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Лекция 1: Влияние пылевых частиц на ионизационное равновесие в 

плазме. Степень ионизации пылевой плазмы, обобщенная формула 

Саха. 

Широкая распространенность плазменно-пылевых систем, а также 

целый ряд уникальных свойств, делают пылевую плазму чрезвычайно 

привлекательным и интересным объектом исследования. Пылевые частицы, 

находящиеся в плазме, приобретают электрический заряд и представляют 

собой дополнительный заряженный компонент плазмы. Однако свойства 

пылевой плазмы значительно богаче свойств обычной многокомпонентной 

плазмы электронов и ионов различного сорта. Пылевые частицы являются 

центрами рекомбинации плазменных электронов и ионов и, иногда, 

источником электронов (термо-, фото- и вторичная электронная эмиссия). 

Тем самым пылевой компонент может существенно влиять на ионизационное 

равновесие.  

Заряд пылевых частиц не является фиксированной величиной, а 

определяется параметрами окружающей плазмы и может изменяться как во 

времени, так и в пространстве. Кроме того, заряд флуктуирует даже при 

постоянных параметрах окружающей плазмы, поскольку зарядка является 

случайным процессом. В силу большого заряда пылевых частиц 

потенциальная энергия электростатического взаимодействия между ними 

(пропорциональная произведению зарядов взаимодействующих частиц) 

велика. Поэтому неидеальность подсистемы пылевых частиц реализуется 

значительно легче, чем неидеальность электрон-ионной подсистемы, хотя 

концентрация макрочастиц обычно значительно ниже концентраций 

электронов и ионов. Тем самым, оказывается возможным появление 

ближнего порядка, и даже кристаллизация в системе пылевых частиц. Среди 

современных направлений исследований в области пылевой плазмы выделим 

следующие:  

- образование упорядоченных структур, кристаллизация и фазовые переходы 

в системе пылевых частиц в различных типах плазмы.  

- элементарные процессы в пылевой плазме: зарядка пыли в различных 

условиях и при различных параметрах плазмы и самих частиц; 

взаимодействие между частицами в плазме; внешние силы, действующие на 

пылевые частицы.  

- изучение свойств пылевой плазмы, образующейся в процессах плазменного 

напыления и производства порошков с заданными свойствами. 

Реакцию ионизации в плазме запишем в виде  А = Аi + e ,  где  А – атом , 

Аi – ион.  Применим к этой реакции закон действующих масс: 
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Здесь  iZ   и  aZ   – статистические суммы по электронным состояниям иона и 

атома,  u – потенциал однократной ионизации атома,  ni – концентрация 

ионов, na – концентрация атомов. Баланс заряженных частиц запишем в виде  

nr N + ni = ne .                 (1.2) 



Общая концентрация частиц электронов, ионов и атомов равна  

n = ne + ni  + na .     (1.3) 

Давление определяется уравнением состояния 

p = n k T .      (1.4) 

Здесь не учитывается давление, создаваемое макрочастицами, так как их 

концентрация очень мала.  

 Введем степень ионизации 
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Из (1.1)-(1.5) получим 
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В частном случае   nr  = 0  это уравнение переходит в известную формулу 

Саха 
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Таким образом, (1.6) является обобщением формулы Саха, учитывающим 

влияние макрочастиц на степень ионизации плазмы. 

 Когда степень ионизации значительно меньше единицы из (1.6) 

получаем более простую формулу 
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Поскольку макрочастицы могут существовать в плазме только при низких 

температурах и, соответственно, малой степени ионизации, именно это 

последнее уравнение имеет наибольшую практическую ценность. 

Рассмотрим его частные случаи. Если xin << nrN, будем иметь 
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Как видно, в этом случае степень ионизации уменьшается обратно 

пропорционально количеству электронов nrN, поступающих в единицу 

объема плазмы из макрочастиц. Она растет с повышением температуры и 

уменьшением потенциала ионизации. В этих условиях, как это следует из 

(1.6) и (1.9), концентрация электронов, в основном, определяется эмиссией 

их из макрочастиц. 

 Если  nrN << xi n, из (1.8) получается частный случай формулы Саха 
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Когда содержащиеся в газах твердые или жидкие макрочастицы 

испускают электроны, они заряжаются положительно. При этом возникает 

электрический потенциал, препятствующий дальнейшей эмиссии электронов. 

В результате устанавливается статистическое равновесие между 



макрочастицами и окружающей их плазмой или газом. Такая смесь в целом 

является электрически нейтральной системой. 

Будем считать, что макрочастицы представляют собой шарики радиуса  

R, их концентрация равна  nr, концентрация электронов в зоне проводимости 

макрочастиц до эмиссии равна  ne0, средняя концентрация электронов в газе 

или плазме  ne, одна макрочастица эмитирует  N  электронов, электронный 

газ и макрочастицы находятся в состоянии статистического равновесия. 

Условием равновесия электронного газа является уравнение 

    ee 11 ,      (1.11) 

где  1  - энергия Ферми для электрона внутри макрочастицы и     – энергия 

Ферми для электрона вне макрочастицы, 1  и   - потенциалы электрического 

поля внутри и вне макрочастицы, e – заряд электрона. Будем считать, что 

0  и внутри макрочастицы const1 , qe  . С учетом этого уравнение 

(1.11) запишем в виде 

11  q .  (1.12) 

 

Потенциальная энергия электрона внутри макрочастицы, заряд которой равен 

Nq, определяется известным уравнением 
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где  – относительная диэлектрическая проницаемость, 0 – электрическая 

постоянная. 

 Концентрация свободных электронов в газе или плазме обычно мала и 

поэтому в качестве  нужно использовать энергию Ферми невырожденного 

электронного газа 
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Здесь h – постоянная Планка,  – статистическая температура, равная  kT, k – 

постоянная Больцмана, T – абсолютная температура, me – масса электрона. 

В зависимости от концентрации электронов в макрочастицах и 

температуры возможны два случая. При больших ne0 и малых T электронный 

газ в макрочастицах является вырожденным, а при малых ne0 и больших T  

невырожденным. Рассмотрим более подробно последний случай. Энергия 

Ферми электронного газа в макрочастицах определяется формулой 

  

)ln( 11 ean ,                                      (1.15) 

 

где 1en  - концентрация электронов в макрочастицах после эмиссии. 

Подстановка выражений (1.13), (1.14) и (1.15) в (1.12) дает  
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При низких температурах термическая ионизация газа отсутствует, т.е. 

0in и из (1.2) следует 
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Из (1.16) находим 
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С учетом (1.17) из (1.18) получится 
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(1.19) является уравнением, определяющим зависимость N от ne0, R, T и nr, 

где V- объем одной макрочастицы. Если 
V

N
ne 0 , в приближенных расчетах 

в знаменателе можно пренебречь величиной 
V

N
 по сравнению с ne0. Тогда 

получается следующая упрощенная формула 

 

(1.20) 

 

 

С ростом R величина b уменьшается, следовательно, N растет. Как видно из 

(1.20), с повышением температуры N также растет. При constRnr  3 объем 

макрочастиц в единице объема плазмы остается постоянным. На рис. 1 

показана зависимость ne от R при ε=1, ne0=10
19

 м
-3

, Т=1000 К, constRnr  3 . 

Как видно, уменьшение R приводит к повышению концентрации электронов 

в пылевой плазме. 
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Лекция 2: Дебаевское экранирование, Дебаевский потенциал (потенциал 

Юкавы). 

 

Находясь в плазме, пылевые частицы создают вокруг себя 

электрическое поле, которое из-за присутствия других заряженных частиц 

(ионов, электронов, других пылевых частиц) существенно искажается и 

непостоянно во времени. В этом случае потенциал поля имеет сильные 

отличия от классического кулоновского потенциала и для его описания 

общепринята теория экранированного потенциала. Согласно этой теории 

распределение потенциала вокруг уединенной сферической пылевой частицы 

определяется уравнением Пуассона. 
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В плазме с больцмановским распределением электронов и ионов, а также при 

условии  
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правую часть (2.1) можно линеаризовать и получить 
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В случае dR   для потенциала можно использовать выражение  
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где dZ  - заряд пылевой частицы в единицах заряда электрона. 

Потенциал (2.4) представляет собой экранированный кулоновский 

потенциал, часто используемый для описания электростатического 

взаимодействия между частицами в пылевой плазме. В различных 

физических системах его называют потенциалом Дебая—Хюккеля или 

потенциалом Юкавы. Если условие малости потенциала по сравнению с 

температурой электронов и ионов не выполнено, то на достаточном 

расстоянии от частицы все равно можно пользоваться выражением типа (2.3), 

где, однако, поверхностный потенциал s  следует заменить на некоторый 

эффективный потенциал эф  (меньший поверхностного по абсолютной 

величине), который можно определить численно при известных параметрах 

плазмы. 

 

 

 

 

 



 

Лекция 3:  Эмиссионная зарядка пылевых частиц в плазме. Энергия 

Ферми электронного газа.  

Распределение Ферми-Дирака. 

Распределение Ферми-Дирака описывает поведение частиц с полуце-

лым спином, в частности, электронного газа, и находит широкое применение 

в расчетах радиоэлектронных устройств. 

Частицы находятся в квантовых состояниях с энергиями ε1, ε2, ε3, … и 

т.д. Пусть в состоянии с энергией ε1 находятся n1 частиц, в состояниях с энер-

гией ε2 - n2 частиц и т.д. Мысленно разделим частицы на две части: 1-я часть 

– подсистема, в которую входят все частицы, находящиеся в состояниях с 

энергией εk, их число nk; 2-я часть – среда, в которую входят все остальные 

частицы. В результате столкновений энергии частиц меняются: частицы, об-

ладающие энергией  εk, переходят в другие состояния, и, наоборот, в это сос-

тояние попадают некоторые частицы среды. Таким образом, имеется обмен 

частицами и для описания такого газа должно применяться распределение 

Гиббса с переменным числом частиц  
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Применим формулу (3.1) к такому газу. В данном случае: 

knN  , 

kknN nE   

Здесь εk – энергия одной частицы; N – полное число частиц, входящих в сис-

тему. Поскольку в подсистему входят частицы, имеющие только одно значе-

ние энергии εk, то в (3.1) суммировать по n не нужно, так как берется только 

один член, соответствующий энергии  εk . Поэтому (3.1) упрощается и запи-

сывается как  

Ωk =    ./expln–








 
kn

kkk nn  

Согласно принципу Паули число частиц nk с полуцелым спином, могу-

щих одновременно находиться в индивидуальном квантовом состоянии, не 

может превышать единицы. Следовательно, возможные значения  nk равны 0 

и 1. Учет принципа Паули дает:  

         Ωk =       ./exp1ln/expln–
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Среднее число частиц равно 
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Из этой формулы и (3.2) следует: 
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Применение микроканонического распределения к фермионам с уче-

том принципа Паули и обмена частицами между телом и средой приводит к 

известному распределению Ферми-Дирака. Разделив числитель и знамена-

тель на     /exp k , его можно записать в таком виде 

                                            
  kT

n
k

k

/exp1

1






.                                      (3.4) 

Здесь kn


 - среднее значение частиц в одном квантовом состоянии с энергией 

k ,  - химический потенциал. 

Условием нормировки будет 

                                                       


0Nnk ,                                                (3.5) 

где 0N  - полное число частиц. Формула (3.5) позволяет определить   как 

функцию   и 0N .    

Важнейшим приложением этого распределения является электронный 

газ в плазме, металлах и полупроводниках. В этом случае обычно   называ-

ют энергией Ферми или уровнем Ферми. Эта величина является одной из 

важнейших характеристик плазмы.  

Рассмотрим распределение Ферми-Дирака при 0  в двух частных 

случаях.  

        1) εk<μ0. В этом случае 

   ,0/exp 0 k  1kn . 

        2) εk>μ0.  Имеем 

   ,/explim 0
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С учетом этих результатов легко нарисовать график функции распреде-

ления (рис.3.1). Отсюда видно, что в состояниях с энергией большей, чем 0 , 

электроны отсутствуют.  

Таким образом, величина 0  равна максимальной энергии электрона 

при  T=0 K. Химический потенциал µ в статистике Ферми-Дирака называется 

энергией Ферми или уровнем Ферми. При T=0 K электроны полностью зани-

мают все дозволенные энергетические уровни вплоть до энергии 0 . 
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Рис.3.1. 
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Лекция 4:      Распределение электронов плазмы по скоростям и  вырож-

дение электронного газа 

Свойства электронного газа в твердых частицах существенно зависит 

от числа электронов находящихся в зоне проводимости. В металлах 

концентрация электронов в зоне проводимости большая и поэтому 

электронный газ является вырожденным в широком диапазоне изменения 

температуры. В полупроводниках концентрация электронов в зоне 

проводимости мала и поведение электронного газа описывается 

распределением Больцмана-Максвелла. Поэтому для обоснованного 

применения формул вытекающих из распределения Ферми-Дирака 

необходимо предварительно рассмотреть условия вырождения электронного 

газа. Из (3.4) для распределения электронов по импульсам получается 

формула 
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Из (3.6) следует  
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Если среднее число частиц  в одном индивидуальном квантовом состо-

янии k
n  значительно меньше единицы, то из (3.4) следует 

                                      1/exp  .                                    (3.8) 

В этом случае можно пренебречь единицей по сравнению с величиной 

   /exp  и распределение (3.7) записывается в виде: 
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Как видно, (3.9) совпадает с распределением Максвелла 
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Следовательно, при выполнении условия (3.8) тепловое движение 

электронов такое же, как и у молекул обычного газа. В этом случае электрон-

ный газ является невырожденным и квантовые эффекты несущественны. 

Запишем (3.8) в виде: 

 
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1
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. 

Это неравенство при 0  выполняется тогда, когда  

  1/exp  . 

Число электронов n  в единице объема найдем из условия нормировки и фор-

мулы (3.9): 
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Отсюда 
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Таким образом, условие невырожденности (3.8) запишется как 
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В обратном предельном случае 
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электронный газ называется вырожденным. Из (3.13) видно, что вырождение 

обусловлено следующими причинами: 

      1) малая масса частицы, 

      2) низкая температура, 

      3) большая концентрация частиц.   

Для электрона m=9,1∙10
–31 

кг. Если ne=6∙10
28

 м
–3

 (в металле), то условие 

вырождения (3.12) выполняется вплоть до 2000-3000 К. В случае полупро-

водников концентрация электронов мала и электронный газ является невы-

рожденным. 

Приведенные выше формулы позволяют рассчитывать все основные 

свойства электронного газа. 
 

 

 

 

 

 

 



Лекция 5: Расчет зависимости энергии Ферми от температуры и 

концентрации электронного газа 

Энергия Ферми электронного газа определяется из условия 

нормировки 
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Рассчитаем энергию Ферми для вырожденного электронного газа. Вос-

пользуемся распределением электронов по энергиям 
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ления по энергиям для вырожденного электронного газа имеет вид 
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С  учетом этого выражения и условия нормировки при 0  получается 
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где 0  - энергия Ферми вырожденного электронного газа. Отсюда видно, что 

с увеличением концентрации электронов n энергия 0  также увеличивается. 

Также видно, что для вырожденного электронного газа 0 >0. 

На рис.3.5 показаны результаты расчета зависимости энергии Ферми от 

концентрации электронов при различных температурах, где  F(μ) - расчет 

энергии Ферми для вырожденного электронного газа  по упрощенной форму-

ле (3.16); ψ(μ), χ(μ), φ(μ) – расчеты по общей формуле (3.14). 

 
                 Рис. 3.5. Зависимость энергии Ферми от концентрации: 

ψ(μ) при Т=1000 K, χ(μ) при Т=2000 K, φ(μ) при Т=500 K. 



Из графика видно, что при концентрациях электронов ne>5∙10
27 

м
–3

  

расчеты по общей формуле (3.14) и упрощенной формуле (3.16) практически 

совпадают. В этой области можно пренебречь влиянием температуры на 

энергию Ферми. Однако при меньших значениях ne  вырождение 

электронного газа начинает ослабляться и необходимо учитывать влияние 

температуры на величину энергии Ферми.  

Энергия Ферми для невырожденного электронного газа определяется 

из уравнения  
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Отсюда следует известное выражение 
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На рис.3.6. и 3.7. показаны зависимости энергии Ферми от концентрации 

электронов при различных температурах, где    - расчет энергии Ферми 

для невырожденного электронного газа по упрощенной формуле (3.17); ψ(μ) 

и χ(μ) – расчеты по общей формуле (3.14). Из них следует, что расчеты по 

упрощенной формуле (3.17) и формуле (3.14) в указанном диапазоне 

температур практически совпадают. Однако имеется небольшое расслоение 

графиков по температурам. С понижением температуры энергия Ферми 

несколько уменьшается. 

 

 
Рис. 3.6. Зависимость энергии Ферми от концентрации:  

χ(μ) при Т=1000 K, ψ(μ) при Т=1025 K, φ(μ) при Т=1050 K. 



 
Рис. 3.7. Зависимость энергии Ферми от концентрации:  

χ(μ) при Т=2000 K,   ψ(μ) при Т=2050 K. 

(    - расчет энергии Ферми для невырожденного электронного газа по 

упрощенной формуле (3.17)) 

 

 

 

Лекция 6: Уравнения, определяющие распределения потенциала и 

концентрации электронов в состоянии статистического равновесия. 

Рассмотрим распределения потенциала и концентрации электронов в 

пылевой плазме при низких температурах. Будем считать, что радиус 

твердой частицы R, концентрация электронов и дырок соответственно равны 

ne и ni. Пусть ni=const.  

Если параметры системы меняются в пространстве, то условием 

равновесия будет  

                                                     ,conste                                              (3.18) 

                                                  ee 00 ,                                       (3.19) 

где µ0 и φ0  значения энергии Ферми и потенциала в некоторой точке 

пространства. Отсюда следует 

  00 e .                                         (3.20) 

В случае вырожденного электронного газа  
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где ne0 – концентрация электронов в точке, где потенциал равен φ0. 

За начало отсчета можем взять 00  . Тогда (3.19) имеет вид  
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Продифференцируем (3.21) 
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где Е – напряженность электростатического поля. 

Запишем теорему Гаусса для области 0≤ r ≤R  
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где nE - проекция напряженности электрического поля на внешнюю нормаль 

поверхности S, Q - заряд внутри поверхности. 

В случае сферически симметричной задачи  
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где V – объем внутри поверхности. 

С учетом выражения (3.28) запишем (3.27) 
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Из (3.29) для потенциала электростатического поля   получается формула 
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Продифферинцируем (3.31)  
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(3.32) является известным уравнением Пуассона. 

Найдем значение концентрации электронов ne. С учетом (3.20) можем 

записать  
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Учитывая (3.24) находим: 
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Введем безразмерный потенциал - 1 . 
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Тогда (3.34) имеет вид 
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С учетом выражения (3.22) находим 
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Из (3.35) и (3.37) вытекает 
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Умножим обе части этого уравнения на 0/q , находим 
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Введением безразмерного радиуса 
R

r
x   это уравнение приводится к 

виду 
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Введением безразмерной величины 
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Рассмотрим случай, когда 1 <<1. Разложим величину   2/3

11   в ряд и 

ограничимся первыми двумя членами: 
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C учетом этого выражения из (3.41) получим 
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Введем функцию Wxy  , yni 


1
2

3
1 . Тогда (3.43) приводится к виду  
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Общим решением уравнения (3.42) является: 
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Выберем С1 и С2 с учетом условия  
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в точке 0x   представляет неопределенность вида 0:0. Следовательно, 
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Отсюда и из условия (3.46) находим: 
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Введем  величину 
R

l
 , где l2  - расстояние между двумя соседними 

частицами. В области  x1  ионы отсутствуют: 0in .Тогда формула 

(3.48) для случая  x1  имеет вид. 
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Отсюда следует 
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Одним из граничных условий  для  x2  является 
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Из (3.50), (3.51) находим 
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Таким образом, распределение безразмерного потенциала в этой области 

описывается формулой 
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   При x=1 должны выполняться граничные условия: 
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Используя выражение (3.37), можно записать формулу для распределения 

концентрации электронов  
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Лекция 7: Уравнения, определяющие распределения потенциала и 

концентрации электронов в состоянии статистического равновесия. 

В случае невырожденного электронного газа с учетом распределения 

Больцмана для электронов 
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и формулы (3.32) получается известное уравнение Пуассона-Больцмана 
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Введением безразмерных величин x
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Рассмотрим случай, когда 11  . Разложим величину 1e  в ряд и 

ограничимся первыми двумя членами 111 


e . 

С учетом этого выражения из (3.60) получим 
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Решая данное уравнение, аналогично случаю вырожденного газа, 

получаем следующее выражения для распределений потенциала и  

концентрации электронов.      
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где 1F  и 1G  определяются следующим образом 
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Лекция 8: Распределения потенциала и концентрации электронов в 

пылевой плазме, содержащей металлические частицы. 

На рис. 3.8 показан график распределения потенциала электрического 

поля по радиусу твердой частицы.   

 
Рис. 3.8. Расрпределение потенциала в области Rr 0    

при 81022 R м ,    27

0 105en 3–м .    

 
Рис. 3.9. Расрпределение потенциала в области lrR    

при 81022 R м ,    27

0 105en 3–м .    

Как видно из рис. 3.8, внутри частицы с ростом безразмерного радиуса х по-

тенциал сначала уменьшается медленно, затем при приближении к поверх-

ности частицы он уменьшается очень быстро. Это объясняется возник-

новением очень большого градиента концентрации электронов вблизи по-

верхности. Соответственно возникает большая напряженность электрическо-

го поля. На рис. 3.10 и 3.11 показаны графики распределений концентрации 

электронов рассчитанные по формулам 3.73 и 3.74. Как видно из этих 

рисунков, основная часть заряда находится у поверхности частицы, то есть 

пылевая частица окружена довольно плотным электронным облаком. 



 
Рис. 3.10. Распределение концентрациии электронов в области Rr 0    

при 81022 R м ,    27

0 105en 3–м .    

 
Рис. 3.11. Распределение концентрациии электронов в области lrR    при 

при 81022 R м ,    27

0 105en 3–м .       

 

 

 

 

 

 

 

 

 

 



Лекция 9: Распределения потенциала и концентрации электронов в 

пылевой плазме, содержащей полупроводниковые частицы 

 

 
Рис. 3.12. Расрпределение потенциала в области Rr 0   при 1000T К,    

61022 R м ,    18

0 10en 3–м ,    1.1  

 
Рис. 3.13. Расрпределение потенциала в области lrR    при 1000T К,    

61022 R м ,    18

0 10en 3–м ,    1.1  

Как видно из рис. 3.12, внутри частицы с ростом r потенциал сначала 

уменьшается очень медленно. Затем при приближении к поверхности 

частицы он уменьшается очень быстро. Это объясняется возникновением 

очень большого градиента концентрации электронов вблизи поверхности. 

Соответственно возникает большая напряженность электрического поля. Из 

выражения для безразмерного потенциала находим 
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по этой формуле при при  1000T К, 61020 R м ,  18

0 10en 3–м , 1.1  дает 

  410646.1 RE  В/м. В области lrR   с ростом r сначала   уменьшается 

очень быстро, затем очень медленно уменьшается до значения  l . 

Поскольку потенциал и концентрация электронов непосредственно 

связаны формулой Больцмана (3.60), с ростом r в области Rr   величина en  

резко уменьшается. С удалением от частицы скорость изменения en  

уменьшается и в точке lr  выполняется условие 0
dr

dne . 

 
Рис. 3.14. Распределение концентрациии электронов в области Rr 0   при 

61026 R м ,    18

0 105en 3–м ,    1.1  (кривые 1; 2 соответствуют 1000T К; 

2000T К) 

 
Рис. 3.15. Распределение концентрациии электронов в области lrR    при 

61026 R м ,    18

0 105en 3–м ,    1.1  (кривые 1; 2 соответствуют 1000T К; 

2000T К) 

Сравнение графиков рис. 3.14 показывает, что при более высоких 

температурах с ростом r внутри частицы концентрация электронов 

уменьшается быстрее. Однако концентрация электронов вне частицы с 

повышением температуры растет, что видно из сравнения графиков рис. 3.15.  



 

Лекция 10: Влияние температуры и радиуса пылевых частиц на выход 

электронов 

Запишем теорему Гаусса для сферической поверхности радиус которой 
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где eN  количество электронов,  вышедших из частицы. 

Отсюда получим 
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где  1
'

1  определяется по формуле (3.62). Из (3.62) и (3.64) находим 
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Как и следовало ожидать, eN  с ростом R, 0en и Т увеличивается. Из 

рисунков 3.16 и 3.17 видно, что при указанных параметрах частица испускает 

порядка 54 1010   электронов. Это говорит о высокой эффективности 

использования твердых частиц с целью повышения электропроводности 

плазмы при низких температурах. 

 

 
 

Рис. 3.16. Зависимость количества электронов, эмиттированных частицей, 

от радиуса частицы при  1000T К, 18

0 105en 3–м . 

 

 



 
Рис. 3.17. Зависимость количества электронов, эмиттированных частицей, от 

абсолютной температуры при  61026 R м ,  18

0 105en 3–м . 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Лекция  11:   Вольт-амперные характеристики разряда в потоке 

пылевой плазмы 

 На рис.4.1. показано распределение температуры по радиусу потока в 

сечении у=0, где Т0 – температура на оси потока, значение которой 

регулируется величиной расхода кислорода, подаваемого в разрядный 

промежуток. Как видно, изменение температуры в диапазоне 50  r  мм не 

превышает 7% величины Т0. Поэтому в первом приближении можно было 

пренебречь влиянием радиального изменения температуры на 

характеристики разряда. 

 
 Рис.4.1. Распределение температуры по радиусу потока ( 1 при 

Т0=1500К, 2  при Т0=1400К). 

В экспериментах температура на оси потока не превышала 1500К. При 

таких низких температурах термической ионизацией можно было 

пренебрегать. Таким образом, в условиях проводимых экспериментов 

заряженные частицы возникали за счет эмиссии электронов пылевыми 

частицами. Исследуемый разряд поддерживался заряженными частицами, 

поступающими в межэлектродную область вместе с потоком газа. 

Следовательно, этот разряд является несамостоятельным. Однако в отличие 

от ранее исследованных  несамостоятельных разрядов часть заряженных 

частиц выносится этим же потоком из межэлектродной области.  

 Из рис. 4.2 и 4.3 видно, что начальные участки вольт – амперных 

характеристик являются линейными, что является одним из главных 

признаков несамостоятельного разряда. Сравнение графиков этих рисунков 

показывает существенное увеличение силы тока при подаче порошка. Также 

сила тока зависит от размеров частиц порошка, что видно из рис. 4.2 и 4.3. 

При подаче более мелкого порошка сила тока в 5 раз больше, чем при подаче 

более крупного порошка (рис. 4.3). Это говорит о возрастании эмиссии 

электронов при делении твердой частицы на более мелкие, что подтверждает 

результаты теоретических расчетов, проведенных в параграфе 3.5.  

При больших напряжениях и высоких температурах появляется 



отклонение характеристик от линейной зависимости, что свидетельствует о 

начале ионизационного усиления тока. Описанные в разряды при 

дальнейшем увеличении силы тока последовательно переходят в тихий 

самостоятельный разряд, нормальный тлеющий разряд, аномальный 

тлеющий разряд и дуговой разряд. Кривая 1 рис. 4.2 показывает, что данный 

разряд после участка ионизационного усиления переходит в дугу, минуя 

вышеперечисленные стадии. Таким образом, разряд в пылевой плазме 

существенно отличается от ранее исследованных электрических разрядов. 

 
Рис. 4.2. ВАХ разряда в потоке смеси продуктов сгорания  

и порошка KCl при Т0=1500 К 

(кривая 1 при d=0.15-0.3 мм, кривая 2 при d=0.3-0.5 мм) 

 
Рис. 4.3. ВАХ разряда в потоке смеси продуктов сгорания  

и порошка KCl при Т0=1400 К 

(кривая 1 при d=0.15-0.3 мм, кривая 2 при d=0.3-0.5 мм) 

 



 
Рис. 4.4. ВАХ разряда в потоке продуктов сгорания 

(кривая 1 при Т0=1500 К, кривая 2 при Т0=1400 К) 

 
Рис. 4.5. ВАХ разряда в потоке смеси продуктов сгорания  

и порошка KCl при d=0.3-0.5 мм 

(кривая 1 при Т0=1400 К, кривая 2 при Т0=1500 К) 

 
Рис. 4.6. ВАХ разряда в потоке смеси продуктов сгорания  

и порошка KCl при d=0.15-0.3 мм 

(кривая 1 при Т0=1400 К, кривая 2 при Т0=1500 К) 



Сравнение графиков рисунков 4.5 и 4.6 показывает увеличение силы 

тока при повышении температуры. При заданном напряжении сила тока с 

понижением температуры уменьшается. Это говорит о возрастании эмиссии 

электронов с увеличением температуры, что подтверждает результаты 

теоретических расчетов, приведенных в параграфе 3.5. 

При проведении экспериментов как с порошком KCl, так и без него, на 

катоде наблюдалось образование нитевидных скоплений сажи. 

Исследования, проведенные с помощью просвечивающего  электронного 

микроскопа, показали наличие сферических сажевых частиц размерами от 50 

до 200 нм. Отсюда можно сделать вывод, что продукты сгорания пропана в 

кислороде также представляют собой пылевую плазму. По-видимому, этим 

можно объяснить воздействие электрического поля на пламя в ракетных 

двигателях, описанное в работе. Вольт-амперная характеристика разряда в 

такой плазме показана на рис.4.4.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Лекция 12: Распределение потенциала в электрическом разряде в потоке 

пылевой плазмы 

На рис. 4.7 - 4.16 представлены распределения потенциала вдоль 

разрядного промежутка. Поверхность катода располагается в сечении z=0, а 

поверхность  анода – в сечении z=10. За начало отчета потенциала принят 

потенциал катода. Из этих рисунков видно, что в прикатодной области I с 

ростом z потенциал резко возрастает, в области II с ростом z потенциал 

растет медленно, практически по линейному закону. В прианодной области 

III снова начинается заметный рост потенциала. Проводимость плазмы 

увеличивается с ростом температуры, так как увеличивается выход 

электронов из пылевых частиц. Поэтому при более высокой температуре 

значение потенциала в  областях I и II меньше, чем при более низкой 

температуре (рис. 4.7 - 4.12).  Сравнение графиков рис. 4.13 - 4.16  

показывает, что при заданном напряжении разряда распределение 

потенциала зависит от подачи порошка и размеров пылевых частиц. На 

участках I и II  при подаче порошка потенциал меньше, чем в случае разряда 

в потоке продуктов сгорания без порошка. Этот потенциал уменьшается с 

уменьшением диаметра пылевой частицы. Таким образом, подтверждаются 

теоретические расчеты, приведенные в параграфе 3.5.  

 
Рис. 4.7. Распределение потенциала электрического поля вдоль разрядного 

промежутка при U=200 В без порошка при различных значениях Т 

(1-Т=1400 К, I=0.004 мА и 2- Т=1500 К, I=0.008 мА) 

 
Рис. 4.8. Распределение потенциала вдоль разрядного промежутка 



при U=200 В, d=0,3-0,5 мм  

(1 при Т0=1400К,  I=0.024 мА; 2 при Т=1500К, I=0.09 мА) 

 

 

 
Рис. 4.9. Распределение потенциала электрического поля вдоль разрядного 

промежутка при U=200 В , d=0,15-0,3 мм и различных значениях Т 

(1-Т=1400 К, I=0.11 мА и 2- Т=1500 К, I=0.18 мА) 

 

 
Рис. 4.10. Распределение потенциала электрического поля вдоль разрядного 

промежутка при U=300 В без порошка при различных значениях Т 

(1-Т=1400 К, I=0.007 мА и 2- Т=1500 К, I=0.01 мА) 

 

 

 



Рис. 4.11. Распределение потенциала электрического поля вдоль разрядного 

промежутка при U=300 В , d=0,3-0,5 мм и различных значениях Т 

(1-Т=1400 К, I=0.045 мА и 2- Т=1500 К, I=0.16 мА) 

 

 
Рис. 4.12. Распределение потенциала электрического поля вдоль разрядного 

промежутка при U=300 В , d=0,15-0,3 мм и различных значениях Т 

(1-Т=1400 К, I=0.18 мА и 2- Т=1500 К, I=0.3 мА) 

 

 
Рис. 4.13. Распределение потенциала электрического поля вдоль разрядного 

промежутка при Т=1400 К, U=200 В, при различных значениях d 

(1-без порошка, I=0.004;  2- d=0,3-0,5 мм, I=0.024 мА и 3- d=0,15-0,3 мм, 

I=0.11 мА ) 

 

 
Рис.4.14. Распределение потенциала вдоль разрядного промежутка при  



Т0=1400 К, U=300 В (1-без порошка, I=0.009 мА; 2 при  d=0,3-0,5 мм, I=0.15 

мА; 3 при d=0,15-0,3 мм, I=0.3 мА) 

 

 
Рис. 4.15. Распределение потенциала электрического поля вдоль разрядного 

промежутка при Т=1500 К, U=200 В, при различных значениях d 

(1-без порошка, I=0.008 мА; 2- d=0,3-0,5 мм, I=0.09 мА и 3- d=0,15-0,3 мм, 

I=0.18 мА) 

 

 

 
4.16. Распределение потенциала электрического поля вдоль разрядного 

промежутка при Т=1500 К, U=300 В, при различных значениях d 

(1-без порошка, I=0.01 мА; 2- d=0,3-0,5 мм, I=0.16 мА и 3- d=0,15-0,3 мм, 

I=0.3 мА) 

 

 

 

 

 

 

 



Лекция  13: Распределение напряженности электрического поля в 

разрядном промежутке. 

Проекция напряженности электрического на ось z равна 

zz
Ez









 ,                                                 (4.1) 

где   разность потенциалов между двумя соседними точками, а z - 

расстояние между этими точками. Изменение напряженности электрического 

поля по сечению разряда очень мало и поэтому можно считать zEE  . 

На рис. 4.17 – 4.26 показаны распределения напряженности 

электрического поля в межэлектродном промежутке. Как видно из них, 

величина в прикатодной области I очень большая и с ростом z она сначала 

уменьшается, достигает минимального значения и в области II остается 

почти постоянной, далее в прикатодной области III снова несколько 

возрастает. Сравнение графиков рис. 4.17 - 4.26 показывает рост 

протяженности области I с увеличением силы тока. Это объясняется тем, что 

здесь концентрация электронов мала и заряд в основном переносится 

пылевыми частицами и Е возрастает. Значения, в пределах которых меняется 

модуль напряженности электрического поля в областях I, II и III при 

температуре 1400 К и напряжении 300 В представлены в таб.4.1.  

Таб.4.1: 

размер частиц 

d, мм 

сила тока 

I, мА 

область I 

|Ez|, кВ/м 

область II 

|Ez|, кВ/м 

область III 

|Ez|, кВ/м 

0,3-0,5  0.045   5-160  2-5 5 - 50 

0,15-0,3 0.11 30-160  3-30 5 - 50 

без порошка 0.007 5-250  2-5   5 - 30 

 

Анализ графиков рис. 4.17 – 4.26 показывает рост напряженности в 

области I при повышении температуры и уменьшении диаметра пылевых 

частиц. 

 
Рис. 4.17. Распределение напряженности электрического поля вдоль 

разрядного промежутка при U=200 В без порошка при различных значениях 

Т (1-Т=1400 К, I=0.004 мА и 2- Т=1500 К, I=0.008 мА) 

 



 
Рис. 4.18. Распределение напряженности электрического поля  вдоль 

разрядного промежутка при U=200 В, d=0,3-0,5 мм  

(1 при Т0=1400К,  I=0.024 мА; 2 при Т=1500К, I=0.09 мА) 

 

 
Рис. 4.19. Распределение напряженности электрического поля вдоль 

разрядного промежутка при U=200 В , d=0,15-0,3 мм и различных значениях 

Т (1-Т=1400 К, I=0.11 мА и 2- Т=1500 К, I=0.18 мА) 

 

 
Рис. 4.20. Распределение напряженности электрического поля вдоль 

разрядного промежутка при U=300 В без порошка при различных значениях 

Т (1-Т=1400 К, I=0.007 мА и 2- Т=1500 К, I=0.01 мА) 



 
Рис. 4.21. Распределение напряженности электрического поля вдоль 

разрядного промежутка при U=300 В , d=0,3-0,5 мм и различных значениях Т 

(1-Т=1400 К, I=0.045 мА и 2- Т=1500 К, I=0.16 мА) 

 

 
Рис. 4.22. Распределение напряженности электрического поля вдоль 

разрядного промежутка при U=300 В , d=0,15-0,3 мм и различных значениях 

Т (1-Т=1400 К, I=0.18 мА и 2- Т=1500 К, I=0.3 мА) 

 
Рис. 4.23. Распределение напряженности электрического поля вдоль 

разрядного промежутка при Т=1400 К, U=200 В, при различных значениях d 



(1-без порошка, I=0.004;  2- d=0,3-0,5 мм, I=0.024 мА и 3- d=0,15-0,3 мм, 

I=0.11 мА ) 

 
Рис.4.24. Распределение напряженности электрического поля  

 вдоль разрядного промежутка при  

Т0=1400 К, U=300 В (1-без порошка, I=0.009 мА; 2 при  d=0,3-0,5 мм, I=0.15 

мА; 3 при d=0,15-0,3 мм, I=0.3 мА) 

 

 

 

 
Рис. 4.25. Распределение напряженности электрического поля вдоль 

разрядного промежутка при Т=1500 К, U=200 В, при различных значениях d 

(1-без порошка, I=0.008 мА; 2- d=0,3-0,5 мм, I=0.09 мА и 3- d=0,15-0,3 мм, 

I=0.18 мА) 



 
4.26. Распределение напряженности электрического поля вдоль разрядного 

промежутка при Т=1500 К, U=300 В, при различных значениях d 

(1-без порошка, I=0.01 мА; 2- d=0,3-0,5 мм, I=0.16 мА и 3- d=0,15-0,3 мм, 

I=0.3 мА) 

 

Лекция 14: Движение заряженных частиц в разрядном промежутке в 

поперечном потоке газа. 

 

Рассмотрим динамику заряженных частиц в разрядном промежутке при 

поперечном продуве плазмообразующего газа. 

 
Рис.4.27. К- катод, А- анод. 

 

Поскольку температура потока не высокая термоэлектронной эмиссией 

из катода можно пренебречь. Следовательно,  

  00 en ,   00 ej ,    00 pjj   и    ljlj e , 

где ne - концентрация электронов, ej - плотность электрического тока 

электронов, np - концентрация пылевых частиц, pj  - плотность 

электрического тока пылевых частиц и j - общая плотность электрического 

тока. 

Стационарный разряд между катодом и анодом может существовать 

только в случае постоянного поступления  электронов и положительно 



заряженных пылевых частиц за счет их движения вместе с потоком газа со 

скоростью S


(рис.4.27). Скорости движения электронов и пылевых частиц в 

направлении оси у могут отличаться в зависимости от расстояния от места 

подачи пылевых частиц в поток до места расположения электродов. С целью 

упрощения анализа допустим равенство их скоростей движения 

constSSS
pe

 . В этом приближении уравнения неразрывности для 

электронного газа и пылевых частиц записываются в виде 
 

0









y

n
S

z

Vn eeze ,                                               (4.2) 

 
0










y

n
S

z

Vn ppzp .                                              (4.3) 

Плотности токов определяются выражениями 

eee Vеnj


 ,                                                       (4.4) 

pppp Vqnj


 .                                                      (4.5) 

Учтем известные уравнения движения заряженных частиц в электрическом 

поле 

EbV
ee


 , EbV

pp


 , 

где be  и bp подвижности электронов и пылевых частиц соответственно. 

Отсюда находим  

 EbnbNnqjjj eeppep


 ,                             (4.6) 

где qNqp  . 

Модуль вектора плотности тока j  определяется формулой 

   EbnbNnqj eepp   (4.7) 

Распределение потенциала электрического поля описывается уравнением 

Пуассона  

0


 ,                                                     (4.8) 

где                                                       

 
ep nnNq  .                                               (4.9) 

Изменение напряженности электрического поля по сечению разряда 

очень мало и поэтому в (4.6) и (4.7) можно полагать zEE


 . В таком 

приближении из уравнения (4.8) находим 

0




dz

dEz .                                                 (4.10) 

Масса пылевой частицы mp на много порядков больше массы 

электронов. Поэтому be>>bp и электроны быстро уходят из прикатодной 

области в сторону анода, а пылевые частицы медленно уходят из прианодной 

области в сторону катода. Таким образом, у катода возникает 

положительный объемный заряд, а у анода небольшое количество 

отрицательного объемного заряда (рис.4.28). Этот вывод согласуется с 

результатом расчета, представленным на рис. 4.28. Как видно, в области I 



имеется значительный положительный заряд и плазма не является 

квазинейтральной.  

 
Рис.4.28. Распределение объемной плотности заряда вдоль разрядного 

промежутка при Т0=1400 К, U=300 В (1 при  d=0,3-0,5 мм, I=0.15 мА; 2 при 

d=0,15-0,3 мм, I=0.3 мА) 
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