
ÌÈÍÈÑÒÅÐÑÒÂÎ ÍÀÓÊÈ È ÂÛÑØÅÃÎ ÎÁÐÀÇÎÂÀÍÈß
ÐÎÑÑÈÉÑÊÎÉ ÔÅÄÅÐÀÖÈÈ

ÊÀÇÀÍÑÊÈÉ (ÏÐÈÂÎËÆÑÊÈÉ) ÔÅÄÅÐÀËÜÍÛÉ
ÓÍÈÂÅÐÑÈÒÅÒ

ÈÍÑÒÈÒÓÒ ÂÛ×ÈÑËÈÒÅËÜÍÎÉ ÌÀÒÅÌÀÒÈÊÈ È
ÈÍÔÎÐÌÀÖÈÎÍÍÛÕ ÒÅÕÍÎËÎÃÈÉ

Êàôåäðà ñèñòåìíîãî àíàëèçà è èíôîðìàöèîííûõ òåõíîëîãèé

Äîëãîâ Äìèòðèé Àëåêñàíäðîâè÷

Êîìïüþòåðíàÿ ãðàôèêà
Ìåòîäè÷åñêîå ïîñîáèå

ÊÀÇÀÍÜ, 2025

ÓÄÊ 004.92, 004.42

ÁÁÊ 32.97, 32.972.131.2, 32.973

Ðåêîìåíäîâàíî ê èçäàíèþ
Ó÷åáíî-ìåòîäè÷åñêîé êîìèññèåé ÈÂÌèÈÒ ÊÔÓ

(Ïðîòîêîë � 8 îò 18 àïðåëÿ 2025 ãîäà)

Ðåöåíçåíòû:

çàâåäóþùèé êàôåäðû ñèñòåìíîãî àíàëèçà è èíôîðìàöèîííûõ
òåõíîëîãèé ÊÔÓ, äîöåíò, êàíäèäàò ôèçèêî-ìàòåìàòè÷åñêèõ íàóê À.Â.

Âàñèëüåâ;
êàíäèäàò ôèçèêî-ìàòåìàòè÷åñêèõ íàóê, äîöåíò êàôåäðû àëãåáðû è

ìàòåìàòè÷åñêîé ëîãèêè ÊÔÓ Ì.Ì. ßìàëååâ

Äîëãîâ Ä.À.

Êîìïüþòåðíàÿ ãðàôèêà: Ìåòîäè÷åñêîå ïîñîáèå / Ä.À. Äîëãîâ.
� Êàçàíü: Èçä-âî Êàçàí. óí-òà, 2025. � 25 ñ.

Ìåòîäè÷åñêîå ïîñîáèå ïðåäíàçíà÷åíî äëÿ ïðîâåäåíèÿ ïðàêòè÷åñêèõ
çàíÿòèé ïî êóðñó ¾Êîìïüþòåðíàÿ ãðàôèêà¿ äëÿ ñòóäåíòîâ, îáó÷àþùèõ-
ñÿ ïî íàïðàâëåíèÿì ¾Ôóíäàìåíòàëüíàÿ èíôîðìàòèêà è èíôîðìàöèîí-
íûå òåõíîëîãèè¿, ¾Èíôîðìàöèîííàÿ áåçîïàñíîñòü¿. Ìåòîäè÷åñêîå ïîñî-
áèå äàåò íåîáõîäèìûå îñíîâû àëãåáðû è ãåîìåòðèè, íåîáõîäèìûõ äëÿ
âûïîëíåíèÿ ëàáîðàòîðíûõ è äîìàøíèõ ðàáîò. Çäåñü ïðåäñòàâëåíû ïðè-
ìåðû ðèñîâàíèÿ ãåîìåòðè÷åñêèõ ôèãóð, ñîçäàíèå àíèìàöèè. Ïðîãðàìì-
íûé êîä íàïèñàí íà ÿçûêå ïðîãðàììèðîâàíèÿ Python ñ èñïîëüçîâàíèåì
áèáëèîòåê NumPy, matplotlib.

ÓÄÊ 004.92, 004.42

ÁÁÊ 32.97, 32.972.131.2, 32.973

©Äîëãîâ Ä.À., 2025
©Êàçàíñêèé (Ïðèâîëæñêèé) ôåäåðàëüíûé óíèâåðñèòåò, 2025

Ñîäåðæàíèå

1. Ââåäåíèå 4

2. Ðàáîòà ñ NumPy 5

2.1. Ñîçäàíèå ìàññèâà . 6

3. Ðèñîâàíèå ñ ïîìîùüþ áèáëèîòåêè matplotlib 9

4. Ðèñîâàíèå òðåóãîëüíèêà 10

4.1. Àôèííûå ïðåîáðàçîâàíèÿ . 10
4.2. Ïðèìåð . 12

5. Ñîçäàíèå àíèìàöèè 14

6. Ïîñòðîåíèå êóáè÷åñêîãî ñïëàéíà 16

7. Ðàçíûå ïðèìåðû 20

7.1. Èìèòèðîâàíèå êàïåëü äîæäÿ íà ïîâåðõíîñòè 20
7.2. Àíèìàöèÿ ôóíêöèè sin(x) . 22
7.3. Åùå îäèí âàðèàíò ðèñîâàíèÿ ãðàôèêà sin(x)) 22

Êîìïüþòåðíàÿ ãðàôèêà. Äîëãîâ Ä.À., ÊÑÀÈÒ, ÈÂÌèÈÒ ÊÔÓ

1. Ââåäåíèå

Êîìïüþòåðíàÿ ãðàôèêà ïðåäíàçíà÷åíà äëÿ ïåðåäà÷è è ìàíèïóëèðî-
âàíèÿ èíôîðìàöèåé â ãðàôè÷åñêîé ôîðìå. Èíôîðìàöèÿ âèçóàëèçèðó-
åòñÿ ïîñðåäñòâîì ôèãóð, çíàêîâ, öâåòà. Êîìïüþòåðíàÿ ãðàôèêà ïðåä-
ñòàâëÿåò ñîáîé êðîññ-äèñöèïëèíàðíóþ íàóêó. Â íå¼ âõîäèò ìàòåìàòèêà,
ôèçèêà, áèîëîãèÿ, äèçàéí, è äð.

Çà÷åì èçó÷àòü êîìïüþòåðíóþ ãðàôèêó?

1) Äëÿ �ïðàâèëüíîãî� ñîçäàíèÿ è êîððåêöèè èçîáðàæåíèé (íåóäà÷íàÿ
öâåòîïåðåäà÷à, ìóòíîå èçîáðàæåíèå è ò.ï.).

2) Ïîíèìàíèå ïðèíöèïîâ óñòðîéñòâà çðåíèÿ, îáðàáîòêè öâåòà êîìïüþ-
òåðîì ïîçâîëÿåò ïîíÿòü óñòðîéñòâî ïðèâû÷íûõ íàì âåùåé: îò ôî-
òîãðàôèé è òåëåâèäåíèÿ äî àëãîðèòìîâ ñæàòèÿ è ãðàôè÷åñêèõ ðå-
äàêòîðîâ.

Êîìïþòåðíàÿ ãðàôèêà èìååò ìíîãî ðàçíûõ îáëàñòåé ïðèìåíåíèÿ:

� Êèíåìàòîãðàôèÿ (ñïåöýôôåêòû)

� Êîìïüþòåðíûå èãðû

� Âèðòóàëüíàÿ ðåàëüíîñòü è äîïîëíåííàÿ ðåàëüíîñòü

� Ðàçðàáîòêà ÏO (ñîçäàíèå èíòåðôåéñîâ)

� Àâòîìîáèëåñòðîåíèå (ðàçðàáîòêà ýñêèçà, ìîäåëèðîâàíèå ïîâåäåíèÿ
äåòàëåé)

� Ìåäèöèíà (Òîìîãðàôèÿ)

� Àðõèòåêòóðà (CAD ñèñòåìû)

� Õèìèÿ (âèçóàëüíîå ïðåäñòàâëåíèå ìîëåêóë)

� Âèðóñîëîãèÿ

� Big Data (âèçóàëèçàöèÿ äàííûõ)

� Ñòåãàíîãðàôèÿ è.ò.ä.

Ìåòîäè÷åñêîå ïîñîáèå äàåò íåîáõîäèìûå îñíîâû àëãåáðû è ãåîìåò-
ðèè, íåîáõîäèìûõ äëÿ âûïîëíåíèÿ ëàáîðàòîðíûõ è äîìàøíèõ ðàáîò.
Çäåñü ïðåäñòàâëåíû ïðèìåðû ðèñîâàíèÿ ãåîìåòðè÷åñêèõ ôèãóð, ñîçäà-
íèå àíèìàöèè. Ïðîãðàììíûé êîä íàïèñàí íà ÿçûêå ïðîãðàììèðîâàíèÿ
Python ñ èñïîëüçîâàíèåì áèáëèîòåê NumPy, matplotlib.

4

Êîìïüþòåðíàÿ ãðàôèêà. Äîëãîâ Ä.À., ÊÑÀÈÒ, ÈÂÌèÈÒ ÊÔÓ

2. Ðàáîòà ñ NumPy

NumPy � áèáëèîòåêà ñ îòêðûòûì èñõîäíûì êîäîì äëÿ ÿçûêà ïðî-
ãðàììèðîâàíèÿ Python. Âîçìîæíîñòè: ïîääåðæêà ìíîãîìåðíûõ ìàññè-
âîâ (âêëþ÷àÿ ìàòðèöû); ïîääåðæêà âûñîêîóðîâíåâûõ ìàòåìàòè÷åñêèõ
ôóíêöèé, ïðåäíàçíà÷åííûõ äëÿ ðàáîòû ñ ìíîãîìåðíûìè ìàññèâàìè. Áèá-
ëèîòåêà NumPy ïðåäîñòàâëÿåò ðåàëèçàöèè âû÷èñëèòåëüíûõ àëãîðèòìîâ (â
âèäå ôóíêöèé è îïåðàòîðîâ), îïòèìèçèðîâàííûå äëÿ ðàáîòû ñ ìíîãîìåð-
íûìè ìàññèâàìè. Â ðåçóëüòàòå ëþáîé àëãîðèòì,p êîòîðûé ìîæåò áûòü
âûðàæåí â âèäå ïîñëåäîâàòåëüíîñòè îïåðàöèé íàä ìàññèâàìè (ìàòðèöà-
ìè) è ðåàëèçîâàííûé ñ èñïîëüçîâàíèåì NumPy, ðàáîòàåò òàê æå áûñòðî,
êàê ýêâèâàëåíòíûé êîä, âûïîëíÿåìûé â MATLAB.

NumPy � áèáëèîòåêà äëÿ ðàáîòû ñ ìàññèâàìè. Îñíîâíàÿ ñòðóêòóðà
- ìàññèâ (array) îïðåäåëåííîãî òèïà. Ïîääåðæèâàþòñÿ îñíîâíûå òèïû
äàííûõ: np.int8, np.int16, np.int32, np.�oat16, np.�oat32, �oat64, np.uint8,
np.complex64, np.bool è äð.

Äëÿ óñòàíîâêè NumPy â Pycharm âûáåðèòå File -> Settings, ïîñëå ÷å-
ãî íàæìèòå íà

5

Êîìïüþòåðíàÿ ãðàôèêà. Äîëãîâ Ä.À., ÊÑÀÈÒ, ÈÂÌèÈÒ ÊÔÓ

Óñòàíîâêà áèáëèîòåêè matplotlib ïðîèñõîäèò òàêèì æå îáðàçîì.

2.1. Ñîçäàíèå ìàññèâà

Ïðèìåð 1.

import numpy as np

a=np.array([[1,2,3],[4,-5,8],[3,6,8]])

print(a)

Ïðèìåð 2.

import numpy as np

b = np.array([1,2,3], dtype = np.float32)

print(b)

Ïðèìåð 3. Êàæäûé ìàññèâ èìååò îïðåäåëåííûé íàáîð àòðèáóòîâ: ðàç-
ìåð, êîëè÷åñòâî ýëåìåíòîâ, òèï è äð. Äëÿ ïîëó÷åíèÿ çíà÷åíèé àòðèáóòîâ
ìîæíî âîñïîëüçîâàòüñÿ ñëåäóþùèìè ôóíêöèÿìè shape, size, dtype.

import numpy as np

a=np.array([[1,2,3],[4,-5,8],[3,6,8]])

print(a)

print('shape:', a.shape)

print('size:', a.size)

print('type:', a.dtype)

6

Êîìïüþòåðíàÿ ãðàôèêà. Äîëãîâ Ä.À., ÊÑÀÈÒ, ÈÂÌèÈÒ ÊÔÓ

Ïðèìåð 4. Ôóíêöèè zeros, ones ïîçâîëÿþò ñîçäàâàòü ìàññèâû çàïîë-
íåííûå îïðåäåëåííûìè çíà÷åíèÿìè. Â êà÷åñòâå àðãóìåíòà óêàçûâàþòñÿ
ðàçìåðû ñîçäàâàåìîãî ìàññèâà.

import numpy as np

z=np.zeros((2,3))

print('zero array', z)

o=np.ones((3,4))

print('ones array', o)

Ïðèìåð 5. Äëÿ ñîçäàíèÿ ìàññèâà èç ïîñëåäîâàòåëüíûõ çíà÷åíèé ìîæíî
âîñïîëüçîâàòüñÿ ôóíêöèÿìè np.arange() è np.linspace(). Ïåðâàÿ ôóíêöèÿ
ÿâëÿåòñÿ àíàëîãîì îïåðàòîðà range â ÿçûêå Python. Ìîæåò ïðèíèìàòü
äî 3-õ àðãóìåíòîâ. Ôîðìèðóåò ìàññèâ ñîñòîÿùèé èç ïîñëåäîâàòåëüíûõ
ýëåìåíòîâ, îïðåäåëåííûõ àðãóìåíòàìè ôóíêöèè: íà÷àëî, êîíåö, øàã.

import numpy as np

ar = np.arange(10)

print(ar)

ar2 = np.arange(10,20)

print(ar2)

ar3 = np.arange(10,20,2)

print(ar3)

Ïðèìåð 6. Ôóíêöèÿ linspace() ïîçâîëÿåò ñîçäàâàòü ðàâíîìåðíî ðàçáè-
åíèå èíòåðâàëà íà N òî÷åê. Â êà÷åñòâå àðãóìåíòà ôóíêöèÿ ïðèíèìàåò
íà÷àëî èíòåðâàëà, êîíåö èíòåðâàëà è êîëè÷åñòâî òî÷åê ðàâíîìåðíî ðàñ-
ïîëîæåííûõ òî÷åê íà èíòåðâàëå. Íà âûõîäå ìàññèâ êîëè÷åñòâî ýëåìåí-
òîâ â êîòîðîì ñîâïàäàåò ñ êîëè÷åñòâîì òî÷åê, ïåðâûé ýëåìåíò ñîâïàäàåò
ñ íà÷àëîì èíòåðâàëà, ïîñëåäíèé ñ êîíöîì èíòåðâàëà, à îñòàëüíûå ýëå-
ìåíòû ðàâíîìåðíî ìåæäó íà÷àëîì è êîíöîì.

import numpy as np

t = np.linspace(0,1,11)

print(t)

Ïðèìåð 7. Ñëåäóþùèå ôóíêöèè ïîçâîëÿþò ñîçäàâàòü ìàññèâû ñî ñëó-
÷àéíûìè çíà÷åíèÿìè îïðåäåëåííîãî ðàñïðåäåëåíèÿ. Â êà÷åñòâå àðãóìåí-
òîâ ïîäàþòñÿ ðàçìåðû ñîçäàâàåìûõ ìàññèâîâ. Ôóíêöèÿ np.random.rand(10,10)
çàäàåò ðàâíîìåðíîå ðàñïðåäåëåíèå U(0,1), ïîëó÷àåì ìàòðèöó 10*10. Ôóíê-
öèÿ np.random.randn(10,10) çàäàåò íîðìàëüíîå ðàñïðåäåëåíèå N(0,1), ïî-
ëó÷àåì ìàòðèöó 10*10.

7

Êîìïüþòåðíàÿ ãðàôèêà. Äîëãîâ Ä.À., ÊÑÀÈÒ, ÈÂÌèÈÒ ÊÔÓ

import numpy as np

r = np.random.rand(10,10)

print(r)

r2 = np.random.randn(10,10)

print(r2)

Ïðèìåð 8. Numpy ïîääåðæèâàåò âåêòîðíûå âû÷èñëåíèÿ. Ñòàíäàðòíûå
ìàòåìàòè÷åñêèå îïåðàöèè +,-,*,/ ïðè ýòîì âûïîëíÿþòñÿ ïîýëåìåíòíî,
íåîáõîäèìî òîëüêî îáåñïå÷èâàòü ñîãëàñîâàííîñòü ðàçìåðîâ.

import numpy as np

a = np.arange(5)

b = np.ones((5))

c = a+b

print(c)

Ïðèìåð 9. Íàäî ïîìíèòü, ÷òî ïðèìåíèè * ïðîèçâîäèò ïîýëåìåíòíîå,
à íå ìàòðè÷íîå óìíîæåíèå ìàññèâîâ. Äëÿ ìàòðè÷íîãî óìíîæåíèÿ äâóõ
ìàññèâîâ ìîæíî âîñïîëüçîâàòüñÿ ôóíêöèåé np.dot() èëè îïåðàòîðîì @:

import numpy as np

r = np.random.rand(10,10)

print(r)

r2 = np.random.randn(10,10)

m = np.dot(r, r2)

print(m)

m2 = r @ r2

print(m2)

Ïðèìåð 10. Êðîìå ýòîãî ñóùåñòâóåò áîëüøîå êîëè÷åñòâî ôóíêöèé, êî-
òîðûå ïîçâîëÿþò âû÷èñëÿòü îïðåäåëåííûå õàðàêòåðèñòèêè ìàññèâà.

import numpy as np

r2 = np.random.randn(10,10)

print(np.max(r2))

print(np.min(r2))

print(np.mean(r2))

print(np.var(r2))

print(np.median(r2))

Ïðèìåð 11. Îáðàùåíèå ïî èíäåêñàì â Numpy ïðîèñõîäèò àíàëîãè÷íî
ñïèñêàì.

import numpy as np

8

Êîìïüþòåðíàÿ ãðàôèêà. Äîëãîâ Ä.À., ÊÑÀÈÒ, ÈÂÌèÈÒ ÊÔÓ

r2 = np.random.randn(10,10)

print(r2[0,0])

print(r2[3,:])

print(r2[2:7, 3:9])

print(r2[2:7:2, 3:9:3])

Ïðèìåð 12. Çäåñü ðàçìåðû inds ñîâïàäàþò ñ ðàçìåðàìè r2, çíà÷åíèÿ
True ñòîÿò â òåõ ÿ÷åéêàõ, ãäå ýëåìåíòû r2 áîëüøå íóëÿ. Â ïîñëåäíåé
ñòðîêå ýëåìåíòû ìàññèâà r2, ðàñïîëîæåííûå â òåõ æå ïîçèöèÿõ, ÷òî è
ýëåìåíòû True ìàññèâà inds, îáíóëÿþòñÿ.

import numpy as np

r2 = np.random.randn(10,10)

inds = r2 > 0

r2[inds] = 0

print(r2)

Ïðèìåð 13. Â Numpy åñòü âîçìîæíîñòü èçìåíèòü ðàçìåð ìàññèâà ñ
ïîìîùüþ ôóíêöèè np.reshape(). Ïðè ýòîì íóæíî îáåñïå÷èòü, ÷òîáû ðàç-
ìåðû íîâîãî ìàññèâà äàâàëè òàêîå æå êîëè÷åñòâî ýëåìåíòîâ. np.hstack()
� êîíêàòåíàöèÿ â ãîðèçîíòàëüíîì íàïðàâëåíèè, à np.vstack() � â âåðòè-
êàëüíîì.

import numpy as np

d = np.arange(9)

f = np.reshape(d, (3,3))

print(f)

h = np.hstack((f,f))

print(h)

v = np.vstack((f,f))

print(v)

3. Ðèñîâàíèå ñ ïîìîùüþ áèáëèîòåêè matplotlib

matplotlib � áèáëèîòåêà, êîòîðàÿ ïðåäîñòàâëÿåò âîçìîæíîñòü âèçóà-
ëèçèðîâàòü äàííûå. Íèæå ïðèâåäåí ïðèìåð ïîñòðîåíèÿ ïðîñòîãî ãðàôè-
êà ïàðàáîëû.
Ïðèìåð 1. Ôóíêöèÿ plt.�gure() îòâå÷àåò çà ñîçäàíèå ãðàôè÷åñêîãî îêíà.
Ôóíêöèÿ plt.plot(x,y) îòâå÷àåò çà ðèñîâàíèå ãðàôèêà. Ôóíêöèÿ plt.show()
îòâå÷àåò çà îòîáðàæåíèå íà ýêðàíå.

import matplotlib.pyplot as plt

9

Êîìïüþòåðíàÿ ãðàôèêà. Äîëãîâ Ä.À., ÊÑÀÈÒ, ÈÂÌèÈÒ ÊÔÓ

import numpy as np

x = np.linspace(-3,3,100)

y = x**2

plt.figure()

plt.plot(x,y)

plt.show()

Ïðèìåð 2. Ïðèìåð îòîáðàæåíèÿ çåëåíîãî êâàäðàòà íà ÷åðíîì õîëñòå
è åãî ñîõðàíåíèÿ. Ïðè ïîìîùè np.zeros ñîçäàåì ÷åðíûé õîëñò. Ïîòîì
ïðè ïîìîùè çàäàííîãî ñðåçà ðèñóåì çåëåíûé êâàäðàò íà ÷åðíîì õîëñòå.
Ôóíêöèÿ plt.imsave îòâå÷àåò çà ñîõðàíåíèå èçîáðàæåíèÿ.

import matplotlib.pyplot as plt

import numpy as np

img = np.zeros((1024, 1024, 3), dtype = np.uint8)

img[300:700, 300:700, 1] = 255

plt.figure()

plt.imshow(img)

plt.show()

plt.imsave('simple_image.png', img)

4. Ðèñîâàíèå òðåóãîëüíèêà

4.1. Àôèííûå ïðåîáðàçîâàíèÿ

Ðàññìàòðèâàþòñÿ ïðåîáðàçîâàíèÿ ñ íåâûðîæäåííîé ìàòðèöåé ñëåäó-
þùåãî âèäà: (

x′

y′

)
=

(
a11 a12
a21 a22

)(
x
y

)
+

(
b1
b2

)
Â ìàòðè÷íîé ôîðìå ïðåîáðàçîâàíèå çàïèøåòñÿ â âèäå:

X ′ = A ∗X +B, det(A) ̸= 0

Àôôèííîå ïðåîáðàçîâàíèå ïðèìåíÿåòñÿ ê êàæäîé êîîðäèíàòå ãåî-
ìåòðè÷åñêîé ìîäåëè. Â ðåçóëüòàòå ïðîèñõîäèò òðàíñôîðìàöèÿ ìîäåëè.
Ðåçóëüòàò òðàíñôîðìàöèè çàâèñèò îò âèäà ìàòðèöû A è âåêòîðà B. Â
îáùåì ñëó÷àå ïðåîáðàçîâàíèå ïðåäñòàâëÿåò ñîáîé ëèíåéíîå ïðåîáðàçî-
âàíèå è ïàðàëëåëüíûé ïåðåíîñ. B � âåêòîð, íà êîòîðûé ïðîèçâîäèòñÿ
ïàðàëëåëüíûé ïåðåíîñ. Åñëè íóëåâîé, òî ïåðåíîñà íåò. A � ìàòðèöà ëè-
íåéíîãî ïðåîáðàçîâàíèÿ. Â çàâèñèìîñòè îò âèäà ìàòðèöû A îñóùåñòâëÿ-

10

Êîìïüþòåðíàÿ ãðàôèêà. Äîëãîâ Ä.À., ÊÑÀÈÒ, ÈÂÌèÈÒ ÊÔÓ

þòñÿ ðàçëè÷íûå ëèíåéíûå ïðåîáðàçîâàíèÿ. Âûäåëÿþò ñëåäóþùèå ñïå-
öèàëüíûå ñëó÷àè: A=I - áóäåò ëèíåéíûé ïåðåíîñ íà âåêòîð B. A � äèàãî-
íàëüíàÿ. Ïðîèçâîäèòñÿ ìàñøòàáèðîâàíèå ôèãóðû. Ýëåìåíòû äèàãîíàëè
îòâå÷àþò çà ìàñøòàáèðîâàíèå ïî ñîîòâåòñòâóþùèì îñÿì. A � îðòîãî-
íàëüíàÿ. Ïðîèçâîäèòñÿ ïîâîðîò âîêðóã íà÷àëà êîîðäèíàò!

A =

(
cos(α) − sin(α)
sin(α) cos(α)

)
det(A) > 0 : ñîõðàíÿåòñÿ îáõîä âåðøèí. det(A) < 0 : îáõîä âåðøèí

ìåíÿåòñÿ.
Àôôèííîå ïðåîáðàçîâàíèå ìîæíî êîìïàêòíî çàïèñàòü ñ ïîìîùüþ

ïðîåêòèâíûõ êîîðäèíàò.
Ïåðåõîä îò îáû÷íûõ êîîðäèíàò ê ïðîåêòèâíûì è íàîáîðîò îñóùåñòâ-

ëÿåòñÿ ñ ïîìîùüþ ôîðìóë:

(x, y) = (x, y, 1)

(x1, x2, x3)

(
x1

x3

,
x2

x3

)
Àôôèííîå ïðåîáðàçîâàíèå â ïðîåêòèâíûõ êîîðäèíàòàõ:x1

′

x2
′

x3
′

 =

a11 a12 b1
a21 a22 b2
0 0 1

x1

x2

x3


Ò.ê. òðåòüÿ êîîðäèíàòà x3 ïðè ïåðåõîäå îò äåêàðòîâûõ êîîðäèíàò ðàâ-

íà 1, òî ïðåäñòàâëåííàÿ ôîðìóëà ñîâïàäàåò ïî çíà÷åíèÿì ñ ðåçóëüòàòîì
ôîðìóëû äëÿ äåêàðòîâûõ êîîðäèíàò. Áëàãîäàðÿ êîìïàêòíîìó ïðåäñòàâ-
ëåíèþ â ïðîåêòèâíûõ êîîðäèíàòàõ âîçìîæíî ïðèìåíåíèÿ àôôèííîãî
ïðåîáðàçîâàíèÿ êî âñåì âåðøèíàì ìîäåëè ïðåäñòàâëåííûõ â ìàòðèöå
ñ âûïèñàííûìè ïî ñòðîêàì êîîðäèíàòàìè:x11

′ · · · x1n
′

x21
′ · · · x2n

′

x31
′ · · · x3n

′

 =

a11 a12 b1
a21 a22 b2
0 0 1

x11 · · · x1n

x21 · · · x2n

x31 · · · x3n


X- ìàòðèöà, ñîñòîÿùàÿ èç êîîðäèíàò âåðøèí ãåîìåòðè÷åñêîé ìîäåëè

â ïðîåêòèâíîé ôîðìå, âûïèñàííûõ ïî ñòîëáöàì.
X'- ìàòðèöà, ñîñòîÿùàÿ èç êîîðäèíàò âåðøèí òðàíñôîðìèðîâàííîé

ãåîìåòðè÷åñêîé ìîäåëè â ïðîåêòèâíîé ôîðìå, âûïèñàííûõ ïî ñòîëáöàì.
Ñ ïîìîùüþ òàêîãî ïðåäñòàâëåíèÿ äàííîé îïåðàöèè ìîæíî ðåàëèçî-

âàòü ðàñïàðàëëåëèâàíèå ïðîöåññà âû÷èñëåíèÿ íà ãðàôè÷åñêèõ âèäåîêàð-
òàõ.

11

Êîìïüþòåðíàÿ ãðàôèêà. Äîëãîâ Ä.À., ÊÑÀÈÒ, ÈÂÌèÈÒ ÊÔÓ

4.2. Ïðèìåð

Íèæå ïðèâåäåíû ïðèìåðû àôôèííîãî ïðåîáðàçîâàíèÿ ïðîñòîãî ãåî-
ìåòðè÷åñêîãî ïðèìèòèâà â âèäå òðåóãîëüíèêà.
Ïðèìåð 1.

Transform

import numpy as np

import matplotlib.pyplot as plt

def bVec():

b = np.array([0, 0])

return b

def rotMatr(ang):

mtr = np.array([[np.cos(ang), -np.sin(ang)], [np.sin(ang),

np.cos(ang)]])

return mtr

def diagMatr():

mtr = np.array([[2, 0], [0, 2]])

return mtr

def detPos():

mtr = np.array([[1.5, 1], [0.5, 1.2]])

return mtr

def detNeg():

mtr = np.array([[0.5, 1], [1.5, -1]])

return mtr

def to_proj_coords(x):

r,c = x.shape

x = np.concatenate([x, np.ones((1,c))], axis = 0)

return x

def to_cart_coords(x):

x = x[:-1]/x[-1]

return x

pt0 = [1, 1]

pt1 = [3, 3]

pt2 = [5, 2]

12

Êîìïüþòåðíàÿ ãðàôèêà. Äîëãîâ Ä.À., ÊÑÀÈÒ, ÈÂÌèÈÒ ÊÔÓ

x = np.array([pt0, pt1, pt2], dtype = np.float32).T

x_proj = to_proj_coords(x)

linear transform matrix

a = rotMatr(np.pi/4) # change rotation angle

a = diagMatr()

a = detPos()

a = detNeg()

shift vector

b = bVec() # change to non-zero

m = np.zeros((3,3))

m[:2,:2] = a

m[:2,-1] = b

m[-1,-1] = 1

x_new_proj = m @ x_proj

x_new = to_cart_coords(x_new_proj)

drawing

plt.figure()

plt axes

plt.plot([-10, 10],[0,0], 'k')

plt.plot([0,0],[-10, 10], 'k')

plot initial figure

plt.plot(x[0, [0,1,2,0]], x[1, [0,1,2,0]], 'r')

plt.plot(x[0,0], x[1,0], 'or')

plt.plot(x[0,1], x[1,1], 'og')

plt.plot(x[0,2], x[1,2], 'ob')

plot transformed figure

plt.plot(x_new[0, [0,1,2,0]], x_new[1, [0,1,2,0]], 'g')

plt.plot(x_new[0,0], x_new[1,0], 'or')

plt.plot(x_new[0,1], x_new[1,1], 'og')

plt.plot(x_new[0,2], x_new[1,2], 'ob')

plt.show()

13

Êîìïüþòåðíàÿ ãðàôèêà. Äîëãîâ Ä.À., ÊÑÀÈÒ, ÈÂÌèÈÒ ÊÔÓ

5. Ñîçäàíèå àíèìàöèè

Ðàññìîòðèì çàäà÷ó àíèìàöèè îòðåçêà, âðàùàþùåãîñÿ âîêðóã ñâîåãî
öåíòðà. Äëÿ ðåøåíèÿ çàäà÷è íåîáõîäèìî çàäàòü ðÿä àôôèííûõ ïðåîá-
ðàçîâàíèé, îñóùåñòâëÿþùèõ óêàçàííîå ïðåîáðàçîâàíèå. Àíèìàöèÿ áóäåò
ïðåäñòàâëÿòü ñîáîé íàáîð êàäðîâ, íà êàæäîì èç êîòîðûõ ïðåäñòàâëåí
îáðàç îòðåçêà, ïîñëå ïðèìåíåíèÿ àôôèííîãî ïðåîáðàçîâàíèÿ ñ ïàðàìåò-
ðàìè ìåíÿþùèìèñÿ ñî âðåìåíåì. Ïðèìåíÿòü ìàòðèöó âðàùåíèÿ íàïðÿ-
ìóþ ê êîîðäèíàòàì îòðåçêà íåëüçÿ, ò.ê. âðàùåíèå îñóùåñòâëÿåòñÿ âîêðóã
íà÷àëà êîîðäèíàò. Íåîáõîäèìî ñíà÷àëà ñäâèíóòü öåíòð îòðåçêà â íà÷à-
ëî êîîðäèíàò, äàëåå îñóùåñòâèòü ïîâîðîò, ïîñëå ÷åãî ñäâèíóòü íà÷àëî
ïîâåðíóòîãî îòðåçêà â íà÷àëüíóþ òî÷êó. Ïîëó÷èâøèéñÿ îòðåçîê ìîæíî
ðèñîâàòü. Óãîë ïîâîðîò äîëæåí ìåíÿòüñÿ îò êàäðà ê êàäðó (âîçðàñòàòü),
÷òîáû ïîëó÷èëàñü àíèìàöèÿ. Åñëè ðàáîòàòü â ïðîåêòèâíûõ êîîðäèíàòàõ,
òî ìîæíî çàïèñàòü ïîñëåäîâàòåëüíîñòü ïðåîáðàçîâàíèé â âèäå óìíîæå-
íèÿ òðåõ ìàòðèö. T � ìàòðèöà ñäâèãà â íà÷àëî êîîðäèíàò

T =

1 0 b1
0 1 b2
0 0 1


R � ìàòðèöà ïîâîðîòà.

R =

(
cos(α) − sin(α)
sin(α) cos(α)

)
T−1 � ìàòðèöà îáðàòíîãî ñäâèãà.

X ′ = T−1RTX

Äëÿ îáúåäèíåíèÿ íàáîðà êàäðîâ â àíèìàöèþ ïðèìåíÿþòñÿ ñïåöèàëü-
íûå ôóíêöèè èç áèáëèîòåêè Matplotlib, ïîçâîëÿþùèå ñîõðàíèòü àíèìà-
öèþ â âèäå âèäåîôàéëà èëè èçîáðàæåíèÿ ôîðìàòà gif. Äëÿ ñîçäàíèÿ
âèäåîôàéëà íåîáõîäèìî íàëè÷èå ñïåöèàëüíûõ êîäåêîâ. Â ïðèìåðå íè-
æå (ïðèìåð ïðåäñòàâëåí äëÿ ÎÑ Windows) ÿâíî óêàçûâàåòñÿ ïóòü äî
èñïîëíÿåìîãî ôàéëà ñ óêàçàííûìè êîäåêàìè. Äëÿ ñîçäàíèå gif ôàéëà
íåîáõîäèìî íàëè÷èå óñòàíîâëåííîé áèáëèîòåêè Pillow. Pillow âõîäèò â
ñîñòàâ Anoconda è óñòàíàâëèâàåòñÿ âìåñòå ñ íåé.

Íèæå ïðèâåäåí ïðèìåð ñîçäàíèÿ àíèìàöèè âðàùàþùåãîñÿ îòðåçêà.

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.animation as animation

from matplotlib.animation import PillowWriter

14

Êîìïüþòåðíàÿ ãðàôèêà. Äîëãîâ Ä.À., ÊÑÀÈÒ, ÈÂÌèÈÒ ÊÔÓ

plt.rcParams['animation.ffmpeg_path'] = 'ffmpeg.exe'

def shiftMatr(vec):

mtr = np.array([[1, 0, vec[0]], [0, 1, vec[1]], [0, 0, 1]])

return mtr

def rotMatr(ang):

mtr = np.array([[np.cos(ang), -np.sin(ang), 0], [np.sin(ang),

np.cos(ang), 0], [0, 0, 1]])

return mtr

def to_proj_coords(x):

r,c = x.shape

x = np.concatenate([x, np.ones((1,c))], axis = 0)

return x

def to_cart_coords(x):

x = x[:-1]/x[-1]

return x

pt0 = [50, 50]

pt1 = [50, 150]

x = np.array([pt0, pt1], dtype = np.float32).T

center = np.sum(x, axis=1)/2

x_proj = to_proj_coords(x)

N = 100 # frames count

size = 256

color = np.array([0,255,0], dtype=np.uint8)

frames = []

fig = plt.figure()

for i in range(N):

get coords of transformed line

ang = i*2*np.pi/N

T = shiftMatr(-center)

R = rotMatr(ang)

x_proj_new = np.linalg.inv(T) @ R @ T @ x_proj

x_new = to_cart_coords(x_proj_new)

15

Êîìïüþòåðíàÿ ãðàôèêà. Äîëãîâ Ä.À., ÊÑÀÈÒ, ÈÂÌèÈÒ ÊÔÓ

draw line

img = np.zeros((size, size, 3), dtype=np.uint8)

line_points_count = np.int32(np.max(np.abs(x_new[:,0] -

x[:,1])) + 1)

t = np.linspace(0,1,line_points_count)

a = x_new[:, 0].reshape(-1, 1)

b = x_new[:, 1].reshape(-1, 1)

t = t.reshape(1, -1)

line_points = (1 - t) * a + t * b # not clean lines, use

Bresehnam instead

line_points = np.int32(np.round(line_points))

img[line_points[0], line_points[1]] = color

im = plt.imshow(img)

frames.append([im])

print('Frames creation finshed.')

#mp4 animation creation

ani = animation.ArtistAnimation(fig, frames, interval=40,

blit=True, repeat_delay=0)

Writer = animation.writers['ffmpeg']

writer = Writer(fps=24, metadata=dict(artist='Me'), bitrate=1800)

ani.save('line.mp4', writer)

ani.save('simple_animation.mp4')

gif animation creation

ani = animation.ArtistAnimation(fig, frames, interval=40,

blit=True, repeat_delay=0)

writer = PillowWriter(fps=24)

ani.save("line.gif", writer=writer)

plt.show()

6. Ïîñòðîåíèå êóáè÷åñêîãî ñïëàéíà

Ðàññìàòðèâàåòñÿ çàäà÷à ïîñòðîåíèÿ êóáè÷åñêîãî ñïëàéíà (ñïëàéíà
Ýðìèòà). Äàíû N+1 òî÷êà íà ïëîñêîñòè èìåþùèå êîîðäèíàòû (xi, yi)
è çíà÷åíèå ïðîèçâîäíîé â ýòîé òî÷êå di = 0, i ∈ [0, N]. Ïðåäïîëàãàåòñÿ,

16

Êîìïüþòåðíàÿ ãðàôèêà. Äîëãîâ Ä.À., ÊÑÀÈÒ, ÈÂÌèÈÒ ÊÔÓ

÷òî x0 < . . . < xN . Òðåáóåòñÿ äëÿ êàæäîãî èíòåðâàëà xi, xI+1 îïðåäåëèòü
ïîëèíîì òðåòüåé ñòåïåíè, óäîâëåòâîðÿþùèé ñëåäóþùèì óñëîâèÿì:

fi(x) = ai0 + ai1x+ ai2x
2 + ai3x

3

fi(xi) = yi

fi(xi+1) = yi+1

fi
′(xi) = di

fi
′(xi+1) = di+1

Äëÿ íàõîæäåíèÿ êîýôôèöèåíòîâ ïîëèíîìà ïðåäëàãàåòñÿ ïîñòðîèòü
ñèñòåìó ëèíåéíûõ àëãåáðàè÷åñêèõ óðàâíåíèé íà îñíîâå ïðèâåäåííûõ âû-
øå óñëîâèé. Ïîëó÷èì ñëåäóþùåå:

ai0 + ai1xi + ai2xi
2 + ai3xi

3 = yi

ai0 + ai1xi+1 + ai2xi+1
2 + ai3xi+1

3 = yi+1

ai00 + ai1 + 2ai2xi + 3ai3xi
2 = di

ai00 + ai1 + 2ai2xi+1 + 3ai3xi+1
2 = di+1

Äàííóþ ñèñòåìó ìîæíî ïåðåïèñàòü â ìàòðè÷íîé ôîðìå:

MA = B

M =


1 xi xi

2 xi
3

1 xi+1 xi+1
2 xi+1

3

0 1 2xi 3xi
2

0 1 2xi+1 3xi+1
2

 , A =


ai0
ai1
ai2
ai3

 , B =


yi
yi+1

di
di+1


Ðåøåíèå ñèñòåìû íàõîäèòñÿ ñëåäóþùèì îáðàçîì:

A = M−1B.

Íèæå ïðèâåäåí ïðèìåð ðåàëèçóþùèé ïðåäñòàâëåííûé ìåòîä. Èçìå-
íÿÿ çíà÷åíèÿ ïðîèçâîäíûõ ìîæíî óïðàâëÿòü ôîðìîé ñïëàéíà.

import numpy as np

import matplotlib.pyplot as plt

from matplotlib.image import imsave

17

Êîìïüþòåðíàÿ ãðàôèêà. Äîëãîâ Ä.À., ÊÑÀÈÒ, ÈÂÌèÈÒ ÊÔÓ

def create_image(heigh, widht, background_color):

img = np.zeros((heigh, widht, 4), np.uint8)

img[:, :, :3] = background_color

img[:, :, 3] = 255

return img

def set_color(img, x, y, color):

img[x, y, :3] = color

return img

def draw_line(img, x0, y0, x1, y1, color):

Bresenham algorithm

steps_num = int(np.max([np.abs(x0-x1), np.abs(y0-y1)]))

sp = np.linspace(0, 1, steps_num + 1)

x_coords = np.int32(np.round(x0*sp + x1*(1-sp)))

y_coords = np.int32(np.round(y0 * sp + y1 * (1 - sp)))

x_ind = (x_coords>0) & (x_coords < img.shape[0])

y_ind = (y_coords > 0) & (y_coords < img.shape[0])

ind = x_ind & y_ind

x_coords = x_coords[ind]

y_coords = y_coords[ind]

img = set_color(img, x_coords, y_coords, color)

return img

def show_image(img):

img = np.flipud(img)

plt.figure()

plt.imshow(img)

plt.show()

return 0

18

Êîìïüþòåðíàÿ ãðàôèêà. Äîëãîâ Ä.À., ÊÑÀÈÒ, ÈÂÌèÈÒ ÊÔÓ

def save_image(img, name):

img = np.flipud(img)

imsave(name, img)

return 0

def create_hermite_spline():

h = 1024

w = 1024

black = np.array([0, 0, 0], np.uint8)

green = np.array([0, 255, 0], np.uint8)

red = np.array([255, 0, 0], np.uint8)

img = create_image(h, w, black)

N = 10 # points number

x = np.random.randint(50, w-50, 10)

x = np.sort(x)

y = np.random.randint(50, h-50, 10)

d = 20*np.random.rand(10)-10

for i in range(N-1):

m = np.array([[1, x[i], x[i]**2, x[i]**3], [1, x[i+1], x[i+1]**2,

x[i+1]**3], [0, 1, 2*x[i], 3*x[i]**2], [0, 1, 2*x[i+1],

3*x[i+1]**2]])

b = np.array([y[i], y[i+1], d[i], d[i+1]]).T

a = np.linalg.inv(m).dot(b)

for j in range(x[i], x[i+1]+1):

y_j = a[0] + a[1]*j + a[2]*j**2 + a[3]*j**3

y_j_1 = a[0] + a[1]*(j+1) + a[2]*(j+1)**2 + a[3]*(j+1)**3

draw_line(img, j, y_j, j+1, y_j_1, green)

set_color(img, x, y, red)

set_color(img, x+1, y, red)

set_color(img, x-1, y, red)

set_color(img, x, y+1, red)

set_color(img, x, y-1, red)

img = np.transpose(img, axes = (1,0,2))

19

Êîìïüþòåðíàÿ ãðàôèêà. Äîëãîâ Ä.À., ÊÑÀÈÒ, ÈÂÌèÈÒ ÊÔÓ

#save_image(img, 'hermite_spline.tga')

show_image(img)

if __name__ == '__main__':

create_hermite_spline()

7. Ðàçíûå ïðèìåðû

7.1. Èìèòèðîâàíèå êàïåëü äîæäÿ íà ïîâåðõíîñòè

Áàçîâûé êëàññ àíèìàöèè animation èìååò äåëî ñ àíèìàöèîííîé ÷à-
ñòüþ. Îí îáåñïå÷èâàåò îñíîâó, íà êîòîðîé ïîñòðîåíû ôóíêöèè àíèìàöèè.
Äëÿ ýòîãî åñòü äâà îñíîâíûõ èíòåðôåéñà: FuncAnimation - ñîçäàåò àíè-
ìàöèþ, ìíîãîêðàòíî âûçûâàÿ ôóíêöèþ func. ArtistAnimation - àíèìàöèÿ
ñ èñïîëüçîâàíèåì ôèêñèðîâàííîãî íàáîðà îáúåêòîâ Artist.

import numpy as np

import matplotlib.pyplot as plt

from matplotlib.animation import FuncAnimation, PillowWriter

Fixing random state for reproducibility

np.random.seed(19680801)

Create new Figure and an Axes which fills it.

fig = plt.figure(figsize=(7, 7))

ax = fig.add_axes([0, 0, 1, 1], frameon=False)

ax.set_xlim(0, 1), ax.set_xticks([])

ax.set_ylim(0, 1), ax.set_yticks([])

Create rain data

n_drops = 50

rain_drops = np.zeros(n_drops, dtype=[('position', float, 2),

('size', float, 1),

('growth', float, 1),

('color', float, 4)])

Initialize the raindrops in random positions and with

random growth rates.

rain_drops['position'] = np.random.uniform(0, 1, (n_drops, 2))

rain_drops['growth'] = np.random.uniform(50, 200, n_drops)

Construct the scatter which we will update during animation

20

Êîìïüþòåðíàÿ ãðàôèêà. Äîëãîâ Ä.À., ÊÑÀÈÒ, ÈÂÌèÈÒ ÊÔÓ

as the raindrops develop.

scat = ax.scatter(rain_drops['position'][:, 0],

rain_drops['position'][:, 1],

s=rain_drops['size'], lw=0.5, edgecolors=rain_drops['color'],

facecolors='none')

def update(frame_number):

Get an index which we can use to re-spawn the oldest raindrop.

current_index = frame_number % n_drops

Make all colors more transparent as time progresses.

rain_drops['color'][:, 3] -= 1.0/len(rain_drops)

rain_drops['color'][:, 3] = np.clip(rain_drops['color'][:, 3], 0,

1)

Make all circles bigger.

rain_drops['size'] += rain_drops['growth']

Pick a new position for oldest rain drop, resetting its size,

color and growth factor.

rain_drops['position'][current_index] = np.random.uniform(0, 1, 2)

rain_drops['size'][current_index] = 5

rain_drops['color'][current_index] = (0, 0, 0, 1)

rain_drops['growth'][current_index] = np.random.uniform(50, 200)

Update the scatter collection, with the new colors, sizes and

positions.

scat.set_edgecolors(rain_drops['color'])

scat.set_sizes(rain_drops['size'])

scat.set_offsets(rain_drops['position'])

Construct the animation, using the update function as the

animation director.

animation = FuncAnimation(fig, update, interval=10)

#plt.show()

Construct the animation, using the update function as the

animation director.

animation = FuncAnimation(fig, update, interval=10)

#plt.show()

animation.save('file.gif',writer=PillowWriter(fps=25))

21

Êîìïüþòåðíàÿ ãðàôèêà. Äîëãîâ Ä.À., ÊÑÀÈÒ, ÈÂÌèÈÒ ÊÔÓ

7.2. Àíèìàöèÿ ôóíêöèè sin(x)

Âîñïîëüçóåìñÿ èíòåðôåéñîì FuncAnimation äëÿ àíèìàöèè ãðàôèêà
ñèíóñà.

Â ñòðîêàõ (7�9) ìû ïðîñòî ñîçäàåì îêíî ôèãóðû ñ åäèíñòâåííîé îñüþ
íà ðèñóíêå. Çàòåì ìû ñîçäàåì îáúåêò ñ ïóñòîé ñòðîêîé, êîòîðûé, ïî ñó-
òè, è äîëæåí áûòü èçìåíåí â àíèìàöèè. Â ñòðîêàõ (11�13) ìû ñîçäàåì
ôóíêöèþ init, êîòîðàÿ áóäåò çàïóñêàòü àíèìàöèþ. Ôóíêöèÿ init èíèöèà-
ëèçèðóåò äàííûå, à òàêæå óñòàíàâëèâàåò ïðåäåëû îñè. Â ñòðîêàõ (14�18)
ìû, íàêîíåö, îïðåäåëÿåì ôóíêöèþ àíèìàöèè, êîòîðàÿ ïðèíèìàåò íîìåð
êàäðà (i) â êà÷åñòâå ïàðàìåòðà è ñîçäàåò ñèíóñîèäàëüíóþ âîëíó (èëè ëþ-
áóþ äðóãóþ àíèìàöèþ), êîòîðàÿ èçìåíÿåòñÿ â çàâèñèìîñòè îò çíà÷åíèÿ
i. Â ñòðîêå 20 ìû ñîçäàåì ôàêòè÷åñêèé îáúåêò àíèìàöèè. Ïàðàìåòð blit
ãàðàíòèðóåò, ÷òî ïåðåðèñîâûâàþòñÿ òîëüêî òå ÷àñòè ãðàôèêà, êîòîðûå
áûëè èçìåíåíû.

import numpy as np

from matplotlib import pyplot as plt

from matplotlib.animation import FuncAnimation, PillowWriter

plt.style.use('seaborn-pastel')

fig = plt.figure()

ax = plt.axes(xlim=(0, 4), ylim=(-2, 2))

line, = ax.plot([], [], lw=3)

def init():

line.set_data([], [])

return line,

def animate(i):

x = np.linspace(0, 4, 1000)

y = np.sin(2 * np.pi * (x - 0.01 * i))

line.set_data(x, y)

return line,

anim = FuncAnimation(fig, animate, init_func=init, frames=200,

interval=20, blit=True)

anim.save('file2.gif',writer=PillowWriter(fps=25))

7.3. Åùå îäèí âàðèàíò ðèñîâàíèÿ ãðàôèêà sin(x))

import numpy as np

import matplotlib.pyplot as plt

22

Êîìïüþòåðíàÿ ãðàôèêà. Äîëãîâ Ä.À., ÊÑÀÈÒ, ÈÂÌèÈÒ ÊÔÓ

from matplotlib.animation import FuncAnimation, PillowWriter

fig, ax = plt.subplots()

x = np.arange(0, 2*np.pi, 0.01)

line, = ax.plot(x, np.sin(x))

def init(): # only required for blitting to give a clean slate.

line.set_ydata([np.nan] * len(x))

return line,

def animate(i):

line.set_ydata(np.sin(x + i / 100)) # update the data.

return line,

ani = animation.FuncAnimation(

fig, animate, init_func=init, interval=2, blit=True,

save_count=50)

To save the animation, use e.g.

#

ani.save("movie.mp4")

To save the animation, use e.g.

#

ani.save("movie.mp4")

or

from matplotlib.animation import FFMpegWriter

writer = FFMpegWriter(fps=15, metadata=dict(artist='Me'),

bitrate=1800)

ani.save("movie.mp4", writer=writer)

plt.show()

23

Êîìïüþòåðíàÿ ãðàôèêà. Äîëãîâ Ä.À., ÊÑÀÈÒ, ÈÂÌèÈÒ ÊÔÓ

Ñïèñîê ëèòåðàòóðû

[1] Matplotlib: Visualization with Python. � URL: https://matplotlib.org/
(äàòà îáðàùåíèÿ: 01.05.2025).

[2] Numpy: The fundamental package for scienti�c computing with Python.
� URL: https://numpy.org/ (äàòà îáðàùåíèÿ: 01.05.2025).

[3] Foley J.D. Computer Graphics: Principles and Practice 3rd Edition. /
J.D. Foley. � Ì.: Addison-Wesley, 2014. � 1263 ñ.

[4] Marschner S. Fundamentals of computer graphics 3rd edition / S.
Marschner, P. Shirley. � Ì.: Corporate Taylor & Francis Group, 2009.
� 804 ñ.

[5] Ðîäæåðñ Ä. Ìàòåìàòè÷åñêèå îñíîâû ìàøèííîé ãðàôèêè / Ä. Ðîä-
æåðñ, Äæ. Àáðàìñ. � Ì.: Ìèð, 2001. � 604 ñ.

24

Ìåòîäè÷åñêîå ïîñîáèå

Äîëãîâ Äìèòðèé Àëåêñàíäðîâè÷

Êîìïüþòåðíàÿ ãðàôèêà

25

