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Given n men, n women, and n dogs, each man has an incomplete preference list of women,
each woman has an incomplete preference list of dogs, and each dog has an incomplete

preference list of men. We understand a family as a triple consisting of one man, one

woman, and one dog such that the dog belongs to the preference list of the woman,
who, in turn, belongs to the preference list of the man, while the latter belongs to the

preference list of the dog. We understand a matching as a collection of nonintersecting

families (some agents, possibly, remain single). A matching is said to be nonstable, if one
can find a man, a woman, and a dog which do not live together currently but each of
them would become “happier” if they do. Otherwise, the matching is said to be stable (a
weakly stable matching). We give an example of this problem for n = 3 where no stable
matching exists. Moreover, we prove the absence of such an example for n < 3. Such

an example was known earlier only for n = 6 (Biro, McDermid, 2010). The constructed
examples also allows one to halve the size of the recently constructed analogous example

for complete preference lists (Lam, Plaxton, 2019).
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1. Introduction

Assume that there are n men and n women, and each one among them has a pref-

erence list of representatives of the opposite sex. A partition into heterogeneous

families with no tuple of man and woman, who prefer each other rather than their

partners (if they have ones), is called a stable matching. The initial case of complete

preference lists was studied by D. Gale and L.S. Shapley: a stable matching nec-

essarily exists, a quadratic time complexity algorithm for forming it was proposed

in [4]. Note that the algorithm is also applicable for the case of incomplete prefer-

ence lists, but some men and women, possibly, remain single. A certain modification

of the Gale–Shapley algorithm (see, for example, [5]) allows one to find, if possible,

a matching without single men and women or to prove its absence, otherwise.

In the case of random complete preference lists (when for each man and each

woman the distribution of all permutations of representatives of the opposite sex

is independent and uniform) the time necessary for finding a stable matching is

Θ(n ln(n)) [5]. In this case, the mean value of the number of stable matchings also

has the asymptote n ln(n) [9].

In [5] D. Knuth states the question whether it is possible to generalize the theory

of stable matchings to the case of three genders. The most interesting variant in

the k-gender case occurs when preferences are cyclic: representatives of the 1st

gender rank representatives of the 2nd one, the latter rank representatives of the

3rd gender, etc., and each representative of the kth gender has a preference list of

representatives of the 1st gender (see [7, Chapter 5.6] for the non-cyclic variants of

the k-gender case).

A tuple containing exactly one representative of each gender is called a family,

and a set of disjoint families is called a matching. A matching is said to be weakly

stable, if there is no tuple outside this matching, each member of which would

become “happier”, if they live together. In what follows, for brevity, we use the

term “a stable matching” instead of the term “a weakly stable matching”.

Let the number of representatives of each gender equal n. Authors of the pa-

per [2] prove that with complete preference lists a stable matching always exists,

provided that n 6 k (where k is the number of genders). In [3], Eriksson et al.

generalize this result for the case when k = 3 and n = k + 1 = 4. Ibid, they state

the conjecture that the problem of finding a stable matching in a 3-gender case

with complete preference lists (problem 3-DSM-CYC or just 3DSM) has a solution

for any n. Using a satisfiability problem formulation and an extensive computer-

assisted search, the authors of [8] prove the validity of the conjecture stated by

Eriksson et al. for n = 5. In [10], B. Pittel proves that with random preference lists

the mean value of stable matchings in problem 3DSM grows as Ω(n2 ln2(n)).

The 3DSMI-problem (3-dimensional stable matching with incomplete preference

lists) was studied by P. Biró and E. McDermid [1]. According to results a solution

of 3DSMI does not necessarily exists in contrast to the two-dimensional case; they

give an explicit example of problem 3DSMI for n = 6 with no stable matching.
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Moreover, they prove that the problem of establishing the solvability of 3DSMI

is NP-complete. Ibid, they state the problem of constructing an instance with no

weakly stable matching for n < 6.

Finally, contrary to expectations, the conjecture stated by Eriksson et al. was

recently refuted in [6]. Lam and Paxton associate problem 3DSMI with a certain

problem 3DSM, where n is 15 times greater than the initial size; this problem is

solvable if and only if so is the initial problem 3DSMI. Therefore, the problem

of establishing the solvability of problem 3DSM is NP-complete. The example de-

scribed in the paper [1] allows one to construct an instance of problem 3DSM for

n = 90 = 6× 15 with no stable matching.

For this reason, the problem of finding an instance of 3DSMI with no weakly

stable matching for n < 6 becomes more salient. The construction of such instances

for the least possible values of n is the goal of this paper.

First we constructed an instance of 3DSMI problem for n = 4 and proved the

absence of such instances for n < 3. But after failing to prove the absence of such

instances for n = 3, we have proposed an algorithm for the computer search of

all possible instances of 3DSMI problems for n = 3. Unexpectedly, the algorithm

has succeeded in constructing instances of rather simple 3DSMI problems without

weakly stable matching for n = 3.

The rest part of the paper has the following structure. In Sect. 2, we present

the formal definitions of 3DSMI-CYC in terms of the graph theory. In Sect. 3,

we study some properties of graphs of problem 3DSMI-CYC, prove the absence of

counterexamples for n < 3. In Sect. 4 we describe various cases of problem 3DSMI

for n = 3 and consider the result of their computer enumeration. We consider several

instances and explicitly prove the absence of a stable matching for each of them,

and describe general properties of all counterexamples. In Sect. 5, we conclude by

mentioning some potential future work.

2. The statement of 3DSMI-CYC in terms of the graph theory

Let G be some directed graph. Denote the set of its edges by E; assume that no

edges are multiple. Let the vertex set V (G) = V of the graph G be divided into three

subsets, namely, the set of men M , women F , and dogs D. Any edge (v, v′), v, v′inV

of this graph is considered to be of one of three types: either v ∈ M,v′ ∈ F , or

v ∈ F, v′ ∈ D, or v ∈ D, v′ ∈M .

Evidently, the length of each cycle in the graph G is a multiple of 3. The graph

G is said to be trivial if it has no cycles whose length exactly equals 3. In this paper,

we mostly consider graphs to be untrivial.

Assume that |M | = |F | = |D| (otherwise we supplement the corresponding

subgraph with vertices that are not connected with the rest part of the graph). The

number n = |M | = |F | = |D| is called the problem size. Evidently, the length of

all cycles in the graph G is a multiple of 3. Note also that this condition ensures

the possibility to divide the vertex set of any digraph G into 3 subsets M , F , D



March 31, 2022 12:35 WSPC/MANUSCRIPT FILE 3DSM3incomplete4

4 Eduard Yu. Lerner and Regina E. Lerner

so that all its edges are directed as indicated above. Each edge (v, v′), v, v′ ∈ V ,

corresponds to some positive integer r(v, v′) which is called the rank of this edge. For

fixed v ∈ V , all possible ranks r(v, v1), . . . , r(v, vk) coincide with {1, . . . , k}, where

k is the outdegree of the vertex v (if r(v, v′) = 1, then v′ is the best preference for

v, and so on).

Using the language of the graph theory, for convenience, we define the notion

of a matching for a graph G in terms of a special spanning subgraph H of this

graph. Each vertex v ∈ V of the subgraph H has at most one outgoing edge and

the following condition is fulfilled: if a vertex v has an outgoing edge, then this edge

belongs to a cycle of length 3 in the graph H. Cycles of length 3 in the subgraph

H are called families. Evidently, each family, accurate to a cyclic shift, takes the

form (m, f, d), where m ∈ M , f ∈ F , and d ∈ D. Note that in what follows, for

convenience of denotations of families, we do not fix the order of genders in a family,

i. e., we treat denotations of families as triples derived from an initial one by a cyclic

shift as equivalent.

In what follows, we sometimes use the notion of a family in a wider sense, namely,

as any cycle of length 3 in the graph G. However, if some subgraph H is fixed, then

we describe other cycles of length 3 explicitly, applying the term “a family” only to

cycles that enter in H.

A matching µ is a collection of all families of the subgraph H. This definition is

traditional; though we use it, we, for clarity, we illustrate our considerations with

the help of the subgraph H(µ). For a vertex v, v ∈ V , in the matching µ, the rank

Rµ(v) is defined as the rank of the edge that goes out of this vertex in the subgraph

H. If some vertex v in the subgraph H has no outgoing edge, then Rµ(v) is set to

+∞.

A triple (v, v′, v′′) is said to be blocking for some matching µ, if it is a cycle in

the graph G, and

r(v, v′) < Rµ(v), r(v′, v′′) < Rµ(v′), r(v′′, v) < Rµ(v′′).

A matching µ is said to be stable, if no blocking triple exists for it.

Problem 3DSMI (3-dimensional stable matching with incomplete preference

lists) consists of finding a stable matching for a given graph G. It is well known that

it does not necessarily exists. Moreover, the problem of establishing its existence

for a given graph G is NP-complete. It was mentioned in the Introduction, this fact

was proved by Biro and McDermid. They have constructed an explicit example of

the graph G of size 6, for which no stable matching exists. Moreover, the question

of constructing similar examples for lesser sizes was also stated by the mentioned

authors.

3. The absence of examples of problem 3DSMI with no stable

matching for n < 3

Let G and G′ be two directed graphs defined on one and the same vertex set V but,

generally speaking, having distinct edge sets. Assume that rank functions rG and
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rG′ are defined on E and E′, correspondingly. Let L ⊆ E ∩E′. We say that ranking

orders rG and rG′ coincide on L, if for any two edges (v, v′), (v, v′′) in L,

rG(v, v′) < rG(v, v′′) ⇐⇒ rG′(v, v′) < rG′(v, v′′).

Lemma 3.1. For any untrivial graph G of problem 3DSMI of size n there exists a

graph G′ of the same size such that the outgoing degree of each its vertex is nonzero

and there is the following correspondence between graphs G and G′:

1) the set of all possible families of graphs G and G′ coincide;

2) the ranking order of all edges that enter in these families also coincide.

Proof. Let v be a vertex in the graph G having no outgoing edges. Then v enters

in no family of the graph G. Let us delete this vertex together with all incoming

edges in v. Repeating this procedure several times, we get a graph Ĝ such that each

its vertex has at least one outgoing edge and its set of families coincides with that

of the initial graph G. Let the symbol V̂ stand for the vertex set of the graph Ĝ,

denote the set of its edges by Ê. According to untriviality of graph G the set of

families of graphs G and Ĝ is nonempty. In this case, the set V̂ contains at least

one vertex for each gender.

Let us now restore the initial vertices belonging to the set V \ V̂ and for each

of them arbitrarily construct at least one edge directed to some vertex in V̂ that

corresponds to a proper gender. Since the incoming degree of restored vertices equals

zero, they, as earlier, can enter in no family. Note that Ê ⊆ E and, consequently,

one can construct a rank function for the obtained graph G′ preserving the ranking

order of the graph G on Ê. The obtained graph G′ with the rank function defined

in the indicated way is the desired one.

Lemma 3.1 allows one, when studying problems 3DSMI of size n, to restrict

oneself to considering the corresponding graphs G with nonzero outgoing degrees

of all vertices, which we do in what follows.

Let the symbol G′′ stands for a subgraph of the graph G consisting of its edges

of rank 1. We call G′′ the basic subgraph of the graph G. Since each vertex in the

basic subgraph has exactly one outgoing edge, G′′ represents a collection of cycles,

whose lengths are multiples of 3, and trees of edges that lead to these cycles.

Theorem 3.2. Problem 3DSMI of size n 6 2 always has a stable matching.

Proof. Note that with n = 1 the assertion of the lemma is trivial. In what follows,

we restrict ourselves to considering the case of n = 2. Note also that in this case

a nonstable matching can contain only one family. So let us assume the absence of

two family matching for graph G.

The basic subgraph of the graph G contains cycles either of length 3 or of

length 6. Let us consider both cases sequentially. In the first case, there exist ver-

tices v0, v1, v2 such that r(v0, v1) = r(v1, v2) = r(v2, v0) = 1. Therefore, the family
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(v0, v1, v2) is a stable matching. It remains to consider the case when the basic

subgraph of the graph G is a cycle of length 6, i.e., C = (v0, v1, . . . , v5). Without

loss of generality, we assume that the graph G, which represents a counterexam-

ple to Theorem 3.2, along with the cycle C contains the edge (v2, v0) of rank 2.

Then the only possible blocking triple to the matching of one family (v0, v1, v2) is

(v2, v3, v4). Consequently, the graph G also contains the edge (v4, v2). But then the

only possible blocking triple for the matching consisting of one family (v2, v3, v4)

is (v4, v5, v0). In turn, the graph G that consists of only a basic cycle C and edges

(v0, v4), (v4, v2), (v2, v0) of rank 2 has a stable matching consisting of one family

(v0, v4, v2). Therefore, the graph G, along with the cycle C, contains at least 4 edges.

Consequently, the graph G of size n = 2 has a matching of two families, and it is

stable by definition.

4. The examples of graphs G of size n = 3 with no stable matching

In this section, we consider the case of n = 3. Let us first classify all graphs of the

problem of this size; this will facilitate their computer search.

If the basic subgraph of the graph G contains cycles of length 3, then there

exist vertices v0, v1, v2 such that r(v0, v1) = r(v1, v2) = r(v2, v0) = 1. Therefore,

if the family (v0, v1, v2) enters in a matching, then these vertices can enter in no

blocking triple. By deleting vertices {v0, v1, v2} from the graph G, we get the graph

of 3DSMI with n = 2. By Theorem 3.2, this problem has a stable matching µ. Then

µ ∪ {(v0, v1, v2)} is stable in G.

Therefore, the basic subgraph of the graphG represents either a cycle of length 9,

or a cycle of length 6 with three edges that lead to this cycle. Altogether, accurate

to the cyclic symmetry, there are 6 such subgraphs; they are shown in Fig. 1

Each of 9 vertices of these subgraphs in the graph G can have outgoing edges

that lead to two remaining vertices of the corresponding gender (here we understand

remaining vertices as those that differ from the vertex, to which the edge of the basic

graph G′′ is already directed). Generally speaking, the total number of possible cases

is 5, namely,

(1) the considered vertex has no more outgoing edges;

(2)–(3) the considered vertex has one more outgoing edge that leads to some vertex

among two ones;

(4)–(5) the considered vertex has two edges, their ranks are equal to 2 and 3, we

can associate ranks with these edges in two ways.

Therefore, it suffices to consider 6× 59 problems 3DSMI.

Evidently, for each of these problems there exist at most 27 families (27 blocking

triples). The number of possible matching µ as one can easily calculate, also is

not so large. Namely, there exist at most 27 matchings consisting of one family. In

addition, there exist at most 108 matchings consisting of two families, namely, there

are 27 ways to form a triple consisting of representatives of genders that enter in no

matching, and 4 ways to choose partners among two women and two dogs entering
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Fig. 1. 6 variants of the basic subgraph of the graph G.

the matching for a fixed man that also enters this matching. Finally, the number of

matchings of 3 triples is not less than 36, because there are 3!×3! ways to distribute

women and dogs among three man-indexed triplets. Therefore, the total amount of

matchings does not exceed 36+108+27=171. For each of them we need to find the

first triple among 27 potential blocking ones that really is blocking.

Therefore, the total amount of considered cases does not exceed 6×59×171×27 ≈
54× 109. For generating these cases, we have written a program in Python. See the

version of this program that calculates the number of counterexamples for each of

basic graphs shown in Fig. 1 at https://github.com/reginalerner/3dsm/.

For the first basic graph shown in Fig. 1 (a cycle formed by 9 vertices), no such

graph for problem 3SDMI with no stable matching was obtained. As is mentioned

in the Introduction, we even did not expect to find such instances for n = 3. To

our surprise, the computer search has found such counterexamples for each of the

rest basic graphs. One of them is shown in Fig. 2. For convenience, we enumerate

vertices of the graph by numbers v, v = 0, 1, . . . , 8. The value v mod 3 defines the

gender that corresponds to the vertex v .

Theorem 4.1. There is no stable matching in 3DSMI for the graph shown in Fig. 2.

Proof. Fig. 2 evidently demonstrates that each possible cycle of length 3 takes

one of the following forms: (0, 1, 5), (0, 7, 8), (1, 2, 3), (1, 5, 3), (2, 3, 4), (3, 4, 5), and

(4, 8, 6). These cycles form families, while collections of disjoint families form match-

ings µ in the problem.

Evidently, if one can add a cycle (v, v′, v′′) to a matching µ (vertices v, v′, v′′

do not enter in µ), then µ is unstable, i.e., the triple (v, v′, v′′) is blocking for µ.

Therefore, candidates for stable matchings should be supplemented with possible
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Fig. 2. The graph of problem 3DSMI of size 3 with no stable matching consisting of 16 edges. The

rank of all edges indicated by solid bold lines equals 1. The dashed lines represent the edges with

the rank 2. The rank of the “dotted” edge equals 3. Vertices {2, 5, 7} correspond to men, vertices
{0, 3, 6} correspond to women, and vertices {1, 4, 7} correspond to dogs.

cycles. We call such matchings incompletable and consider only such ones.

The union of vertices of three cycles that are listed above does not coincide

with the set of all vertices of the graph shown in Fig. 2. On the other hand, by

using the direct search method we can prove that any set consisting of one triple

is completable. Therefore, each incompletable matching consists of two families.

Below we give their complete list together with blocking triples:

(1) {(0, 1, 5), (2, 3, 4)}, the blocking triple is (4, 8, 6);

(2) {(0, 1, 5), (4, 8, 6)}, the blocking triple is (1, 2, 3);

(3) {(0, 7, 8), (1, 2, 3)}, the blocking triple is (3, 4, 5);

(4) {(0, 7, 8), (1, 5, 3)}, the blocking triple is (2, 3, 4);

(5) {(0, 7, 8), (2, 3, 4)}, the blocking triple is (0, 1, 5);

(6) {(0, 7, 8), (3, 4, 5)}, the blocking triple is (0, 1, 5);

(7) {(1, 2, 3), (4, 8, 6)}, the blocking triple is (0, 7, 8) or (3, 4, 5);

(8) {(1, 5, 3), (4, 8, 6)}, the blocking triple is (0, 7, 8).

One can easily give other examples of graphs with the same set of cycles, incom-

pletable matchings, and blocking triples. In particular, this property is characteristic

for the graph that differs from that shown in Fig. 2 by the presence of the additional

edge (7, 2) of rank 2 or the additional edge (6, 1) of rank 2, or both of these edges.

Moreover, one can find other graphs consisting of 16 edges that have no stable

matching. One of them is shown in Fig. 3 (any other graph with this property differs

from the indicated one only in the fact that ranks of edges (0, 4) and (0, 7) have

interchanged). These graphs define the following families of forming matchings in

problem 3DSMI: (0, 1, 8), (0, 4, 5), (0, 7, 5), (1, 2, 6), (2, 3, 7), (3, 4, 5), and (3, 7, 5).

The list of matchings with blocking triples looks as follows:

(1) {(0, 1, 8), (2, 3, 7)}, the blocking triple is (3, 4, 5);

(2) {(0, 1, 8), (3, 4, 5)}, the blocking triple is (1, 2, 6);

(3) {(0, 1, 8), (3, 7, 5)}, the blocking triple is (1, 2, 6);

(4) {(0, 4, 5), (1, 2, 6)}, the blocking triple is (2, 3, 7);

(5) {(0, 4, 5), (2, 3, 7)}, the blocking triple is (0, 1, 8);
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Fig. 3. One more graph of 3DSMI of size 3 with no stable matching which contains 16 edges.

Denotations are the same as in Fig. 2.

(6) {(0, 7, 5), (1, 2, 6)}, the blocking triple is (2, 3, 7);

(7) {(1, 2, 6), (3, 4, 5)}, the blocking triple is (0, 7, 5).

(8) {(1, 2, 6), (3, 7, 5)}, the blocking triple is (0, 4, 5).

Since the counterexamples considered above are diverse, they have some common

properties. We are going to describe them in a future paper.

5. Concluding remarks

In this paper, we study the problem stated by Biro and McDermid in [1], namely,

we seek for instances with no weakly stable matching for 3DSM-CYC with n < 6.

In particular, we find the minimal value of n, with which such instances exist, and

describe some of them.

The idea of this study is due to the work of Lam and Paxton [6], who give

an example of problem 3DSM-CYC for n = 90 with no stable matching. This

example is based on an analogous example proposed by Biro and McDermid for

problem 3DSMI-CYC with n = 6. Our example constructed for problem 3DSMI

with n = 3 allows one to make the size of an example for problem 3DSM with no

stable matching as low as n = 45. According to results obtained in Sect. 3, the

further decrease of n for problem 3DSMI is impossible. However, it seems possible

to find problem 3DSM with no stable matching with n < 45 using some other

methods.a

Actually, Lam and Paxton studied not only 3-DSM-CYC, but also its k-gender

analog, k-DSM-CYC, for arbitrary k > 3. First they have represented problem 3-

DSMI-CYC as a particular case of k-DSMI-CYC with n2 representatives of each

gender. Then by the reduction from k-DSMI-CYC they have proved that k-DSM-

CYC is NP-complete.

Note that some development of ideas proposed in the paper [6] allows one to

rather easily construct a counterexample of size n = 5 for k-DSMI-CYC, k > 3,

basing on the graph shown in Fig. 2 via the subdivision of edges that go out of

aNote in the revised paper: in arXiv:2107.10102v3 [math.CO] we reduced the size of the coun-

terexample to n = 20.
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vertices {0, 3, 6} which correspond to women. Any of subdivided edges is converted

to the chain with k − 3 vertices inside, one for each new gender (see Fig. 4). A
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8

Fig. 4. The graph (of size 5) of 4DSMI-CYC with no stable matching. In 4DSMI-CYC, we assume

that there exist 4 genders, for example, men, women, kids, and dogs, while women are partial to
kids, the latter are partial to dogs, and preferences of men and dogs are similar to those described

earlier in the definition for 3DSMI. The definition of the graph of 4DSMI-CYC is also completely

analogous; the vertices that correspond to kids are marked with the bold dot symbol. Recall that
the rank of all edges indicated by solid bold lines equals 1. The dashed lines represent the edges

with the rank 2. The rank of the “dotted” edge equals 3.

k-gender family should contain the new vertices from subdivided edge, so there is

a biunique correspondence between new k-gender families and old 3-gender ones. If

no stable matching exists for 3-gender families, then neither one exists for the new

k-gender graph.

Therefore, for any k > 2, we have constructed an instance of problem k-DSMI-

CYC with n = 5 with no stable matching (where lists of preferences of two women,

two men, and two dogs that are not shown in Fig. 2 can be arbitrary). The question

about the existence of such counterexamples for n = 3 and n = 4 still remains open.

We hope that this work can be useful in studying other questions related to other

aspects of the generalization of the theory of stable matchings to the k-dimensional

case, k > 2. In our opinion, this study is far from completion.
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