
Chapter 30
Evaluation of Visual SLAMMethods
in USAR Applications Using
ROS/Gazebo Simulation
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Abstract The problem of determining the position of a robot and at the same time
building the map of the environment is referred to as SLAM. A SLAM system gener-
ally outputs the estimated trajectory (a sequence of poses) and the map. In practice, it
is hard to obtain ground-truth for the map; hence, only trajectory ground-truth is con-
sidered. There are various works that provide datasets to evaluate SLAM algorithms
in different scenarios including sensor configurations, robots, and environments.
Dataset collection in a real-world environment is a complicated task, which requires
an elaborate sensor and robot configuration. Different SLAM systems demand var-
ious sensors resulting in the problem of finding an appropriate dataset for their
evaluation. Thus, in this paper, a solution that is based on ROS/Gazebo simulations
is proposed. Two indoor environments with flat and uneven terrain to evaluate laser
range and visual SLAM systems are created. Changing the sensor configuration and
the environment does not require an elaborate setup. The results of the evaluation
for two popular SLAM methods—ORB-SLAM2 and RTAB-Map—are presented.
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30.1 Introduction

Robotic systems are employed in a variety of applications, such as urban search and
rescue (USAR), space exploration, military, medicine, and education [14]. In all of
the applications, robots are required to perform particular tasks interacting with an
environment. In some cases, environments are complex and non-deterministic which
makes the intended tasks even more complex for a robot to accomplish [5].

There are applications where a robot is required to determine its position in the
environment for navigation and space exploration. If the map of the environment is
provided with certain accuracy, one can localize itself on the map and accomplish
the intended task. However, in most cases, the map of the environment is partially
available or not availablewhich leads to the necessity of themap construction. Hence,
the task becomes even more complicated, to simultaneously perform localization
and build a map of the environment. This problem is referred to as simultaneous
localization and mapping (SLAM).

One of the widely used sensors in SLAM is cameras. They provide extensive
information about the environment, and they are not vulnerable to slippage as wheel
encoders. SLAM using cameras is referred to as Visual SLAM (VSLAM). VSLAM
finds its applications in autonomous driving [2], 3D-scene reconstruction, augmented
reality (AR), etc.

One of the problems of SLAMmethods evaluation is that there are various datasets
with different sensors configurations. For example, stereo SLAM methods require a
pair of monocular cameras [18]. Generally, most of the datasets provide laser range
and stereo image data. However, in the case of multi-camera (two or more cameras)
SLAMsystems, those datasets cannot be employeddue to the lack of necessary sensor
data. Thus, in this paper, we propose to use ROS/Gazebo simulation for collecting
datasets using different sensors configuration for the multisensor SLAM systems
development and evaluation. We show the usability of the solution by evaluating
Hector SLAM, ORB-SLAM2, and RTAB-Map methods on the collected datasets in
the USAR scenario with flat and uneven terrains.

30.2 SLAM Overview

In SLAM, a robot traverses a particular environment constructing its map and esti-
mating the state of the robot. The map is a representation of the landmarks, obstacles,
and objects in the surroundings. It helps a robot to navigate through the environment
being the reference for localization [15]. Maps can be represented in several ways:
metric, topological, or hybrid. The state that is estimated can be defined as a 2D
position and orientation or a 6D pose (Cartesian coordinates and orientation).

SLAM approaches can be classified into filtering and smoothing methods. Filter-
ing approaches are based on Bayesian theory; here, the position of landmarks and
robot poses are computed over time by incorporating new measurements into the
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probabilistic model, i.e., estimating the posterior state distribution. There are two
major steps in this framework: prediction of the state based on the control com-
mands and update of the state by incorporating new sensor measurements. Consider-
ing the probability distribution representation, filter-based methods can be classified
into unimodal and multimodal ones. The former is represented by the Kalman fil-
ter family methods (e.g., EKF, UKF, SIKF) while the latter—particle filters (e.g.,
Rao-Blackwellized [16]). The main disadvantages of unimodal filtering methods are
the quadratic growth of time complexity with the growth of the map size (number
of features) and poor accuracy in case of nonlinear motion. As for the multimodal
approaches, the accuracy depends on the number of particles which directly corre-
lates with time complexity.

Smoothing methods take into account a sequence of states—full trajectory or
some part of it—in order to estimate the new state using nonlinear least-squares
optimization techniques (e.g., Gauss–Newton, Levenberg–Marquardt). Optimization
approaches can be divided into bundle adjustment (BA) and graph classes. The
key idea behind BA is to jointly optimize a 3D structure (map) and camera poses.
This is accomplished by minimizing the re-projection error. Full BA over the whole
trajectory is a computationally expensive task; hence, it might be used in case of
loop closure as a part of the global optimization process. On the contrary, local BA
over a sliding window of poses is able to mitigate the accumulated drift providing
real-time performance even on mobile devices. Graph approaches are modeled using
a graph representation of SLAM. The graph optimization is solved by minimizing a
particular cost function using the same optimization techniques as for the BA.

Generally, the architecture of VSLAM contains two main modules: back-end and
front-end (Fig. 30.1). The front-end processes sensor measurements and builds the
model of the state. Back-end solves for the state trying to estimate the best fit for the
SLAM solution. Here, we have BA and graph optimization.

Visual odometry (VO) is the main building block of VSLAM. It is the process of
estimating the relative motion between consequent frames using cameras [17]. It is
less affected by the drift issue compared to the wheel odometry.

The pipeline of VO consists of the following blocks: feature detection, motion
estimation, data association, and local BA. VO methods can be separated into two

Fig. 30.1 Main components of VSLAM algorithm
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groups: direct and indirect. Direct methods enable to build a dense map of the envi-
ronment directly working with image pixels. On the other hand, indirect methods
detect features in the images which increase the speed of computations. In feature-
based VSLAM, the so-called feature detectors and descriptors are used to find salient
points in the images and describe them into some representation (e.g., SIFT, ORB,
SURF, etc.). Thismechanism enables one to perform data association (featurematch-
ing) on them to recognize the same 3D points from different images. In the case of
a direct approach, there is no feature detection routine in the pipeline.

Motion estimation can be divided into two categories: feature-based and optical
flow methods. In the first case, the motion can be computed using one of the 3D-3D
(Euclidean distance), 3D-2D (re-projection error) or 2D-2D techniques where the
corresponding error is minimized to obtain the pose relative to the previous one. In
the case of direct VO, generally, the photometric error is minimized. Local BA over
the last keyframes can be performed to mitigate the drift errors.

VSLAM pipeline additionally may include global optimization and loop closure
routines. Loop closure is thefinal step inSLAMalgorithms. It optimizes the estimated
SLAM solution incorporating additional constraints into the system. Here, feature
matching techniques, a bag of words, etc., can be used for loop detection where
features are matched across a set of keyframes.

30.3 VSLAM Evaluation

A SLAM system generally outputs the estimated camera trajectory (a sequence of
poses) and the map. In practice, it is impossible to obtain the ground-truth map;
hence, only trajectory ground-truth is obtained. Ideally, the sequences of SLAM
output and ground-truth should be time-synchronized and evenly sampled with the
same sequence length. The trajectory is a sequence of poses with respect to some
reference frame which is obtained during the calibration. The reference frame is not
required to be the same for the ground-truth and estimated trajectory.

The global consistency of SLAM can be evaluated by comparing the absolute
distances between the estimated and ground-truth trajectories—absolute pose error
(APE). The alignment is necessary in case if trajectories are in different reference
frames [21]. Given the reference trajectory GT1:n and estimated trajectory T1:n , APE
at time step i can be computed as follows:

APEi = GT −1
i · S · Ti , (30.1)

where S—is a least-squares rigid-body transformation that maps estimated trajectory
T1:n onto the ground-truth GT1:n . For the APE, we can compute translation RMSE
using the following formula:
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RMSE(APE1:n) = 1

n

(
n∑

i=1

||transl(APEi )||2
) 1

2

. (30.2)

The relative pose error (RPE) measures the accuracy of the trajectory over a
fixed period, which is drift. RPE considers both relative and translation errors while
APE takes into account only translation error. Nevertheless, as the translation part is
correlated to the rotation error, APE and RPE are correlated.

There are various works that provide with datasets to evaluate SLAM algorithms
in different scenarios including sensor configurations and environments. One of the
first datasets is provided in [4] with outdoor and indoor information of the ground-
truth, GPS, IMU, LiDAR, and image data.

KITTI datasets [6] are obtained from a vehicle in an urban environment. The
vehicle is equipped with a stereo camera and LiDAR. Translation and rotation error
can be measured comparing the real data with ground-truth.

Amey K. provides a comparison of two SLAM methods—RGBD-SLAM and
RTAB-Map [10]. Here, TUM RGBD dataset [20] is used for SLAM methods eval-
uation. The dataset provides with data from Microsoft Kinect RGBD sensor and
time-synchronized ground-truth camera poses from a motion capture system. The
evaluation metrics are absolute trajectory error (ATE or APE) and relative pose error
(RPE). The analysis involves the RMSE computation for the two metrics above and
processing time comparison.

In the other paper by Maksim et al. [9], SLAM systems in an indoor environment
are compared for a mobile robot. Real-world experiments on their dataset were
collected using LiDAR. They evaluate and compare LiDAR, monocular, and stereo
algorithms: GMapping, Hector SLAM, ORB-SLAM, SVO, S-PTAM, etc. The robot
was teleoperated through the environment to follow a closed-loop trajectory along
a rectangular area. Mostly, the environment is consisted of walls. The rotation was
accomplished in a radius of around 1m. Data from sensors was collected into ROS
bag files. In the evaluation, the authors used ATE taking Hector SLAM algorithm
as a ground-truth. The trajectory of the Hector SLAM was compared to the marked
line on the floor.

In the work done by Arthur et al. [8], they evaluate different SLAM algorithm
on TUM RGBD datasets. There are several metrics to evaluate SLAM systems:
localization accuracy (RMSE), processing time (CPU usage), memory consumption,
robustness (produce the same results for multiple runs), specific for visual SLAM:
camera frame processing time (should be near FPS), map specific for occupancy grid
maps: quality of the map (e.g., GMapping).

In the paper by Riccardo et al. [7], authors conduct a comparison of ROS compat-
ible stereo SLAM methods on NVidia Jetson TX2 platform. The following metrics
are evaluated: CPU and memory usage, trajectory estimation accuracy, and loop
closure capability. The ground-truth is obtained utilizing LiDAR (reference). ZED
camera is used as the main sensor. The rover is controlled remotely over a circular
path while acquiring a stereo video stream and LiDAR. Ground-truth is provided by
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LiDARSLAM,Hector SLAMalgorithm. Images are captured at 15Hz. Both sensors
are stored for further usage. ATE and RTE errors are computed for the computed
trajectories.

In SlamBench2, the authors propose a framework for SLAM evaluation [1]. Cur-
rently, several algorithms are supported for evaluation (eight algorithms): ORB-
SLAM2, OKVIS, etc. Its purpose is to unify the interface of benchmarking SLAM
algorithms and provide reproducibility of results for different datasets. It allows to
measure different metrics: computation speed (time per frame, FPS), ATE and RPE
with online and offline alignment, power consumption (PAPI), memory usage. In
their up-to-date paper SLAMBench3, they move toward scene understanding [3].

In the paper by David S. et al., TUM benchmark for evaluation of VO systems
is presented [20]. It provides with camera images taken at 20Hz synchronized with
the IMU, HDR, and photometric calibration. For trajectory evaluation, they provide
with a motion capture system at the start and the end of the sequences. It is focused
RGBD odometry evaluation. There are lots of datasets available for VO evaluation:
(a) KIITI odometry (stereo @10Hz, IMU, software sync, GT: GPS); (b) Malaga
Urban (stereo @20Hz, IMU, software sync, GT: GPS); (c) EuRoC MAV (stereo
@20, IMU, hardware sync, GT:motion capture); (d) PennCOSYVIO (stereo@20hz,
fisheye @30Hz, IMU, GT: Fiducial markers [22]). The main idea of TUM is to
compute the drift using the start and the end positions of the trajectory.

An interesting solution is to move toward simulation environments where one
can perform repetitive controlled SLAMmethods evaluation. However, in the review
literature, there is no solution which supports for multi-camera configurations. For
instance, InteriorNet [13] provides with datasets for CV algorithms evaluation. There
are multiple types of camera models and scenes which are supported. However, there
is no possibility for the moment of writing this paper to incorporate three or more
cameras into the simulation.

In a lot of works, Hector SLAM [11] is utilized to obtain ground-truth trajec-
tories to evaluate against. However, generally in those works, only a flat terrain is
considered, whereas in USAR applications, uneven terrains are frequently met. On
the other hand, Hector SLAM provides with tools for six DoF that pose estimation
mostly based on IMU data which is arguably not the most reliable source for ground-
truth pose estimation. Inmore complicated environments,motion capture systems are
employed, e.g., Vicon. However, those systems are expensive and require elaborate
setup.

30.4 Proposed Solution

30.4.1 Environment

Simulators for robotic systems have been extensively used in research for repetitive
evaluation of algorithms in different scenarios, including flat and uneven terrains,
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Fig. 30.2 View of the Gazebo indoor environment (flat terrain)

various weather conditions, etc. Gazebo is one of the most popular simulators. It is
widely used in conjunction with robot operating system (ROS) framework—a set
of libraries and tools for the development of robotic systems. Gazebo provides with
means for modeling various robotic systems equipped with different sensors, such
as monocular and stereo cameras, IMU, and LiDAR [12].

In our solution, we create two environments for SLAM algorithms evaluation,
i.e., an indoor environment of a building with flat and uneven terrain (Fig. 30.2). The
building construction is 10 by 10 meters in size. The model of the environment was
made in Blender 2.8.

Both environments have similar objects on the scene: windows, shelves, damaged
wall, and truss. The flat environment’s floor is a plane without any height changes
throughout the scene. On the contrary, uneven environment’s floor represents a sur-
face with changes in height of up to 1.3 m relative to the ground. Illumination is even
all over the environment without shadows.

30.4.2 Robot Model and Sensors

In this work, we use Husky mobile robot provided by the husky_description ROS
package and modify it to include necessary sensors. The model of the robot is repre-
sented in the unified robot description format (URDF). The model consists of links
connected by joints with their visual and collision meshes. The simplified transfor-
mation tree and robot model are presented in Fig. 30.3. The robot is equipped with
the following sensors: (a) stereo view camera (resolution: 640 × 480, focal length:
320 pixels, RGB); (b) laser range finder (field of view 270◦); (c) inertial measurement
unit (IMU).
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Gazebo sensors API enables to incorporate distortions into the sensory input.
For example, attached cameras can have pixel intensity noise (e.g., Gaussian) as
well as radial and tangential lens distortions. For stereo cameras, we employed a
mutli-camera sensor API to provide synchronized global shutter images from both
cameras [19].

30.4.3 Dataset Collection

We collected four datasets for each type of terrain for SLAM algorithms evaluation
using ROS/Gazebo by remotely controlling the robot (in teleoperation mode) in
a looped trajectory using teleop_twist_keyboard ROS package. The average linear
velocity is around 0.15m/s and angular—0.15 rad/s. Final trajectories do not have
sharp turns to avoid drastic changes in the observed environment.

In our datasets collection, we employ a system with the following properties: (a)
Intel Core i7-8750H@2.2 GHz CPU; (b) 16 GB LDDR4 RAM; (c) 1TBM.2 PCI-E
SSD; (d) Ubuntu 16.04 LTS OS (with ROS Kinetic installed); The ground-truth 6D
pose trajectory is obtained using the P3D Gazebo plugin. Poses are provided for the
base_footprint frame w.r.t the world fixed frame (Fig. 30.3). Datasets were recorded
into ROS bag files, they contain the following topics:

(a) /clock—simulation timestamp;
(b) /cmd_vel—control commands;
(c) /odometry/filtered—IMU and wheel odometry EKF fusion;
(d) /ground_truth—6D pose of the robot w.r.t world;
(e) /tf_static—transformations between robot links;
(f) /scan—LiDAR scans data;
(g) /camera/left/image_raw and /camera/left/camera_info—left stereo camera top-

ics with image data and meta information;

Fig. 30.3 Husky robot URDF model and its transformations tree (left—robot model visualization,
right—robot model links hierarchy)
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Fig. 30.4 SLAM evaluation components. Datasets contain the simulated environment and sensor
data

(h) /camera/right/image_raw and /camera/right/camera_info—right stereo camera
topics with image data and meta information;

We propose to record datasets and distribute them with the simulated environ-
ment (Fig. 30.4). The dataset contains the Gazebo world with all the meshes and
textures included along with recorded ROS topics with sensor data. Datasets are
stored in a ROS bag file which can be further issued to different SLAM algorithms
for consequent evaluation.

30.4.4 Experiments

In our experiments, we evaluated the Hector SLAM, stereo RTAB-Map, and stereo
ORB-SLAM2 algorithms on our recorded datasets of flat and uneven terrain envi-
ronments. In the case of the flat terrain, Hector SLAM estimated trajectory error

Fig. 30.5 Hector SLAM absolute pose error (APE) over time for flat and uneven terrains (sequence
No. 0)
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Fig. 30.6 Hector SLAM absolute pose error (APE) over time for flat (left) and uneven (right)
terrains (all sequences)

Fig. 30.7 ORB-SLAM2 absolute pose error (APE) over time for flat (left) and uneven (right)
terrains (all sequences)

w.r.t the ground-truth is relatively small (Fig. 30.5). On the other hand in case of the
uneven terrain, Hector SLAM diverges from the ground-truth trajectory in Y and Z
axes. Hector SLAM APEs for all sequences are shown in Fig. 30.6.

As for the ORB-SLAM2, it demonstrates good results for both flat and uneven
terrains resulting in translation RMSE of 0.15 and 0.19m, respectively (Fig. 30.7).
RTAB-Map showed relatively better accuracy compared to ORB-SLAM2 resulting
in translation RMSE of 0.019 and 0.03m for flat and uneven terrain, respectively.

30.5 Results

In this paper, we presented SLAM methods evaluation in ROS/Gazebo simulation
considering bothflat anduneven terrains, the later ofwhich is frequentlymet inUSAR
applications. The evaluation process consisted of world creation, datasets collection,
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and computation of pose error metrics. The key advantages of simulations are the
ease of configuration changes (using a different set of sensors and robot models) and
repetitiveness of simulations.

We evaluated two popular Visual SLAM methods, ORB-SLAM2 and RTAB-
Map, in both flat and uneven terrains using collected datasets, and Hector SLAM.
The results showed that Hector SLAM in its simple form cannot be used in uneven
terrains. However, in the case of flat terrains, due to its accuracy, it can be considered
as a ground-truth for other SLAMmethods evaluation. On the contrary, stereo ORB-
SLAM2 and RTAB-Map estimated trajectories are fair in both cases, though in the
case of flat terrains Hector SLAM pose error is less in an order of magnitude. In
our future work, we plan to investigate other Visual SLAM algorithms for USAR
applications.
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