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Кремниевая фотоника позволяет интегрировать различные оптические компоненты для 

приложений в линейной и нелинейной оптике, включая телекоммуникации, однофотонные 

источники света, биосенсоры. Для создания фотонных интегральных схем вместе с нанолазерами, 

однофотонными источниками, маломощными оптоэлектронными переключателями, 

высокочувствительными сенсорами необходимыми элементами являются высокодобротные 

нанофотонные резонаторы. В данной работе проведен расчет добротности, модовой площади, 

модового объема и фактора Парселла нанофотонного резонатора из кремния и нитрида кремния 

для генерации высокодобротных резонансных состояний. Численные расчеты проводились с 

использованием метода FDTD.  
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Нанофотонные резонаторы являются важными элементами функциональных устройств 

фотонных интегральных схем как нанолазеры, однофотонные источники света, маломощные 

оптоэлектронные переключатели, биосенсоры, квантовая память [1, 2]. Вместе с этим, данные 

системы важны и перспективны для наблюдения, исследования и проверки фундаментальных 

эффектов квантовой электродинамики в полости [3-5]. 

Благодаря периодическому изменению показателя преломления, довольно большому 

оптическому контрасту, например, nSi/nair и наличию дефекта в центре структуры в виде 

изменяющегося периода или толщин слоев двух сред, нанофотонные резонаторы позволяют 

создавать дефектные пики пропускания на резонансных длинах волн внутри фотонной 

запрещенной зоны. С помощью оптимизации геометрических параметров структуры можно 

добиться создания высокодобротных резонансных состояний, локализованных вблизи дефекта 

на структуре. Эти локализованные состояния называются медленным светом. Локализация 

света позволяет усилить взаимодействие света и вещества (эффект Парселла), что важно для 

многих приложений.  

В данной работе численные расчеты проводились с использованием метода FDTD. В 

расчетах мы использовали следующие геометрические параметры волновода на основе Si (n = 

3.46) на подложке из SiO2/Si для целевой резонансной длины волны λ = 1.55 мкм: ширина 

волновода w = 0.70 мкм, постоянная решетки a = 0.33 мкм, высота волновода h = 0.22 мкм, 

число дефектных отверстий (с изменяющимся по квадратичному закону радиусом) Ndef = 20, 

число отверстий с постоянным радиусом N = 10, начальный и конечный факторы заполнения 

fstart = 0.2, fend = 0.1. Для нанофотонного резонатора на основе Si3N4 (n = 2) на подложке из 

SiO2/Si для целевой резонансной длины волны λ = 1.55 мкм: ширина волновода w = 2.30 мкм, 

постоянная решетки a = 0.60 мкм, высота волновода h = 0.22 мкм, Ndef и N аналогичны первому 

набору параметров, начальный и конечный факторы заполнения fstart = 0.1765, fend = 0.1373. 

Рассчитанные величины добротностей, модовой площади, модового объема и фактора 

Парселла ТЕ-поляризации электромагнитной волны для нанофотонной структуры из Si 

составили: Q1 = 8.2·105 для λ = 1.578 мкм (без учета влияния подложки), Q2 = 1.7·105 для λ = 
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1.560 мкм (с учетом влияния подложки). Smode = 0.064 мкм2 и Vmode = 0.011 мкм3 и фактор 

Парселла Fp = 4.67·105 для λ = 1.575 мкм. 

Рассчитанные величины добротностей, модовой площади, модового объема и фактора 

Парселла ТЕ-поляризации электромагнитной волны для нанофотонной структуры из Si3N4 

составили: Q1 = 610 для λ = 1.551 мкм (без учета влияния подложки), Q2 = 40 для λ = 1.531 мкм 

(с учетом влияния подложки). Smode = 0.334 мкм2 и Vmode = 0.062 мкм3 и фактор Парселла Fp = 

402 для λ = 1.550 мкм.  

Приведенные результаты были получены при 3D FDTD моделировании с размером сетки 

20 нм, времени симуляции 5000 фс и параметре auto shutoff min 10-7. Отметим, что добротность 

нанофотонной структуры из нитрида кремния мала по сравнению с добротностью структуры 

из кремния. Это значительное отличие можно объяснить меньшим оптическим контрастом и 

большей шириной волновода из нитрида кремния. Это ведет к меньшему удержанию поля в 

резонаторе, к просачиванию света в SiO2 подложку и к уменьшению добротности 

нанофотонного резонатора из Si3N4. 

 

 

Литература 

1. Garifullin A.I., Arslanov N.M. // Proc. SPIE. 2024. V.13168. P. 1. 

2. Garifullin A.I., Gainutdinov R.Kh., Khamadeev M.A. // J. Opt. Technol. 2024. V. 91. P. 399-404. 

3. Gainutdinov R.Kh., Garifullin A.I., Ziyatdinova K.A. et al. // J. Phys. Conf. Ser. 2018. V. 1068.  

№ 1. Art. no. 012005. 

4. Gainutdinov R. Kh., Nabieva L. J., Garifullin A.I. et al. // J. Phys. Conf. Ser. 2019. V.1283. № 1. 

Art. no. 012004. 

5. Garifullin A.I., Gainutdinov R.Kh., Khamadeev M.A. // Bull. Russ. Acad. Sci.: Phys. 2022. V. 

86(1). P. S66-S70. 

 

 

DETERMINATION OF SPECTRAL AND MODE PROPERTIES OF 

NANOPHOTONIC RESONATORS BASED ON SILICON AND SILICON 

NITRIDE  
 

A. I. Garifullin1,2*, N. M. Arslanov2 

 
11Institute of Physics, Kazan Federal University 

Kazan, 420008, Kremlevskaya St., 16a 

 2 Kazan Quantum Center, Kazan National Research Technical University n.a. A.N. Tupolev -KAI,  

Kazan, 420111, Chetaeva St., 18a 

*e-mail: adel-garifullin@mail.ru 

 

Silicon photonics allows the integration of various optical components for applications in linear and non-

linear optics, including telecommunications, single-photon light sources, and biosensors. High quality 

nanophotonic resonators are necessary to create photonic integrated circuits together with nanolasers, 

single-photon sources, low-power optoelectronic switches, and highly sensitive sensors. In this paper, the 

Q-factor, mode area, mode volume, and Purcell factor of a nanophotonic resonator made of silicon and 

silicon nitride to generate high quality resonant states are calculated. Numerical calculations were per-

formed using the FDTD method. 
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