


EFFECT OF SUBSTITUENTS ON THE PARAMETER OF INTRAMOLECULAR EXCHANGE INTERACTION IN N,N'-DIOXY-2,6-DIAZADAMANTANE BIRADICAL

Khafizov N.R.,^a **Madzhidov T.I.**,^a **Kadkin O.N.**,^b **Antipin I.S.**,^a

^a*Kazan Federal (Volga Region) University, Butlerov Institute of Organic Chemistry,
Kremlevskaya, 18, Kazan, 420008, Russia, e-mail: nail-kh@yandex.ru*

^b*Zavoisky Kazan Physical-Technical Institute, RAS, Sibirskii Trakt, 10/7, Kazan, 420029, Russia*

Density-functional calculations of a series of stable organic biradicals on the basis of a N,N'-dioxy-2,6-diazaadamantane core with different substituents have been performed using the UB3LYP/6-311++G(2d,2p) method. Using breaking symmetry approach¹, the values of the exchange interaction parameter, J , between the two spin centers are calculated. The chemical formulas of the studied organic biradicals are follows:

$R = H, CH_3, C_2H_5, C_3H_7, i-C_3H_7, F, Cl, Br, CF_3, CCl_3,$

$CBr_3, CH_2Cl, CH_2Br, CH_2C_5H_6, CH_2OH, OCH_3$

It is shown that the intramolecular exchange interaction is mainly ferromagnetic in nature, but the J parameter gradually decreases, changing to antiferromagnetic interaction for the last four substituents, in the following sequence: $CH_2OH > H > CBr_3 > CCl_3 > CH_3 > C_2H_5 > C_3H_7 > i-C_3H_7 > F > Br > OCH_3 > Cl > CH_2Cl > CH_2Br > CH_2C_5H_6 > CF_3$ (see table).

Table 1. Values of the intramolecular exchange interaction parameter, J (cm^{-1}), for different R

CH_2OH	H	CBr_3	CCl_3	CH_3	C_2H_5	C_3H_7	$i-C_3H_7$
14.19	11.87	11.65	9.26	6.56	5.22	4.43	4.39

F	Br	OCH_3	Cl	CH_2Cl	CH_2Br	$CH_2C_5H_6$	CF_3
1.45	1.34	0.33	0.13	-1.93	-2.35	-2.46	-7.33

It is concluded that the J parameter depends on the electron-donating/electron-withdrawing effects, geometry, and bulkiness of the substituents in the 1, 3, 5, and 7 positions of an adamantine core, and their specific interactions with the nitroxide radical groups.

References

1. Noddleman L., *J. Chem. Phys.* 1981, **74**, 5737.
2. Noddleman L., Baerends E. J., *J. Am. Chem. Soc.* 1984, **106**, 2316.