Математические заметки

Том 100 выпуск 4 октябрь 2016

УДК 517.983+517.986

Об идемпотентных τ -измеримых операторах, присоединенных к алгебре фон Неймана

А. М. Бикчентаев

Пусть τ – точный нормальный полуконечный след на алгебре фон Неймана \mathcal{M} , число $0 и <math>L_p(\mathcal{M}, \tau)$ – пространство интегрируемых (относительно τ) со степенью p операторов. Пусть $P, Q - \tau$ -измеримые идемпотенты и $A \equiv P - Q$. Тогда 1) если $A \geqslant 0$, то A – проектор и QA = AQ = 0; 2) если P квазинормален, то P – проектор; 3) если $Q \in \mathcal{M}$ и $A \in L_p(\mathcal{M}, \tau)$, то $A^2 \in L_p(\mathcal{M}, \tau)$.

Пусть натуральное число n>2 и $A=A^n\in \mathcal{M}$. Тогда 1) если $A\neq 0$, то перестановка $\mu_t(A)$ принимает значения в множестве $\{0\}\cup[\|A^{n-2}\|^{-1},\|A\|]$ для всех t>0; 2), либо $\mu_t(A)\geqslant 1$ для всех t>0, либо существует такое $t_0>0$, что $\mu_t(A)=0$ для всех $t>t_0$. Для каждого τ -измеримого идемпотента Q существует единственный ранговый проектор $P\in \mathcal{M}$ с QP=P, PQ=Q и $P\mathcal{M}=Q\mathcal{M}$. Существует единственное разложение Q=P+Z, где $Z^2=0$ и ZP=0, PZ=Z. При этом если $Q\in L_p(\mathcal{M},\tau)$, то P интегрируем и для p=1 имеем $\tau(Q)=\tau(P)$. Если $A\in L_1(\mathcal{M},\tau)$ с $A=A^3$ и $A-A^2\in \mathcal{M}$, то $\tau(A)\in \mathbb{R}$. Библиография: 15 названий.

Ключевые слова: гильбертово пространство, алгебра фон Неймана, нормальный след, τ -измеримый оператор, перестановка, τ -компактный оператор, интегрируемый оператор, квазинормальный оператор, идемпотент, проектор, ранговый проектор.

DOI: 10.4213/mzm11033

Введение. Пусть \mathcal{M} – алгебра фон Неймана операторов в гильбертовом пространстве \mathcal{H} , τ – точный нормальный полуконечный след на \mathcal{M} , число $0 и <math>L_p(\mathcal{M},\tau)$ – пространство интегрируемых (относительно τ) со степенью p операторов. В работе получены следующие результаты об алгебраических и порядковых свойствах следа τ и элементов *-алгебры $\widetilde{\mathcal{M}}$ всех τ -измеримых операторов.

Пусть $P,Q\in \mathcal{M}$ – идемпотенты. Если $A\equiv P-Q\geqslant 0$, то A – проектор и QA=AQ=0 (теорема 2.5); если P квазинормален, то P – проектор (теорема 2.10). Если $Q\in \mathcal{M}$ – идемпотент и $A\equiv P-Q\in L_p(\mathcal{M},\tau)$, то $A^2\in L_p(\mathcal{M},\tau)$ (теорема 2.30). Если $A\in L_1(\mathcal{M},\tau)$ с $A=A^3$ и $A-A^2\in \mathcal{M}$, то $\tau(A)\in \mathbb{R}$ (следствие 2.31).

Пусть натуральное число n > 2. Если $A \in \mathcal{M}$ и $0 \neq A = A^n$, то перестановка $\mu_t(A)$ принимает значения в множестве $\{0\} \cup [\|A^{n-2}\|^{-1}, \|A\|]$ для всех t > 0 (теорема 2.13).

Работа поддержана Российским фондом фундаментальных исследований (проект 15-41-02433) и правительством Республики Татарстан.