüþ. Îí îáåñïå÷èâàåò îñíîâó, íà êîòîðîé ïîñòðîåíû ôóíêöèè àíèìàöèè.
Äëÿ ýòîãî åñòü äâà îñíîâíûõ èíòåðôåéñà: FuncAnimation - ñîçäàåò àíè-
ìàöèþ, ìíîãîêðàòíî âûçûâàÿ ôóíêöèþ func. ArtistAnimation - àíèìàöèÿ
ñ èñïîëüçîâàíèåì ôèêñèðîâàííîãî íàáîðà îáúåêòîâ Artist.

import numpy as np

import matplotlib.pyplot as plt

from matplotlib.animation import FuncAnimation, PillowWriter

# Fixing random state for reproducibility

np.random.seed(19680801)

# Create new Figure and an Axes which fills it.

fig = plt.figure(figsize=(7, 7))

ax = fig.add_axes([0, 0, 1, 1], frameon=False)

ax.set_xlim(0, 1), ax.set_xticks([])

ax.set_ylim(0, 1), ax.set_yticks([])

# Create rain data

n_drops = 50

rain_drops = np.zeros(n_drops, dtype=[('position', float, 2),

('size', float, 1),

('growth', float, 1),

('color', float, 4)])

# Initialize the raindrops in random positions and with

# random growth rates.

rain_drops['position'] = np.random.uniform(0, 1, (n_drops, 2))

rain_drops['growth'] = np.random.uniform(50, 200, n_drops)

# Construct the scatter which we will update during animation
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# as the raindrops develop.

scat = ax.scatter(rain_drops['position'][:, 0],

rain_drops['position'][:, 1],

s=rain_drops['size'], lw=0.5, edgecolors=rain_drops['color'],

facecolors='none')

def update(frame_number):

# Get an index which we can use to re-spawn the oldest raindrop.

current_index = frame_number % n_drops

# Make all colors more transparent as time progresses.

rain_drops['color'][:, 3] -= 1.0/len(rain_drops)

rain_drops['color'][:, 3] = np.clip(rain_drops['color'][:, 3], 0,

1)

# Make all circles bigger.

rain_drops['size'] += rain_drops['growth']

# Pick a new position for oldest rain drop, resetting its size,

# color and growth factor.

rain_drops['position'][current_index] = np.random.uniform(0, 1, 2)

rain_drops['size'][current_index] = 5

rain_drops['color'][current_index] = (0, 0, 0, 1)

rain_drops['growth'][current_index] = np.random.uniform(50, 200)

# Update the scatter collection, with the new colors, sizes and

positions.

scat.set_edgecolors(rain_drops['color'])

scat.set_sizes(rain_drops['size'])

scat.set_offsets(rain_drops['position'])

# Construct the animation, using the update function as the

animation director.

animation = FuncAnimation(fig, update, interval=10)

#plt.show()

# Construct the animation, using the update function as the

animation director.

animation = FuncAnimation(fig, update, interval=10)

#plt.show()

animation.save('file.gif',writer=PillowWriter(fps=25))
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7.2. Àíèìàöèÿ ôóíêöèè sin(x)

Âîñïîëüçóåìñÿ èíòåðôåéñîì FuncAnimation äëÿ àíèìàöèè ãðàôèêà
ñèíóñà.

Â ñòðîêàõ (7�9) ìû ïðîñòî ñîçäàåì îêíî ôèãóðû ñ åäèíñòâåííîé îñüþ
íà ðèñóíêå. Çàòåì ìû ñîçäàåì îáúåêò ñ ïóñòîé ñòðîêîé, êîòîðûé, ïî ñó-
òè, è äîëæåí áûòü èçìåíåí â àíèìàöèè. Â ñòðîêàõ (11�13) ìû ñîçäàåì
ôóíêöèþ init, êîòîðàÿ áóäåò çàïóñêàòü àíèìàöèþ. Ôóíêöèÿ init èíèöèà-
ëèçèðóåò äàííûå, à òàêæå óñòàíàâëèâàåò ïðåäåëû îñè. Â ñòðîêàõ (14�18)
ìû, íàêîíåö, îïðåäåëÿåì ôóíêöèþ àíèìàöèè, êîòîðàÿ ïðèíèìàåò íîìåð
êàäðà (i) â êà÷åñòâå ïàðàìåòðà è ñîçäàåò ñèíóñîèäàëüíóþ âîëíó (èëè ëþ-
áóþ äðóãóþ àíèìàöèþ), êîòîðàÿ èçìåíÿåòñÿ â çàâèñèìîñòè îò çíà÷åíèÿ
i. Â ñòðîêå 20 ìû ñîçäàåì ôàêòè÷åñêèé îáúåêò àíèìàöèè. Ïàðàìåòð blit
ãàðàíòèðóåò, ÷òî ïåðåðèñîâûâàþòñÿ òîëüêî òå ÷àñòè ãðàôèêà, êîòîðûå
áûëè èçìåíåíû.

import numpy as np

from matplotlib import pyplot as plt

from matplotlib.animation import FuncAnimation, PillowWriter

plt.style.use('seaborn-pastel')

fig = plt.figure()

ax = plt.axes(xlim=(0, 4), ylim=(-2, 2))

line, = ax.plot([], [], lw=3)

def init():

line.set_data([], [])

return line,

def animate(i):

x = np.linspace(0, 4, 1000)

y = np.sin(2 * np.pi * (x - 0.01 * i))

line.set_data(x, y)

return line,

anim = FuncAnimation(fig, animate, init_func=init, frames=200,

interval=20, blit=True)

anim.save('file2.gif',writer=PillowWriter(fps=25))

7.3. Åùå îäèí âàðèàíò ðèñîâàíèÿ ãðàôèêà sin(x))

import numpy as np

import matplotlib.pyplot as plt
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from matplotlib.animation import FuncAnimation, PillowWriter

fig, ax = plt.subplots()

x = np.arange(0, 2*np.pi, 0.01)

line, = ax.plot(x, np.sin(x))

def init(): # only required for blitting to give a clean slate.

line.set_ydata([np.nan] * len(x))

return line,

def animate(i):

line.set_ydata(np.sin(x + i / 100)) # update the data.

return line,

ani = animation.FuncAnimation(

fig, animate, init_func=init, interval=2, blit=True,

save_count=50)

# To save the animation, use e.g.

#

ani.save("movie.mp4")

# To save the animation, use e.g.

#

ani.save("movie.mp4")

## or

## from matplotlib.animation import FFMpegWriter

# writer = FFMpegWriter(fps=15, metadata=dict(artist='Me'),

bitrate=1800)

# ani.save("movie.mp4", writer=writer)

plt.show()
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