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Abstract

We investigate asymptotical behavior of the conformal module of a
doubly-connected domain which is the difference of two homothetic rec-
tangles under stretching it along the abscissa axis. Thereby, we give the
answer to a question put by Prof. M. Vuorinen.

1 Introduction

In recent years, investigation of conformal modules of quadrilaterals, ring do-
mains and capacities of condensers with polygonal boundaries has attracted
increasing interest. The conformal modules play an important role in investiga-
tions of various problems of mechanics of continuum, electrostatics, tomography,
heat conduction, image processing, etc. (see, e. g., [24, 27, 35, 47, 51, 52]). They
provide a powerful tool in theory of quasiconformal mappigs (see [1,4,39]), allow
to obtain new results in theory of special functions (see, e. g., [22, 23]), etc.

The main object of our study is rectangular frames, i. e., doubly-connected
domains which are the difference of two homothetic rectangles, and their mod-
ules.

At first, we recall some classical definitions. Consider a plane doubly-
connected domain D with nondegenerate boundary components. One of its
important characteristics is the conformal module m(D). There are several
equivalent definitions of m(D); we give some of them.
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If D is conformally equivalent to an annulus {r1 < |z| < r2}, then

m(D) :=
1

2π
ln

r2
r1

.

On the other hand,
m(D) := λ(Γ),

where λ(Γ) is the extremal length of curve-family (see, e. g., [1]) Γ consisting of
all curves joining in D its boundary components. Furthermore,

m(D) := 1/λ(Γ′),

Γ′ being the family of all curves in D separating its boundary components. At
last,

m(D) := 1/Cap(C),

where Cap(C) is the conformal capacity of the condenser C defined by D.
If a doubly-connected domain D is symmetric with respect to one or two of

the coordinate axis, then its module can be easily found via module of quadrilat-
eral which is a half or a quarter of D. We recall that a simply-connected Jordan
domain Q, with boundary four points Ak, 1 ≤ k ≤ 4, given in a positive order, is
called a quadrilateral. The definition can be extended to non-Jordan domains,
if the points Ak are understood as prime ends. We denote the quadrilateral
as Q(A1, A2, A3, A4) or simply Q if it is clear which points Ak are fixed. The
parts of ∂Q lying between A1 and A2, A3 and A4 we call horizontal sides of Q,
the other two parts of the boundary are vertical sides. Let us map conformally
Q(A1, A2, A3, A4) onto a rectangle [0, a]× [0, b] so that the horizontal sides are
mapped onto the horizontal sides of the rectangular. The number

m(Q) :=
a

b

is called the module of Q.
It is well-known (see, e. g., [1]) that m(Q) is equal to the extremal length

λ(Γ) of the family Γ consisting of curves in D joining its vertical sides. Besides,
m(Q) = 1/λ(Γ′) where Γ′ is the family of curves in D joining its horizontal
sides.

Special consideration is given to studying of behavior of the modules under
various deformations of domains, their numerical calculation, and asymptotics
at degeneration. In this regard we can note the survey by R. Kühnau [34] and
the papers [3, 5, 8–10,13,14,17,18,20–22,26,36–38,53,59].

Finding conformal modules is often associated with determination of con-
formal mapping of a given doubly connected domain onto an annulus or a
given quadrilateral onto a rectangle; however, there are some methods that
do not use explicit conformal mappings. As a rule, we can not construct
analytically the conformal mapping of the given domain onto canonical one
and to calculate its module. Therefore, approximate methods play an impor-
tant role. There are many papers, monographs and surveys on the topic, see,
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e. g., [5, 12, 16, 20, 24, 34, 35, 46, 48, 51, 58, 62]. Not with the aim to conduct an
exhaustive analysis of the existing methods in this direction we note some of
them.

Methods of boundary value problems and potential theory. As a rule, we
find a harmonic in a given domain function satisfying the Dirichlet or Neumann
conditions on parts of the boundary. To find the solution of the boundary value
problem various methods are used such that the finite elements method with
modifications [5, 20], simulation method or method of fundamental solutions
[3,31–33], when the approximate solution is represented as a linear combination
of fundamental solutions to the Laplace equation, etc.

Integral equation method. The boundary values of the required conformal
mapping between a given domain and a canonic one (a disk, a rectangle, an an-
nulus, etc.) satisfies integral equations that uses an information on the bound-
ary of the domain and the conjugation operator for harmonic functions. There
are some well-known equations such as Mikhlin’s, Warschawski’s, Gershgorin’s,
Symm’s, Theodorsen’s integral equations and their modifications for various
situations (see, e. g., the survey [62], and [10,24,28,41,42,50,55–57,62]).

Domain decomposition method. It uses decomposition of a given quadrilat-
eral Q into two or a finite number of smaller quadrilaterals Qj . The module
m(Q) is very close to

∑
m(Qj) for sufficiently long quadrilateral (see [38,46–48]).

Osculation methods. The osculation method (Schmiegungsverfahren) of
Koebe [29, 30] approximates the desired conformal mapping by a composition
of more elementary maps (see [25]).

Approximate methods based on finding the Laurent coefficients of the desired
mapping. We mention here Fornberg’s method [15], its generalizations and
modifications [10,40,60,61].

Schwarz-Cristoffel integrals. For polygonal boundaries the Schwarz-Cristof-
fel integrals can be used (see, e. g., [12]). There are softwares to practical using
of this method ( [11,26]).

When using these methods for calculating conformal modules for regions
with angles and for elongated ones, problems arise. Therefore, for these cases
asymptotic formulas and estimates are very useful.

Now we describe the main problem which is investigated in the paper. It
is well-known that modules doubly-connected domains and quadrilaterals are
invariant under conformal mappings and quasiinvariant under quasiconformal
ones (see, e. g., [1]): if f is an H-quasiconformal mapping of D onto D̃, then

1

H
m(D) ≤ m(D̃) ≤ Hm(D).

One of the simplest H-quasiconformal mappings is the stretching along the
abscissa axis fH : x+ iy 7→ Hx+ iy. M. Vuorinen states the following problem1:
Investigate how the module m(D) is deformed under fH for sufficiently large H.
In particular, which is asymptotical behavior of m(D) if D is the difference of
two homothetic squares?

1The problem was formulated in a private talk during the conference ’Geometric Analysis
and Its Applications’, Volgograd, 2004.
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The main result of the paper is

Theorem 1.1 If D1 = Dσ
1 := [−1, 1]2 \ [−σ, σ]2, σ ∈ (0, 1), DH = Dσ

H :=
fH(D1), then

m(Dσ
H) ∼ 1− σ

4σH
, H → ∞. (1)

Theorem 1.1 gives a good approximate formula for the module for sufficiently
elongated rectangular frames and some L-shaped regions that are (1/4) of the
rectangular frames considered here. The L-shaped regions are standard domains
considered, including, for computation of their conformal modules by many
authors, see [16, 21]. In [45] we suggested an algorithm for some L-shaped
domains which are stretched polyominoes, i. e., figures consisting of a finite
number of disjoint uniform rectangles. We should note that recently D. Dautova
[9] solved a similar problem and found an asymptotic formula for modules of
diamond-shaped domains.

Now we overview the content of the paper. In Section 2 we give a solution
to the problem for σ = 1/2, in addition, we deduce an explicit formula for
m(DH) via elliptic integrals. It should be noted that when H = 1 an explicit
formula for m(DH) is well-known, see Remark 1.3 below. In Section 3 we
establish continuity of module of quadrilateral under kernel convergence in the
sense of Carathéodory. In Section 4 the general case is considered. The results
of Sections 2 and 4 were announced in [6] and [44].

Let E := {|z| < 1}, U := {Im z > 0}, E+ := E∩U , Sγδ := {eiφ | γ < φ < δ},
0 < δ − γ < 2π. We denote by [a, b] the segment with endpoints a, b ∈ C.

The elliptic integral of the first kind

K(r) :=

∫ 1

0

dξ√
(1− ξ2)(1− r2ξ2)

.

It is known (see, e. g., [2, 4]) that

lim
r→0

(
K(r′)− ln

4

r

)
= 0, (2)

where as usual r′ =
√
1− r2. From (2) it follows that K(r) ∼ ln 4

r′ as r → 1.
Therefore,

K(r) ∼ 1

2
ln

1

1− r
,

K(r)

K(r′)
∼ 1

π
ln

1

1− r
, r → 1. (3)

From (2) we also obtain that

K(r′)

K(r)
∼ 2

π
ln

1

r
, r → 0. (4)

Remark 1.2 The ring domain consisting of the unit disk minus a radial slit
from 0 to r, 0 < r < 1, is usually the Grötzsch ring and its modulus is denoted

µ(r) =
π

2

K(r′)

K(r)
,
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see [34]. The asymptotic formula (4) can be refined by using of the results
from [4], Theorem 5.13.

Remark 1.3 When H = 1 an explicit formula for m(Dσ
H) is well-known (see,

e. g., [7]):

m(Dσ
1 ) = µ

((
l − l′

l + l′

)2
)
, l = µ−1

(
2

π

1− σ

1 + σ

)
, l′ =

√
1− l2.

2 The case σ = 1/2

Consider the part QH of DH lying in the first quarter of the plane. It is the
union of three rectangles of the same size. Let us map conformally one of the
rectangles with vertices at the points (H + i)/2, H + i/2, H/2 + i, and H + i
onto the quarter of the unit disk U1 := {z | |z| < 1,Re z > 0, Im z > 0} by the
mapping f so that f((H + i)/2) = 0, f(H + i/2) = 1, and f(H/2 + i) = i. Let
eiκ = f(H + i).

By the Riemann-Schwarz reflection principle f could be extended up to the
conformal mapping of the rectangle [0,H]× [0, 1] onto the unit disk E; we will
designate the extension also through f . Then f maps conformally QH onto
the domain which is three quarters of the unit disk, besides, f(H/2) = −i,
f(H) = e−iκ, f(i/2) = −1, and f(i) = −e−iκ.

Fig. 1

r eiκ

r
e−iκ

r−e−iκr
r r

r
r
r

r

r

rHH/20 0

−i

i

−1 1

H + ii

i/2

The function g(ζ) := (if(ζ))2/3 maps conformally QH onto E+ at an appro-
priate choice of branch of the power function. We have g(H/2) = 1, g(H) = eiα,
f(i/2) = −1, f(i) = −e−iβ where

α = (π − 2κ)/3, β = π − 2κ/3. (5)

The module of DH , by the symmetry principle for quasiconformal mappings
(see, e. g., [1]), is equal

m(DH) = 1/(4λ(Γ)) (6)
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where Γ is the family of all curves inQH which join [H/2,H] and [i/2, i]. Because
of conformal invariance of the module we obtain

λ(Γ) = λ(Γ′), (7)

where Γ′ is a family of all curves in E+ connecting S0α to Sβπ. By the symmetry
principle,

λ(Γ′) = 2λ(Γ̃) (8)

where Γ̃ is the family of all curves which join S−α,α and Sβ,2π−β in E+.
Let us map conformally the unit disk E onto the upper half-plane U so that

the points eiβ , e−iβ , e−iα, and eiα are mapped on −1/l, −1, 1, and 1/l, l > 1.
Now we express l through α and β. Equating the cross-ratios

−1/l + 1

−1/l − 1
· 1/l − 1

1/l + 1
=

eiβ − e−iβ

eiβ − e−iα
· e

iα − e−iα

eiα − e−iβ

we obtain

l =

√
1− cos(α+ β)−

√
2 sinβ sinα√

1− cos(α+ β) +
√
2 sinβ sinα

. (9)

Besides,

λ(Γ̃) =
2K(l)

K(l′)
. (10)

From (6), (7), (8), and (10) we have

m(DH) =
K(l′)

16K(l)
. (11)

Now we find the relation between κ and H. For this purpose we map con-
formally E onto the upper half-plane U by a function φ so that −e−iκ, −eiκ,
e−iκ, and eiκ are mapped on −1/k, −1, 1, and 1/k. We note that k satisfies
the condition

2K(k)

K(k′)
= H (12)

because the quadrilateral, which is the upper half-plane U with fixed points
−1/k, −1, 1, and 1/k, is conformally equivalent to the rectangle of length H
and height 1 under the mapping φ ◦ f . From the equality of cross-ratios

−1/k + 1

−1/k − 1
· 1/k − 1

1/k + 1
=

−e−iκ + eiκ

−e−iκ − eiκ
· e

iκ − e−iκ

eiκ − e−iκ

we have

κ = arcsin
1− k

1 + k
. (13)

Therefore, we prove

Theorem 2.1 For σ = 1/2 the module of DH = Dσ
H is defined by (11) where l

is found from (9) taking into account (5), (12), and (13).
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Corollary 2.2 We have

m(DH) ∼ 1

4H
, H → ∞.

Actually, from (13) it follows that κ ∼ (1− k)/2 as H → ∞. Now, taking into
account (9) and (5), we obtain

1− l ≃
√
sinβ =

√
sin

2κ

3
≃

√
1− k.

Thus, using (11), (12), and (3), we have

m(DH) =
K(l′)

16K(l)
∼ π

16 ln[(1− l)−1]
∼ π

8 ln[(1− k)−1]
∼ 1

4H
, H → ∞.

3 Convergence of domains and their modules

At first, we recall some results of the theory of prime ends of a plane domain
and of a sequence of plane domains converging to a kernel ( [54], Ch. IV) in
convenient for us notations.

Consider a sequence of simply-connected domains Gn on the Riemann sphere
C converging to a kernel G with respect to a fixed point S0 ∈ C (see, e. g., [19],
Ch. II, § 5). We assume that the boundaries of Gn and G are nondegenerate,
i. e., each of them contains more than one point. Further we provide Gn and
G with metrics induced from the sphere; in the case when all Gn are contained
in a fixed Euclidean disk it is possible to change the spherical metrics by the
Euclidean one.

Consider a crosscut γ of G, i. e., a Jordan arc in G with endpoints on ∂G
(see, e. g., [49], Sect. 9.2, or [19], Ch. II, § 3). Without loss of generality, we
may assume that γ has distinct endpoints and does not pass through S0. Every
crosscut γ subdivide G into two subdomains; we denote by Int γ the subdomain
not containing S0.

A sequence (γm) of crosscuts of G is a null-chain of G if for every m ≥ 1
we have Int γm+1 ⊂ Int γm, γm and γm+1 have a positive distance relative to G,
and diam γm → 0, m → ∞. There is the following equivalence relation between
null-chains of G: two null-chains (γm) and (βm) are equivalent if for every j
there exists k such that Intβk ⊂ Int γj and Intβj ⊂ Int γk. An equivalence class
of null-chains is called a prime end of G. We call the set |P | := ∩m≥1Int γm the
impression of P ; it does not depend on choice of the null-chain (γm).

If G is a Jordan domain, then for every prime end P the impression |P |
consists of a unique point and we can identify P with the point. Therefore, in
the case, the set PE(G) of all prime ends of G coincides with the boundary
of G, and the set G∪PE(G) is identified with the closure of G in the spherical
metrics.

Let F : E → G be a conformal mapping from the unit disk E onto G. The
classical Carathéodory theorem (see, e. g., [49], Theorem 9.6, or [19], p. 41,
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Theorem 2) states that there exists a one-to one correspondence between the
set of boundary points of E and the set PE(G) of prime ends of G; moreover,
the correspondence lets us extend f up to a homeomorphism from E onto G :=
G ∪ PE(G) if we introduce a topology in G by a natural way.

Let γn be a crosscut of Gn, n ≥ 1. We say that the sequence (γn) is a

crosscut of the sequence G̃ := (Gn) lying over γ (see [54], p. 64) if the following
conditions are fulfilled:

1. For every neighborhood U of γ there exists n0 such that γn lies in U for
any n ≥ n0;

2. if points p1, p2 ∈ G are separated by γ in D, then there exists n1 such
that p1 and p2 are separated by γn in Gn for every n ≥ n1.

In [54], p. 65, it is proved

Lemma 3.1 For any crosscut γ of G there exists a crosscut γ̃ := (γn) of G̃
lying over γ.

Let (γm) be a null-chain of G and γ̃m := (γn
m) for every m be a crosscut of

G̃ lying over γm. It is possible to introduce a relation of equivalence on the set
of such sequences (γ̃m). The sequences (γ̃m) and (β̃m) of crosscuts γ̃m := (γn

m)

and β̃m := (βn
m) of G̃ are called equivalent if for every j there exist k and n0

such that for every n ≥ n0 we have Int γn
k ⊂ Intβn

j and Intβn
k ⊂ Int γn

j . The

classes of equivalence P̃ of such sequences are called the prime ends of G̃.
If a sequence of crosscuts (γm) defines a prime end P of G and prime end P̃ of

G̃ contains (γ̃m), where γ̃m is a crosscut of G̃ lying over γm, then we say that P̃

is the prime end of G̃ corresponding to the prime end P of G. Theorems 5 from
[54], Ch. 4, § 2, actually states that the described correspondence Φ : P 7→ P̃ is

a bijection between the set of prime ends of G and the set of prime ends of G̃.
Now consider a sequence (Pn) where Pn is an inner point or a prime end of

Gn. Let P̃ = Φ(P ) be the prime end of G̃ corresponding to a prime end P of G

and P be defined by a sequence (γm). Let P̃ be defined by (γ̃m) where γ̃m lies
over γm for every m, and γ̃m := (γn

m). We say that the sequence (Pn) converges

to P̃ if for every m there exists n0 such that γn
m separates Pn from S0 in Gn

for every n ≥ n0; if Pn is a prime end of Gn, defined by a sequence of crosscuts
(βn

m), then this condition means that for n ≥ n0 the crosscut γn
m separates βn

j

from S0 in Gn for sufficiently large j.
Let fn and f be conformal mappings of E onto Gn and G, extended to E up

to homeomorphisms of the closures of the domains in topology connected with
prime ends. Let Pn be a sequence consisting of points or prime ends of Gn, and
let P be a boundary prime end of G. Denote ζn = f−1

n (Pn), ζ0 = f−1(P ).
In [54], p. 75, the following statement is proved.

Theorem 3.2 A sequence (Pn) converges to the prime end P̃ of G̃ correspon-
ding to P if and only if ζn → ζ0.
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From Theorem 3.2 we deduce the following result on continuity of the module
of quadrilateral under kernel convergence of domains.

Theorem 3.3 Let An, Bn, Cn, and Dn be distinct boundary prime ends of Gn.
Let the sequences (An), (Bn), (Cn), and (Dn) converge to the prime ends Ã,

B̃, C̃ and D̃ of G̃ corresponding to distinct prime ends A, B, C, and D of G.
Then m(Gn(An, Bn, Cn, Dn)) → m(G(A,B,C,D)).

Actually, taking into account conformal invariance of the module of quadri-
lateral, by Theorem 3.2 we have

m(Gn(An, Bn, Cn, Dn)) = m(E(an, bn, cn, dn)) →

→ E(a, b, c, d) = m(G(A,B,C,D))

where an, bn, cn, and dn are preimages of An, Bn, Cn, and Dn under the map
fn, and a, b, c, and d are preimages of A, B, C, and D under the map f .

Remark 3.4 The statement of Theorem 3.3 is valid not only for univalent
domains, it is true for p-valent ones (Riemann surfaces) as well (see, e. g., [43]).

4 General case

As in the case σ = 1/2, consider the part QH of DH lying in the first quarter
of the plane. Let us shift QH to the left on the value σH; as a result we receive
the domain Q̃H . By the symmetry principle, the module of DH is equal to

m(DH) =
1

4λ(Γ)
(14)

where Γ is the family of curves joining [0, (1 − σ)H] and [−σH + iσ,−σH + i]

in the quadrilateral Q̃H .
Now consider the domain

Q̃ := ∪H>0Q̃H = (R× (0, 1)) \ ((−∞, 0]× (0, σ]).

Let us map conformally Q̃ onto the horizontal strip R× (0, 1) with keeping the
infinite prime ends and the origin. For this purpose we map conformally the
upper half-plane U onto Q̃ and G = {0 < Imω < 1} by the functions

z = C

∫ ζ

1

√
ζ − s

ζ − 1

dζ

ζ
, ω =

ln ζ

π
,

where C > 0, 0 < s < 1.
Near ζ = 0 we have

z = C
√
s ln ζ +

∞∑
k=0

σkζ
k.
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Since the intersection of the domain Q̃ and the left half-plane is a half-strip of
width (1− σ)/π, we have C

√
s = (1− σ)/π. Near ζ = ∞

z = C ln ζ +

∞∑
k=0

βk

ζk
,

therefore, similarly we obtain C = 1/π. Then s = (1− σ)2 and

z =
1

π

∫ ζ

1

√
ζ − (1− σ)2

ζ − 1
.

Considering it we conclude that for sufficiently large M > 0 we have

z = (1− σ)ω +
∞∑
k=0

σke
kπω (15)

in the half-plane Π−
µ := {Reω < −M, 0 < Imω < 1}, and

z = ω +

∞∑
k=0

βke
−kπω (16)

in the half-plane Π+
µ := {Reω > M, 0 < Imω < 1}.

From rectilinearity of the boundary arcs of the domains and the Riemann-
Schwarz reflection principle it follows that convergence of the series (15) and

(16) is uniform in the closed half-planes Π−
µ and Π+

µ .

From (15) and (16) we deduce that on the vertical segments in Q̃, lying on
the lines Reω = −σ̃ H, where

σ̃ =
σ

1− σ
,

we have
Re z(ω) = −σ̃ H +O(1), H → ∞.

In the same way, on the segments, lying on the lines Reω = (1− σ)H,

Re z = (1− σ)H +O(1), H → ∞,

Therefore,
λ(Γ) ∼ m(P̃ ) (17)

where P̃ is the quadrilateral which is the rectangle

P := [−σ̃ H, (1− σ)H]× [0, 1]

with the segments [−σ̃ H,−σ̃ H + i] and [0, (1− σ)H] as vertical sides.
Let us map U onto P by the function

z = C

∫ ζ

0

dξ√
(1− ξ2)(1− k2ξ2)

+ C1
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where

C1 =
(1− σ)2 − σ

1− σ
H, C =

(1− σ)2 + σ

2K(k)(1− σ)
,

and k ∈ (0, 1) is defined by the relation

2K(k)

K(k′)
=

(1− σ)2 + σ

1− σ
H. (18)

The mapping takes the points −σ̃ H+ i, σ̃ H, 0, and (1−σ)H, i. e., the vertices
of the quadrilateral P , into (−1/k), (−1), a, and 1, where

a = sn

[
σ − (1− σ)2

σ + (1− σ)2
K(k), k

]
. (19)

Here sn[ · , k] is the Jacobi elliptic sine corresponding to the parameter k (see,
e. g., [2]).

Now we map the upper half-plane U onto itself conformally so that the points
−1/k, −1, a, and 1 are mapped onto −1/ν, −1, 1, and 1/ν (0 < ν < 1). Then

the module of the quadrilateral P̃ is equal to

m(P̃ ) =
2K(ν)

K(ν ′)
(20)

where ν is defined by the equality of the cross-ratios:

1/ν − 1

1/ν + 1
· −1/ν + 1

−1/ν − 1
=

1− a

1 + 1
· −1/k + 1

−1/k − a

or
1− ν

1 + ν
=

√
1− a

1 + ka
·
√

1− k

2
. (21)

Therefore, for finding the asymptotics of m(P ) we need to know the asymptotic
behavior of a as H → ∞. It is possible to do using (19), but we prefer to apply
geometric considerations which are based on rectilinearity of the boundary arcs
and the reflection principle. Let us prove the following auxiliary statement.

Lemma 4.1 Let Q be a quadrilateral which is the square [0, 1]2 with vertices at
the points c, 1, 1 + i, and i, where c ∈ (0, 1). Denote QH = fH(Q). Then

m(QH) ∼ (1− c)H, H → ∞.

Proof. Let Q̃H = (1/H)QH . Since m(Q̃H) is a monotonic function of H, it
is sufficient to consider the sequence Hn = 2n and to prove that

m(QHn) ∼ (1− c)Hn, n → ∞.

For short we will write Qn instead of QHn .
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Consider the domains Q1
n, Q

2
n, . . . , Q

2n
n , where

Qk
n = [0, 1]×

[
k − 1

2n
,
k

2n

]
.

Let us glue Qk
n and Qk+1

n along {(x, y) | 0 ≤ x ≤ 1, y = j/(2n)} for odd k, and
along {(x, y) | c ≤ x ≤ 1, y = j/(2n)} for even k. As a result, we obtain the
domain Gn which is the unit square with (n− 1) horizontal slits (Fig. 2).

We will consider Gn as a quadrilateral with vertices c, 1, 1+ i, and c+ i. By
the symmetry principle, m(Gn) = m(Qn)/(2n). The domains Gn converge to
the rectangle G := [c, 1] × [0, 1] as n → ∞, and the sequences of their vertices

converge to four distinct prime ends of G̃ = (Gn) corresponding to the vertices
of G. Actually, let us take (1/4) of concentric circles with radius rm → 0 as
crosscuts γm which define a prime end P being a vertex of G. Denote by Pn

the prime end of Gn which has the same impression as P . Let γn
m be a crosscut

of Gn which is the union of γm and, if it is necessary, a segment connecting one
of its endpoint to one of the nearest points of ∂Gn. Let us denote γ̃m := (γn

m).

Then the crosscut (γ̃m) defines the prime end of G̃ := (Gn) corresponding to P
and γn

m for sufficiently large m and n separates the corresponding vertex of Gn

from any fixed point of the kernel G. By Theorem 3.3, m(Gn) → m(G) = 1− c,
and Lemma 4.1 is proved.

Remark 4.2 The quadrilateral QH could be considered as a generalized long
quadrilateral. Asymptotics of the modules of long quadrilaterals were investi-
gated in [14,17,18,37,38], and other papers where various methods for compu-
ting the modules were suggested.

Consider the quadrilateral P ∗ which is the rectangle P with the segments
[0, (1−σ)H] and [−σ̃ H+i, (1−σ)H+i] as horizontal sides. Taking into account
conformal invariance of the module, by Lemma 4.1 we have

m(P ∗) ∼ (1− σ)H, H → ∞. (22)
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Now we can describe the behavior of a as H → ∞. Let us map P ∗ confor-
mally onto U such that the points (1− σ)H + i, −σ̃H + i, 0, and (1− σ)H are
mapped into −1/µ, −1, 1, and 1/µ, 0 < µ < 1. Then

m(P ∗) =
K(µ′)

2K(µ)
, (23)

We should note that because of m(P ∗) → ∞ as H → ∞, by (23) and (4),
we have µ → 0, H → ∞. Comparing the cross-ratios of the points in ∂U ,
corresponding to each other under conformal automorphism, we obtain

1− 1/µ

1 + 1
· −1/µ+ 1

−1/µ− 1/µ
=

a− 1

a+ 1/k
· 1/k + 1/k

1/k − 1

or
1− a

1 + ak
· 2k

1− k
=

(µ− 1)2

4µ
.

Therefore, taking into account that a, k → 1 as H → ∞ we have

1− a ∼ 1− k

µ
. (24)

By (22), (23), and (3),

1

(1− σ)H
∼ 2K(µ)

K(µ′)
∼ 4

π
ln

1

µ
. (25)

Now we use the asymptotic behavior (3) of the elliptic integrals. With use
of that and by (18)

ln
1

1− k
∼ π

K(k)

K(k′)
∼ π

2
· (1− σ)2 + σ

1− σ
H.

Now from (3), (20), (21), (24), and (25) we obtain

m(P̃ ) =
2K(ν)

K(ν′)
∼ 2

π
ln

1

1− ν
∼ 2

π
ln

1 + ak

1− a
+

1

π
ln

1

1− k

∼ 2

π
ln

1

1− k
− 1

π
ln

1

µ
∼ (1− σ + σ̃)H − (1− σ)H = σ̃H.

Because of (14) and (17) it completes the proof of (1).

Acknowledgement. The author expresses his gratitude to Prof. M. Vuorinen
for attraction attention to the problem and useful comments, to E. V. Boriso-
va for help in checking the argument in the proof of Theorem 2.1, and to the
anonymous referee for helpful remarks and recommendations.
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[37] R. Kühnau. Der konforme Modul schmaler Vierecke. Math. Nachr., 175,
193–198, (1995). (in German)

[38] R. Laugesen. Conformal mapping of long quadrilaterals and thick doubly
connected domains. Constr. Approx., 10, 523–554, (1994).

[39] O. Lehto, and K. I. Virtanen. Quasiconformal mappings in the plane (2nd
ed.). Berlin, New York: Springer-Verlag, 1973.

[40] P. Luchini, and F. Manzo. Flow around simply and multiply connected bod-
ies: a new iterative scheme for conformal mapping. AIAA J., 27, 345–351,
(1989).

[41] S. G. Mikhlin. Integral equations and their applications. Pergamon Press,
New York, 1957.

[42] A. H. M. Murid, and M. R. M. Razali. An integral equation method for
conformal mapping of doubly connected regions. Matematika. 15(2): 79–93,
(1999).

[43] S. R. Nasyrov. Geometric problems of theory of ramified coverings of Rie-
mann surfaces. Kazan, Magarif, 2008, 276 pp. (in Russian)

[44] S. R. Nasyrov. Asymptotics of the module of a rectangular frame under
stretching it along a coordinate axis. Complex Analysis and Appl. Proc. VI
Petrozavodsk. Int. Conf. (1–7 July, 2012, Petrozavodsk, Petr. Univ), 51–53,
2012. (in Russian)

16



[45] S. R. Nasyrov. Conformal mappings of stretched polyominoes onto half-
plane. arXiv:1308.4392 [math.CV]. 15 pp.

[46] N. Papamichael. Dieter Gaier’s contributions to numerical conformal map-
ping. Comput. Methods Funct. Theory, 3, no. 1(2), 1–53, (2003).

[47] N. Papamichael, and N. S. Stylianopoulos. The asymptotic behavior of con-
formal modules of quadrilaterals with applications to the estimation of re-
sistance values. Constr. Approx., 15, no. 1, 109–134, (1999).

[48] N. Papamichael, and N. S. Stylianopoulos. Numerical conformal mapping:
domain decomposition and the mapping of quadrilaterals. World Scientific,
2010.

[49] Ch. Pommerenke. Univalent functions. Vandenhoeck and Ruprecht, Göt-
tingen, 1975.

[50] L. Reichel. A fast method for solving certain integral equation of the first
kind with application to conformal mapping. J. Comput. Appl. Math., 14,
125–142, (1986).

[51] R. Schinzinger, and P. Laura. Conformal mapping: methods and applica-
tions. Elsevier, Amsterdam, 1991.

[52] E. Sharon, and D. Mumford. 2D-shape analysis using conformal mapping.
Intern. J. Comput. Vision 70(1), 2006.

[53] A. Solynin, and M. Vuorinen. Extremal problems and symmetrization for
plane ring domains. Trans. Amer. Math. Soc., 348:10, 4095–4112, (1996).

[54] G. D. Suvorov. Prime ends and sequences of plane mappings. Naukova
Dumka, Kiev, 1986, 192 pp. (in Russian)

[55] G. T. Symm. Conformal mapping of doubly connected domain. Numer.
Math., 13, 448–457, (1969).

[56] T. Theodorsen. Theory of wing sections of arbitrary shape, NACA Report,
411, (1931).

[57] T. Theodorsen, and I. E. Garrick. General potential theory of arbitrary wing
sections. NACA Report, 452, (1933).

[58] L. N. Trefethen, and T. A. Driscoll. Schwarz-Christoffel mapping in the
computer era. Proceedings of the International Congress of Mathemati-
cians, Vol. III (Berlin, 1998), Doc. Math. 1998, Extra Vol. III, 533–542.

[59] M. Vuorinen, and X. Zhang.On exterior moduli of quadrilaterals and special
functions. J. Fixed Point Theory Appl. 13(1), 215–230, (2013).

[60] R. Wegmann. Convergence proofs and error estimates for an iterative
method for conformal mapping. Numer. Math., 44, 435–461, (1984).

17



[61] R. Wegmann. An iterative method for the conformal mapping of doubly
connected regions. J. Comput. Appl. Math., 14, 79–98, (1986).

[62] R. Wegmann. Methods for numerical conformal mapping. In: Handbook of
Complex Analysis: Geometric Function Theory, Vol. 2, R. Kühnau, ed.,
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