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Abstract. The aim of this work is to solve the Riemann boundary value prob-
lem on non-rectifiable curve. Its solvability depends on certain metric charac-
teristics of the curve. We introduce new metric characteristics of dimensional
type and new sharp conditions of solvability of the problem. In addition,
we introduce and study a version of the Cauchy integral over non-rectifiable
paths.
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Introduction

We consider the following boundary value problem for holomorphic functions. Let
Γ be a closed Jordan curve on the complex plane C bounding finite domain D+,
and D− = C\D+. Find a holomorphic in C\Γ function Φ(z) such that Φ(∞) = 0,
the boundary values limD+∋z→tΦ(z) ≡ Φ+(t) and limD−∋z→tΦ(z) ≡ Φ−(t) exist
for any t ∈ Γ, and

Φ+(t) = G(t)Φ−(t) + g(t), t ∈ Γ. (1)

This boundary value problem is called the Riemann problem. It is well known and
has numerous traditional applications in elasticity theory, hydro and aerodynamics
and so on (see [1, 2]). Recently a number of authors explored its connections with
theory of random matrices, non-classical estimates for orthogonal polynomials and
so on (see, for instance, [3, 4]).

If G(t) ≡ 1, then the Riemann boundary value problem turns to so-called
jump problem:

Φ+(t)− Φ−(t) = g(t), t ∈ Γ. (2)
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