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Abstract: The present work describes an efficient reaction of electrochemical phosphorylation of
phenylacetylene controlled by the composition of catalytic nanoparticles based on non-noble-metals.
The sought-after products are produced via the simple synthetic protocol based on room temperature,
atom-economical reactions, and silica nanoparticles (SNs) loaded by one or two d-metal ions as
nanocatalysts. The redox and catalytic properties of SNs can be tuned with a range of parameters, such
as compositions of the bimetallic systems, their preparation method, and morphology. Monometallic
SNs give phosphorylated acetylene with retention of the triple bond, and bimetallic SNs give a
bis-phosphorylation product. This is the first example of acetylene and phosphine oxide C-H/P-H
coupling with a regenerable and recyclable catalyst.
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1. Introduction

In recent years, the development of new efficient catalytic systems based on inex-
pensive non-noble metals has been an important component of green chemistry [1–3].
Bioinspired tandem catalysis based on bimetallic structures has opened a new dimension
of efficient catalytic systems, surpassing traditional catalytic methods of organic synthesis,
often reducing the number of stages, reaction time and facilitating process conditions [4–9].
In addition, the growing demand for environmentally friendly and economical synthetic
procedures is also driving the development of multiple catalytic one-pot conversions in
order to obtain the desired product in the most efficient manner. In this regard, mono-
and bimetallic heterogeneous, nanoheterogeneous catalysts are excellent candidates for
selective transformations, with the possibility of regeneration and easy separation of the
catalyst from the reaction mixture [10,11].

In bimetallic catalyst systems, two different metals can catalyze two or more different
types of reactions or steps, with some synergy between the two metals. Thus, the use of
bimetallic catalyst systems can result in an overall increase in reactivity and selectivity over
their monometallic counterparts. Stability and adaptability appear to be important factors
in the synthesis of these bimetallic catalysts, for which the nature of the support matrix
or ligand may play a decisive role. In electrochemical processes, such nanoheterogeneous
catalytic structures are used as sensors [12,13], in electrosynthesis of practically significant
complex molecules [14–22], for activation of CO2, N2, and other small molecules [23,24].

Substituted alkynes and alkenes are fundamental structural motifs that are widely
distributed in natural products, bioactive molecules, and functional materials. They serve
as universal synthetic precursors and/or intermediates in organic transformations [25–38].
Despite the long history of the functionalization of alkynes, the search for new ways
and catalysts is very relevant. For example, a new strategy has been proposed for multi-
metal-catalyzed (Cu, Ni, Ag) oxidative radical alkynylation with terminal alkynes as
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Sonogashira-type alkynylation for C(sp3)−C(sp) bond formation at 80–100 ◦C, however,
the regeneration of the catalytic components is impossible in this case [26].

Phosphorylation of acetylenes is an important way to obtain practically significant
ligands, flame retardants, biologically active compounds, for example, the progesterone
receptor antagonist [27]. Depending on the conditions and reagents, the products may con-
tain both a carbon-carbon triple bond [28–42] and a double [43–46] or single [47–49] bonds
upon hydrophosphination. The classical routes to phosphorus-substituted alkynes are
mostly based on elimination reactions from the corresponding vinylichalide/pseudohalide
derivatives or the reaction of a metal acetylide with a halophosphine or a derivative [33]
(Scheme 1). Despite the success of their synthesis, most reactions are carried out under
harsh and hazardous conditions, techniques include elevated temperatures [36,38,39],
excess oxidizing agents and expensive radical initiators (such as DBU [28,32]), catalyst
metals, primarily expensive palladium, rhodium and silver [34,35,39,40,42,44], the latter
is in excess in many cases, are often based on sulfonyl [29], halogen [32,33,37] and other
derivatives [32,35,36,38,41] (Scheme 1).
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Recoverable and recyclable catalytic systems for these transformations are not described.
In this regard, the development of an efficient and environmentally benign method for

the direct construction of C(sp, sp2, sp3)-P bonds through C-H/P-H coupling of acetylenes
and phosphine oxides under noble metal- and oxidant-free conditions is still highly desirable.

The rationale for choosing copper and cobalt as metal components of catalysts is asso-
ciated with their availability and activity in various phosphorylation reactions, primarily
through unsaturated bonds. In particular, the works [30,31,46,48,50–52] exemplify the
copper- and cobalt-catalyzed reactions correspondingly.

Silica nanoparticles (SNs) were widely applied as convenient nanobeads for different
metal ions and complexes. Moreover, metal ions or complexes can be incorporated into SNs
through either (1) localization within silica confinement or (2) surface adsorption. These
two ways of incorporation allow tuning and exposure of the doped metal ions to a bulk of
solution. The present work introduces a synthetic procedure to incorporate cobalt, copper,
and iron ions into SNs, thus, producing original mono- and bimetallic nanomaterial for the
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use as nanocatalyst of the reductive coupling of phenylacetylene and diphenylphosphine
oxide through the C-H/P-H reaction. It is worth noting that SNs serve as carriers of metal
ions, thus, preventing their leaching and further undesirable transformations. The back-
grounds of the bimetallic nanoparticles are the previously developed synthetic procedures
allowing the encapsulation of both CoII ions and CoIII complexes into the silica nanopar-
ticles (SNs) [13,20]. It will be shown that the catalytically active form of the nanocatalyst
is generated electrochemically at the cathode, and the nature (mono or bimetallic) of the
catalyst is of great impact on the products of the reaction.

2. Results and Discussion
2.1. Synthesis of Nanocomposite Catalytic Systems

The composite SNs were synthesized in the framework of core-shell morphology,
where metal ions were incorporated within silica spheres through either doping or adsorp-
tion procedures. The localization of metal salts or complexes within silica confinement
can be realized through their addition into the synthetic mixture, while the incorporation
through surface adsorption can be performed under the post-treating of the synthesized
SNs. Both microemulsion water-in-oil and Stober procedures are commonly applied tech-
niques for the synthesis of SNs. It is worth noting that the use of either microemulsion or
Stober techniques allows controlling both the size and porosity of the silica spheres [53].
The addition of metal complexes or metal ions into the synthetic mixture results in their
encapsulation into silica spheres, thus, resulting in the composite SNs. It is worth noting
that the CoIII ions are incorporated in the form of kinetically inert [Co(dipy)3]3+ complexes.
Thus, their inner-sphere environment remains unchanged after the synthetic procedure [20],
resulting in the composite SNs designated as CoIII@SN50 and CoIII@SN120, where 50 and
120 is their size in nanometers. The applied synthetic procedures are described in de-
tail in the Exp. Section and schematically represented in Figure 1. The CoIII-content is
greater in CoIII@SN50 vs. CoIII@SN120, which is the agreement with the previously re-
ported tendency [20]. The doping of CoII ions into the SN50 was performed through the
microemulsion synthetic procedure [13].

As it has been previously demonstrated, the high activity of silanol groups is the
reason for their complexation with d-metal ions, which provides a main driving force of
the specific adsorption of d-metal ions [54,55]. The stirring of the empty SN50 and SN120 in
the aqueous solutions of CuII and FeIII chlorides results in significant adsorption, which is
evident from the Si:Cu(Fe) molar ratios in the SNs after their separation from the aqueous
solutions and washing (Table 1).

Table 1. Si:Co:Cu or Si:Co:Fe Molar ratio by ICP-OES technique and ζ-potential values evaluated by
DLS technique for different silica nanoparticles dispersion (0.2 g·L−1).

Sample Si:Co:Cu/Fe ζ, mV (±5%)

SN50 - −36
SN120 - −35
SN50-CuII 1:0:0.0067 −23
SN120-CuII 1:0:0.0282 −27
SN50-FeIII 1:0:0.0250 −30
CoII@SN50 1:0.0068 −33
CoII@SN50-CuII 1:0.0063:0.0028 −31
CoIII@SN50 1:0.0072 −33
CoIII@SN120 1:0.0043 −44
CoIII@SN50-CuII 1:0.0056:0.0056 −33
CoIII@SN120-CuII 1:0.0013:0.0286 −23
CoIII@SN50-FeIII 1:0.0050:0.0820 −20
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Figure 1. Schematic illustration of the synthesis of CoIII@SN50, CoIII@SN50–CuII(FeIII), CoII@SN50,
CoII@SN50-CuII, SN50-CuII(FeIII), CoIII@SN120, CoIII@SN120–CuII, SN120-CuII through both doping
and absorption procedures.

The composites CoIII@SN50 and CoIII@SN120 also demonstrate similar adsorption of
both metal ions (Table 1). The metal ions incorporated through the adsorption technique
are manifested by the bands in the diffuse reflectance spectra (Figure 2) at the wave-
lengths (800–900 nm and 400–550 nm) peculiar for the d-d transition of CuII and FeIII,
respectively [56].
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The DLS measurements of the aqueous colloids of the mono and bimetallic SNs are
characterized by negative electrokinetic potential values (Table 1), which argues for the
fact that the adsorbed metal ions exhibit rather deep penetration into the silica matrix
(Figure 1). The values of the hydrodynamic radius and polydispersity index of the SNs
represented in Table S1 indicate the similarity in the aggregation behavior of the bimetallic
and monometallic SNs.

2.2. Electrocatalytic Phosphorylation of Phenylacetylene

The redox properties of the nanoparticles were studied using cyclic voltammetry (CV)
on modified glassy carbon electrodes. Peaks of the corresponding metals are observed on
the CVs (Table 2). The redox transitions of CuII/I, FeIII/II, CoIII/IIbpyn are usually reversible
or quasi-reversible, which indicates the stabilization of the reduced forms of metals in a
specific environment. The proximity of the first potentials of the reduction peaks of the
metals included in the bimetallic nanoparticles leads to a complex shape of the peaks that
cannot be resolved and accurately assigned (Figures S2–S8 in Supplementary Materials).
Peak potentials are shown in Table 2.

Table 2. Reduction peak potentials on nanoparticle-modified glassy carbon electrode. Products of
Ph2P(O)H and phenylacetylene (1:1) coupling, 2F, CH3CN, Bu4NBF4.

N Catalysts −Ep
red, V

Products, Yields Based on 31P Spectra
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2 CoIII-SN50-CuII −0.9small, −1.41main, −2.35 80 * 20
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5 SN120-CuII −1.23, −2.08 76 24
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The studied nanoparticles were tested for catalytic activity in the phenylacetylene
phosphorylation reaction of phenylacetylene with diphenylphosphine oxide under elec-
troreductive conditions. The Ph2P(O)H conversion was 100% in all cases.

Joint electrolysis of diphenylphosphine oxide with phenylacetylene (1:1) under elec-
trochemical reduction conditions in the presence of the nanocatalyst at room temperature
with a background electrolyte Et4NBF4 in the galvanostatic mode with the passage of 2F
electricity proceeds with the formation of diphenyl(phenylethynyl)phosphine oxide (1) in
the form of a mixture isomers and (1-phenylethane-1,2-diyl)bis(diphenylphosphine oxide)
(2) (Scheme 2, Table 2). The cathode potential in all cases was −1.5–1.6 V when passing 2 F
of electricity and increased to −1.9 V with further electrolysis. Monitoring of the process by
31P NMR spectra showed that after 1F electricity, product (1) and the residual amount of the
precursor Ph2P(O)H are present in the solution. After the passage of 2 F electricity, product
(2) precipitated from the reaction mixture, and the 31P NMR spectrum of the solution
contained only the signal of compound (1) and no traces of the starting Ph2P(O)H.
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Scheme 2. C-H/P-H coupling of phenylacetylene with diphenylphosphine oxide under electroreduc-
tion conditions using M@SN nanocatalysts.

The nature of the catalyst, as it turned out, is decisive for obtaining a particular product.
Monometallic catalyst particles favor the formation of phosphorylated acetylene with triple
bond (1) (the yield up to 98%, Table 2, entry 1), while the bimetallic catalyst favors the
formation of bisphosphorylated addition adduct with saturated carbon-carbon bonds
(2) (Scheme 3, Table S3, entry 1, yield of 95%). Increasing the content of Ph2P(O)H to
2:1 with respect to phenylacetylene and increasing the amount of electricity passed to
3.5 F makes it possible to obtain a single product (2) with the bimetallic nanocatalysts
participation. In the latter case, the reaction is completely atom-economical since there are
no formal by-products.
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Scheme 3. Comparison of coupling products with mono- and bimetallic catalytic systems (from
Table 2 and Table S3).

The poor solubility of product 2 in acetonitrile leads to its precipitation, which prevents
the easy separation of catalyst nanoparticles and their reuse after electrosynthesis of 2.
However, in the absence of product 2 the electrolyte solution is transparent, the catalyst
is easily separated by centrifugation and can be reused. The contamination of catalyst
particles with product 2 can be prevented by heating the mixture to 80 ◦C or by washing
the nanoparticles with chloroform. It has been established that an isolated and regenerated
catalyst works without loss of activity at least three times.

Bimetallic catalysts promote the hydrogenation of intermediates, which leads to the
final conversion of acetylene into product 2 with saturated C–C bonds. Differences in the
activity of mono- and bimetallic catalysts have also been observed previously in numerous
works [7,57,58], although the reasons for synergy or fundamentally different selectivity
and performance are usually difficult to explain. However, in many cases, the bimetal-
lic catalysts promote reactions accompanied by the hydrogenation of a wide variety of
molecules and intermediates, as it is exemplified for iron−cobalt [59,60] or cobalt-copper
particles [24,61–65].

It was found that the addition of phenylacetylene, which is electrochemically inac-
tive in the potential working region, to catalyst nanoparticles has a significant effect on
voltammograms nanoparticles. Thus, for example, new catalytic peaks appear on the CVs
of CoII–SN50–CuII reduction in the presence of phenylacetylene at lower potentials (Figure
S9), and a catalytic increase in current is observed when acetylene is added to the SN50-CuII

(Figure S10) and SN120–CuII (Figure S11) particles. The addition of Ph2P(O)H, which itself
is reduced at high potentials (Ep = −2.89 V, Figure S12), does not noticeably affect the
currents and potentials of the first peaks of catalyst reduction.

The product yields represented in Table 2 indicate the difference in the content of
products obtained via the Cu-catalyzed phosphorylation reaction under the use of SN120–
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CuII and SN50–CuII as nanocatalysts. The specificity of the surfaces of SNs produced via the
microemulsion procedure due to the porosity arising from the washing out of the adsorbed
TX-100 molecules 53] differentiates SN50–CuII from SN120–CuII. The more porous surface
of SN50–CuII vs. SN120–CuII can explain the difference in the yields of products 1 and 2
under their use as nanocatalysts. Thus, nanoparticles SN50 provide an optimal basis for
both mono and bimetallic nanocatalysts.

Product 2 is easily separated from the reaction mixture since it is poorly soluble in
it, and it is sufficient to leave the reaction mixture for some time after the reaction to get
almost quantitative precipitation of 2.

(1-phenylethane-1,2-diyl)bis(diphenylphosphine oxide) (2) (CAS Number: 3583-85-5)
has practical significance and is produced on an industrial scale by several concerns, for
example, BaiFuChem, Xiamen Equation Chemical Co., Ltd. и Uhnshanghai (China) (http://
www.equationchemical.com (accessed on 31 December 2022), https://www.baifuchem.com
(accessed on 31 December 2022), http://www.uhnshanghai.com/uhn/html/20149252096.
html (accessed on 31 December 2022)) as farma intermediate or flame retardant. Thus, we
propose a simple and convenient method for the synthesis of this product. Furthermore,
this article discussed the different activity and catalytic performance of bimetallic SNs
compared to monometallic composites. The synthetic strategies reported here established
development of sophisticated and controlled SNs for widespread application.

3. Conclusions

A method is proposed for the preparation of phosphorylation products of termi-
nal acetylene using the example of phenylacetylene and Ph2P(O)H using a regenerated
nanocatalyst based on silica nanoparticles loaded by CuII, CoIII/II, FeIII via different syn-
thetic techniques in both mono- and bimetallic modes. The synthetic technique has been
optimized for controlled cross-coupling of phenylacetylene with retention of the triple
bond. Moreover, the use of the bimetallic nanocatalysts allows producing bis-adduct with
two phosphine oxide substituents and a fully saturated carbon backbone along with the
C-H/P-H cross-coupling of phenylacetylene with retention of the triple bond. Both prod-
ucts are in demand and practically significant. They are obtained in one stage at room
temperature by an atom-economical reaction.
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