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Abstract In previous work, we successfully studied the possibility of a mobile
robot localization using an external RGB-D camera. We conducted virtual experi-
ments in aGazebo simulator usingROSwith a Turtlebot3Waffle Pi as amobile robot.
find_object_2d package was used to localize the Turtlebot3 and send its computed
position to ROS. Thus, we extended our research and ratchet that result up by imple-
menting the algorithm for filtering and smoothing the computed mobile robot posi-
tion. Our task was to develop a thin library that is a wrapper over the find_object_2d
package. The filtering algorithm and smoothing can compute the supposed robot
position or predict it in cases when the robot disappears from the camera‘s field of
view. We conducted virtual experiments over again and draw a comparison between
previous results (without filtering and smoothing algorithm) and current results (using
filtering and smoothing algorithm with slight improvements).

1 Introduction

Correct robot localization is important for any mobile robot tasks, including path
planning, mapping [1], SLAM, performing critical tasks, operating in special envi-
ronments, etc. [2–4]. In most cases, an inaccurate localization becomes a serious
problem that might cause a wrong robot behavior [5]. An incorrect mobile robot
localization is an considerable problem that arises due to accumulation of odometry
errors, harsh environment, sliding and slippage of wheels on an underlying support
surface, noisy or unstable GPS signal, and other different problems [6]. This way, a
robot transmits less and less relevant data about its location over time.

Integration of filtering and smoothing methods into localization algorithms could
significantly improve a localization accuracy [7]. In [8] Kalman filter [9] was used
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for filtering and smoothing of a mobile robot localization based on odometric and
sonar sensors. In [10] a Particle filter [11] was employed for smoothing robot self-
localization, which was based on a strength of a WLAN signal.

In our previous work, we had studied a possibility of tracking a mobile robot
position within the Gazebo simulator [12, 13] using an external RGB-D camera and
find_object_2dpackage [14]. find_object_2dpackage [14] is a simple application that
allows to detect a particular object within an image from a pre-created dictionary of
objects using different types ofOpenCV [15] detectors and descriptors.We employed
ORB (Oriented FAST [16] and rotated BRIEF [17]) algorithm [18] since it provides
a good combination of the detector and the descriptor for a task, which requires
to localize the mobile robot rapidly and accurately. The resulting trajectory of the
robot computed positions was not smooth and formed a chaotic zigzag line, the
robot frequently failed to calculate its position (due to find_object_2d calculations‘
failures in about 20% of cases) and an average localization inaccuracy was 0.14m
while traveling within a 6 × 6 m room. A new algorithm presented in this paper
performs filtering and smoothing of a moving robot localization data, successfully
solves the trajectory smoothness issue, failures of a position calculation, and improves
the average localization inaccuracy in approximately 2.25 times.

2 Related Work

The usage of filtering and smoothing algorithms for localizationwere described in [8]
and [10]. In [8] Kalman filter [9] was used for filtering and smoothing of the mobile
robot localization based on odometric and sonar sensors. In [10] the realization of
Particle filter [11] was used for smoothing robot localization which is based on
the strength of WLAN signal. In our work, we introduce an algorithm-helper that
assist the robot to localize itself indoor using an external RGB-D camera. Thus, the
developed method of filtering and smoothing of the mobile robot localization will
increase its accuracy and ensure a smooth trajectory of its movement.

3 Proposed Approach

In our research we used the Gazebo simulator [13] with ROS [19] to simulate mobile
robot movements in an arbitrary empty room.Without loss of generality was selected
a room of size 6 ×6 m and was connected a RGB-D camera to the ceilings at a
geometrical center of the room. This allows the camera to capture an entire floor
surface and localize the robot. To track the robot position, find_object_2d package
provided its coordinates through tf [20] and publish them in ROS [19]. Inaccuracy of
localization was calculated as a translation between robot base_link coordinates and
the obtained from find_object_2d coordinates. One of the issues that arose during
virtual experiments was a piece-wise trajectory of the computed robot coordinates,
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Fig. 1 An example of the robot coordinates trajectory computed with find_object_2d package [14].
Black dots are the coordinates, red line is the trajectory constructed from these points, and green
dotted line is the real trajectory of the robot

Fig. 2 XfYf frame origin
corresponds to (x f ,y f )
point, xg yg frame origin
corresponds to (xg ,yg) point

which was obviously incorrect (Fig. 1). A natural approach to this problem was to
apply a filter that could smooth a trajectory and thus increase the accuracy of the
localization.

Package find_object_2d computes robot position (x f ,y f ) as a closest to the camera
point of the robot. In [21] obtained (x f ,y f ) was further projected orthogonally onto
theXY plane of a support surface (floor) and next a distance from that projected point
to base_link of the mobile robot was calculated. First improvement in the current
approach is a straight line from the camera frame origin to (x f ,y f ). The line was
further extended until it reached XY plane. The intersection point was labeled as
(xg ,yg) (Fig. 2).

Another improvement is switching the coordinate frame that we accepted as the
correct robot position frombase_link frameorigin (in [21]) to base_scan frameorigin.
We use the base_scan as the closest coordinate frame to the robot center (Fig. 3). It
was done due to the previously [21] calculated by us localization inaccuracy as the
translation between computed robot position frame and base_link frame. The last one
is placed between robot center and its front border. Thus, we use base_scan frame to
calculate the inaccuracy of the localization, since it locates quite close to the robot
center.

Before comparing the difference between localization accuracy before and after
improvements, we want to explain the filtering algorithm we used in our previous
work [21]. We introduced the α-value that means the distance between real robot
position and robot position computedwithfind_object_2d [14]. If in a certain iteration
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Fig. 3 Difference between
positions of base_link and
base_scan frames. base_scan
frame is quite close to the
robot center instead of
base_link frame

α was more than 0.25m, we would not accept this computed robot position. We
undertook a small research and found out that such value of α is the most optimal and
effective since it provides about 81–82% of acceptable robot position computations
and the average value of inaccuracy was 0.13m. Increasing the α value would also
increase the percentage of acceptable robot position computations and as well it
would increase the average inaccuracy of robot localization. Since we are interested
in increasing the percentage of acceptable computed positions and decreasing the
average computation inaccuracy, in our previous work we chose the α value equal
to 0.25m as the most effective [21]. However, those two new improvements make it
possible to change the α value to get better results that are presented in Table 1.

These two improvements had a positive effect on the overall localization accuracy.
Finally, our main improvement was the development of the algorithm which filters
and smooths post-data from the find_object_2d package [14] and sends the processed
predicted position of the mobile robot back to ROS [19]. We used tf package [20]
to compare a predicted position with a real position, analyze received results, and to
compare them to the previous research results.

Table 1 Comparison of the different configuration of the α value

Configuration Acceptable computations (%) AVG inaccuracy (m)

α = 0.25m (Before
improvements)

82 0.14

α = 0.25m (After
improvements)

97 0.09

α = 0.14m (After
improvements)

82 0.075

The implemented improvements make it possible to obtain better results with the same value of α:
acceptable computations increased from 82 to 97%, and the average inaccuracy decreased from 0.14
to 0.09m. Reducing α to 0.14m gives an average inaccuracy of 0.075m, while saving percentage
of acceptable computations at 82% as it was before the improvements
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4 Algorithm Explanation

Developed filtering and smoothing algorithm uses data from find_object_2d pack-
age [14] which sends its data about a detected robot to ROS [19] through tf [20].
Then, our algorithm processes that data to compute the supposed position of the
detected robot (Fig. 4).

Parameters are used in our algorithm:

• window_size: size of the array which contains the history of previous coordinates.
The larger this value, the smoother the trajectory becomes, if so the algorithm reacts
more slowly to sudden changes in speed and direction of the robot movement.
Further denotes as “Window size”.

• alpha: value for filtering input coordinates. If the distance between current and
previous coordinates is more than this value, the current coordinate is not accepted
and replaced by the predicted position which is calculated based on calibration.
Further denotes as “α”.

Fig. 4 Flow diagram which explains our filter and smoothing algorithm
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• calibration_threshold: delay before the start of the calibration. This delay is
necessary because the find_object_2d package [14] is very unstable to localize
a robot that enters the camera‘s field of view when its body is not fully visible.
Further denotes as “Calibration threshold”.

• frame_loss_threshold: delay before resetting of the calibration. Used while the
algorithm is predicting the movement of a robot that cannot be localized by the
find_object_2d [14] package after a successful calibration decrements at each iter-
ation if the robot was not detected. When this parameter reaches 0, the calibration
is reset and the robot position prediction stops. Further denotes as “Frame loss
threshold”.

The developed algorithm contains the following parts: (a) calibration of predicted
position, (b) filtering and smoothing the trajectory of robot movement based on
calibration, (c) predicting the position of the robot that has disappeared from the
camera‘s field of view.

Calibration of the predicted position is the process which tries to capture robot
position for a certain count of iterations and then analyze received localization data.
Analyzing of that data means the calculation of the average offset between computed
coordinates (See Eq.1):

Average Offset =
(
WindowSize∑

i=2

(Bufferi − Bufferi−1)

)
/WindowSize, (1)

whereWindowSize specifies the size of the buffer. Buffer is the coordinate container
of previously computed coordinates, i is the index of the coordinate in the buffer.

After the successful calibration, we receive average offset between successive
coordinates and initialize a new instance of the “Predicted position” which contains
(X; Y ) coordinate of the last robot position received from find_object_2d pack-
age [14]. At this moment, algorithm has an array-buffer of last X (X is equal to the
Window size of the Buffer) computed coordinates of the robot. During the next itera-
tion, we receive new computed robot coordinates from find_object_2d package [14]
and delete the oldest element from the buffer. Further, we calculate average offset
between all remaining elements in the buffer including the last computed one, add
this offset to the predicted position coordinate and push this coordinate to the buffer
(See equation to compute predicted position):

Average Offset =
(
WindowSize−1∑

i=2

(Bufferi − Bufferi−1)

+ (ComputedPos− BufferWindowSize)) /WindowSize,

(2)

PredictedPos = PredictedPos+ AverageOffset, (3)
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Fig. 5 Part of algorithm‘s work after successful calibration (Window size = 12). Blue cells are
coordinates that are computed with find_object_2d package [14] and green cells are predicted
(smoothed) coordinates. Step 1: set predicted position (predicted_pos) as the last coordinate from
the buffer. Step 2: shift coordinates left by 1 (at this moment algorithm received a new computed
coordinate). Step 3: calculate average offset (avg_offset) between coordinates in buffer (11 elements)
including last computed coordinate (1 element). Add calculated avg_offset to predicted_pos and
push updated predicted_pos in the end of the buffer. Step 4: repeat actions from Step 2. Step 5:
after repeating Steps 3 and 4 for X iterations (X is equal to the Window size parameter) the buffer
contains only smoothed coordinates

where WindowSize specifies the size of the buffer, Buffer is the coordinate con-
tainer of previously computed coordinates, i is the index of the coordinate in the
buffer, ComputedPos is the last computed position of the robot that is received from
find_object_2d package [14].

These steps are repeated at every iteration and the algorithm produces a smooth
trajectory of robot movement (Fig. 5).

Calibration could be failed in certain cases and our algorithm tries to predict the
possible position of the robot:

• Accumulated computation errors If find_object_2d [14] computes the wrong
robot position for a certain number of iterations in a row, the algorithm breaks,
and the predicted position stops at a certain point. The distance between computed
robot position and predicted position is greater than the α value, so our algorithm
can‘t accept new computed coordinates due to this fact, and after a certain number
of iterations, which is set by the value of the frame loss threshold parameter,
calibration is canceled. Further algorithm waits for detection of the robot and
begins a new calibration.

• Robot loss from the camera‘s field of view If the robot drives into the places
where it cannot be detected by a camera, the algorithm tries to predict its possible
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Fig. 6 Results of finding the most optimalWindow size parameter for our algorithm. X-axis means
the value of this parameter, Y -axis means inaccuracy of the robot localization in meters. Window
size = 12 provides the most accurate filtering and smoothing results

movement trajectory for a certain number of iterations, which is set by the value of
the frame loss threshold parameter. If the robot is not detected again, the calibration
is canceled too and the algorithm waits for detection of the robot and begins a new
calibration.

We conducted the experiments to define the most optimal and effective Window
size and α parameters. Started with the first one (α was set at 0.25m as the most
optimal value in our previous work) we conducted 10 experiments for each value
from 5 to 24, and found that 12 is the most efficient value for this parameter (Fig. 6),
since it provides minimal average mathematical expectation and minimal average
dispersion. So, we have found the most optimal value for theWindow size parameter
and further proceeded to determine the most optimal value for the α parameter. We
repeated our experiments with Window size = 12, but changing α parameter from
0.05 to 0.5 with a step of 0.025. The experiments result show that all values that are
more than 0.2m give almost the same results (Fig. 7), but we decided to use α equal
to 0.3m.
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Fig. 7 Results of finding the most optimal α parameter forWindow size parameter set at 12. X-axis
means the value of the α parameter, Y -axis means inaccuracy of the robot localization in meters.
With α greater than 0.2m we get similar results

5 Experimental Results

We conducted the identical experiments as it was in our previous research [21] and
compared old and new results for the same parameters. Our experiments contained
linear and curvilinear routes:

• Linear movement 8 direct routes covering all areas of the room. Each route was
tested 10 times to obtain average results.

• Curvilinear movement large circle (radius = 2m) movement, small circle (radius
= 1.25m)movement, and 3 different chaotic routes. Each route was tested 10 times
to obtain average results.

The analysis of the results (presented in Table2) showed that using our algorithm
for filtering and smoothing of the mobile robot localization data gives more accurate
and stable average values.

The first method (“previously” in Table1) supposes localizing of the mobile robot
without using the developed filtering and smoothing algorithm. This method is based
on a simple filter implemented on accepting computed coordinates only with an α

less than 0.25m (more details are available in our previous work [21]).
The second method (“currently” in Table1) supposes the use of the new filtering

and smoothing algorithm presented in this paper. The algorithm developed by us
is based on the calibration of the predicted robot position. During the calibration,
the algorithm calculates the average coordinate offset for certain iterations and then
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Table 2 Comparison of the previous and current results obtained by experiments

Mathematical
expectation (m)

Dispersion (m) Minimum (m)

Linear movement
(previously)

0.136 0.045 0.028

Linear movement
(currently)

0.044 0.015 0.010

Curvilinear movement
(previously)

0.125 0.055 0.006

Curvilinear movement
(currently)

0.072 0.029 0.030

Average value
(previously)

0.130 0.049 0.017

Average value
(currently)

0.058 0.022 0.020

All values calculated as the average of a specific type of experiment

uses this data to compute the smoothed predicted position of the robot. The average
coordinate offset is updated at each new iteration, so the algorithm can react to sudden
changes in the robot movements. Furthermore, the new algorithm can predict the
approximate robot position in cases where the find_object_2d package [14] localizes
the robot with significant errors or in other cases where the robot disappears from
the camera’s field of view (for example, there is some obstacle between the robot
and the camera).

According to expectation, the linear movement gives the most accurate localiza-
tion result, while curvilinear movement localization also becomes more accurate, but
less accurate than linear movement localization. We can conclude that our algorithm
reduces the localization inaccuracy by more than a half. However, the average mini-
mum is still not close to zero, so we can confirm that our algorithm has a guaranteed
error which is about 0.02m.

6 Conclusions

It follows that the conducted experiments were successful and developed algorithm
for filtering and smoothing the computed robot localization works properly. This
method makes it possible to localize a mobile robot using the find_object_2d pack-
age [14] more accurately, avoid critical computational errors, successfully smooth
the trajectory of the mobile robot movement, and predict the possible robot position
when it drives into a place where the camera cannot detect it. The developed algo-
rithm improves the average localization inaccuracy in approximately 2.25 times. Our
future task is to develop a new method of mobile robot localization using an external
RGB or RGB-D camera which will allow to detect and track several robots properly
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in difficult tasks, for example during the localization of the identical robots or/and
different robots using only one camera [22].
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