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Abstract. The aim of this work is to solve the Riemann boundary value prob-
lem on non-rectifiable curve. Its solvability depends on certain metric charac-
teristics of the curve. We introduce new metric characteristics of dimensional
type and new sharp conditions of solvability of the problem. In addition,
we introduce and study a version of the Cauchy integral over non-rectifiable
paths.
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Introduction

We consider the following boundary value problem for holomorphic functions. Let
I be a closed Jordan curve on the complex plane C bounding finite domain D™,
and D~ = C\ D+. Find a holomorphic in C\T" function ®(z) such that ®(c0) = 0,
the boundary values limp+5,_,;®(2) = ®T(¢) and limp-5,_,,P(2) = () exist
for any t € I, and
Ot(t) = Gt)D (t) +g(t), tel. (1)
This boundary value problem is called the Riemann problem. It is well known and
has numerous traditional applications in elasticity theory, hydro and aerodynamics
and so on (see [1, 2]). Recently a number of authors explored its connections with
theory of random matrices, non-classical estimates for orthogonal polynomials and
so on (see, for instance, [3, 4]).
If G(t) = 1, then the Riemann boundary value problem turns to so-called
jump problem:
Ot (t) - (t) =g(t), tel. (2)
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