Всероссийская научная конференция

УДК 532.546

ФИЛЬТРАЦИОННАЯ КОНСОЛИДАЦИЯ УПРУГОГО ПОЛУПРОСТРАНСТВА ПОД ДЕЙСТВИЕМ НАГРУЗКИ

А.В. Костерин, Э.В. Скворцов

Аннотация

Исследуется процесс фильтрационной консолидации упругого насыщенного полупространства под действием нормальной нагрузки на его поверхность при предположениях о несжимаемости жидкости и зерен скелета, а также независимости суммарных напряжений скелета от времени. При нагружении полупространства сосредоточенной силой найдены аналитические представления для давления жидкости и осадки поверхности полупространства. Найдена также максимальная осадка при равномерном нагружении поверхности по площади круга.

Ключевые слова: консолидация, упругое полупространство, нагрузка, давление, осадка.

Введение

Становление и развитие теории фильтрационной консолидации связано с работами К.Терцаги [1],Н.М.Герсеванова [2], В.А. Флорина [3, 4] и других. Общая математическая модель консолидации и аналитические методы её исследования были предложены М. Био [5,6], оригинальный метод решения задач консолидации принадлежит Мак Нами и Гибсону [7]. Тестовые двумерные задачи консолидации были рассмотрены в работах [7–9]. Осадка поверхности упругого насыщенного полупространства, деформированного осесимметричной нагрузкой, на основании модели М. Био исследовалась В.З. Партоном, при этом коэффициент Пуассона ν считался равным нулю [10].

В данной работе величина ν произвольна. Сжимаемостью жидкости и зерен скелета полупространства пренебрегается и полагается, что объемные деформации скелета связаны с переупаковкой зерен. При постановке задачи используется гипотеза Терцаги, согласно которой суммарные напряжения не зависят от времени [1]. В рамках этих предположений при определенном типе приложения нагрузки определяются давление и осадка поверхности полупространства при его нагружении нормальной сосредоточенной силой, а также осадка центра круга в случае равномерно распределенной по кругу нормальной нагрузки.

1. Основные соотношения.

Рассматривается процесс фильтрационной консолидации насыщенного жидкостью упругого полупространства под действием мгновенно приложенной вертикальной нагрузки на часть его поверхности. Пусть x_i , $i = 1 \div 3$ – декартовы координаты точки полупространства $x_3 \ge 0$, t – время, σ_{11} , σ_{22} , σ_{33} – компоненты суммарных напряжений, $p = p(x_1, x_2, x_3, t)$ – давление жидкости. Суммарные напряжения в скелете полупространства представляются соотношением

$$\sigma_{ij} = \sigma_{ij}^f - p\delta_{ij},\tag{1}$$

где σ_{ij}^{f} – эффективные напряжения [1,11], δ_{ij} – символ Кронекера.

Считается, что сжимаемостью зерен скелета и жидкости можно пренебречь и что объемные деформации скелета связаны с переупаковкой зерен.

Математическая модель консолидации включает в себя суммарное уравнение движения фаз, уравнения неразрывности (баланса масс), закон фильтрации, реологическое соотношение для пористого скелета, граничные и начальные условия.

В результате выделения из суммарного уравнения движения фаз [12] его статической компоненты и учета того, что в процессе консолидации пористость среды изменяется незначительно, это уравнение принимает вид:

$$\frac{\partial \sigma_{ij}^f}{\partial x_i} - \frac{\partial p}{\partial x_i} = 0.$$
⁽²⁾

Условие неразрывности процесса консолидации выглядит следующим образом [12]:

$$\operatorname{div} \mathbf{q} + \frac{\partial \theta}{\partial t} = 0, \tag{3}$$

где $\mathbf{q} = m(\mathbf{v} - \partial \mathbf{u}/\partial t)$ – скорость фильтрации, $\theta = \operatorname{div} \mathbf{u}$ – объемная деформация скелета, \mathbf{v} и $\partial \mathbf{u}/\partial t$ – среднефазовые макроскорости жидкой и твердой фазы соответственно, \mathbf{u} – смещения скелета.

Закон фильтрации полагается линейным:

$$\mathbf{q} = -\frac{k}{\mu_0} \nabla p,\tag{4}$$

где *k* – проницаемость скелета, μ_0 – вязкость жидкости.

Реологическое соотношение для пористого скелета связано только с эффективными напряжениями (закон упругости) [11]:

$$\sigma_{ij}^f = \lambda \theta \delta_{ij} + 2\mu \varepsilon_{ij},\tag{5}$$

где

$$\varepsilon_{ij} = (1/2) \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)$$

есть тензор макродеформаций, $\lambda, \, \mu$ – коэффициенты Ламе упругой пористой матрицы.

Модель (1)–(5) замкнута.

В момент времени t = 0 + 0 при мгновенном приложении к границе полупространства вертикальной нагрузки $\Pi(x_1, x_2)$ эффективные напряжения равны нулю, скелет абсолютно несжимаем, и вся нагрузка воспринимается жидкостью [2,4]:

$$p_0(x_1, x_2, 0, 0+0) = \Pi(x_1, x_2) \tag{6}$$

При t = 0 + 0 фильтрационная консолидация не развита, и объемные деформации скелета сохраняются [12]:

$$\theta(x_i, 0+0) = 0. \tag{7}$$

С учетом условия (7) уравнения начального импульса принимают вид:

$$\frac{\partial \sigma_{ij}^f}{\partial x_i} - \frac{\partial p_0}{\partial x_i} = 0, \quad \sigma_{ij}^f = 2\mu\varepsilon_{ij}, \quad \frac{\partial u_i}{\partial x_i} = 0.$$

Отсюда вытекает связь смещений скелета и давления жидкости [13]:

$$\mu\Delta\mathbf{u} - \nabla p_0 = 0$$

Дифференцирование этого уравнения с учетом несжимаемости скелета приводит к уравнению:

$$\Delta p_0 = 0,$$

и, таким образом, давление в полупространстве в момент времени t = 0 + 0 описывается решением задачи Дирихле для уравнения Лапласа. Решение этой задачи известно [15].

Поскольку при t = 0 + 0 сумма эффективных напряжений равна нулю, из формулы (1) следует, что давление выражается через суммарные напряжения:

$$p(x_1, x_2, x_3, 0+0) = p_0(x_1, x_2, x_3) = -\frac{1}{3}(\sigma_{11} + \sigma_{22} + \sigma_{33}).$$
(8)

Пусть теперь t > 0. Из соотношений (3)–(5) вытекает, что

$$\frac{\partial \theta}{\partial t} = \frac{k}{\mu_0} \Delta p,$$

$$\frac{\partial (\sigma_{11}^f + \sigma_{22}^f + \sigma_{33}^f)}{\partial t} = \frac{(3\lambda + 2\mu)k}{\mu_0} \Delta p.$$
(9)

Далее принимается гипотеза Терцаги, по которой тензор суммарных напряжений не зависит от времени [1]. Согласно ей и формуле (1)

$$\frac{\partial \sigma_{ij}^f}{\partial t} - \frac{\partial p}{\partial t} \delta_{ij} = 0.$$
(10)

Из соотношений (9), (10) вытекает уравнение, которому подчиняется давление в процессе консолидации:

$$\frac{\partial p}{\partial t} = \kappa \cdot \Delta p, \tag{11}$$

где $\kappa = (3\lambda + 2\mu)k/(3\mu_0)$.

Приложение нагрузки на границе $x_3 = 0$ принимается по типу «высокопроницаемый поршень» [11]:

$$p(x_1, x_2, 0, t) = 0. (12)$$

Таким образом, давление подчиняется уравнению (11) в полупространстве $x_3 \ge 0$ при граничном условии (12) и начальном условии (8).

Представление давления в виде

$$p(x_1, x_2, x_3, t) = p_0(x_1, x_2, x_3) - p_1(x_1, x_2, x_3, t)$$
(13)

с учетом формулы (6) сводит задачу к определению функции $p_1 = p_1(x_1, x_2, x_3, t)$, удовлетворяющей уравнению

$$\frac{\partial p_1}{\partial t} = \kappa \cdot \Delta p_1 \tag{14}$$

с граничным условием

$$p_1(x_1, x_2, 0, t) = \Pi(x_1, x_2).$$
(15)

и начальным условием

$$p_1(x_1, x_2, x_3, 0+0) = 0. (16)$$

Решение задачи (14)-(16) также известно [15]. Итак, определение давления в полупространстве в процессе консолидации сводится к последовательному решению первой краевой задачи для уравнения Лапласа и первой краевой задачи для уравнения типа теплопроводности. Помимо определения давления представляет интерес нахождение осадки упругого полупространства в процессе его консолидации. Далее удобнее перейти к обозначениям $x_1 = x$, $x_2 = y$, $x_3 = z$, $\sigma_{11} = \sigma_{xx}$, $\sigma_{22} = \sigma_{yy}$, $\sigma_{33} = \sigma_{zz}$.

Напряжения связаны с деформациями согласно закону Гука [14], а при консолидации соответствующую деформацию порождают эффективные напряжения, так что

$$\frac{\partial u_z}{\partial z} = \frac{1}{E} \left[\sigma_{zz}^f - \nu (\sigma_{xx}^f + \sigma_{yy}^f) \right]. \tag{17}$$

Здесь $u_z = u_z(x,y,z,t)$ – нормальное смещение полупространства, E – модуль Юнга.

Пусть функция F = F(x, y, z) такова, что

$$\frac{\partial F}{\partial z} = \frac{1}{E} \left[\sigma_{zz} - \nu (\sigma_{xx} + \sigma_{yy}) \right].$$

Из равенств (1) и (17) следует, что

$$\frac{\partial u_z}{\partial z} = \frac{\partial F}{\partial z} + \frac{1 - 2\nu}{E}p.$$
(18)

С течением времени давление жидкости рассеивается:

$$\lim_{t \to \infty} p(x, y, z, t) = 0,$$

поэтому

$$\frac{\partial F}{\partial z} = \frac{\partial}{\partial z} \left[u_z(x, y, z, \infty) \right],$$

и формула (18) приобретает вид:

$$\frac{\partial}{\partial z}\left[u_z(x,y,z,t) - u_z(x,y,z,\infty)\right] = \frac{1-2\nu}{E}p(x,y,z,t).$$
(19)

Пусть $u_s(t) = u_z(x, y, z, t) - u_z(x, y, z, 0)$ – осадка полупространства при его консолидации. Так как $u_s(x, y, \infty, t) = 0$, из соотношения (19) вытекает, что

$$u_s(x, y, 0, t) = \frac{1 - 2\nu}{E} \int_0^\infty \left[p(x, y, \xi, 0) - p(x, y, \xi, t) \right] d\xi.$$
(20)

2. Сосредоточенная нормальная нагрузка.

Пусть на полупространство в точке x = y = z = 0 действует нормальная сосредоточенная сила Π_0 .

Начальное распределение давления следующее [15]:

$$p(x, y, z, 0+0) = p_0(x, y, z) = \frac{\Pi_0 z}{2\pi\rho^3}.$$
(21)

Для определения давления требуется решить уравнение (14) с начальным условием (16) и граничным условием (15), которое в данном случае таково:

$$p_1(x, y, 0, t) = \Pi_0 \delta(x) \delta(y),$$

где δ - символ дельта-функции.

Решение этой задачи в полупространстве $z \ge 0$ имеет вид [15]:

$$p_1(x, y, z, t) = \Pi_0 \kappa \int_0^t \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \delta(\xi) \delta(\eta) \left[\frac{\partial}{\partial \zeta} G(x, y, z, \zeta, \eta, \xi, t - \tau) \right]_{\zeta = 0} d\eta d\xi d\tau.$$
(22)

Здесь

Правая часть формулы (22) сводится к однократному интегралу:

$$p_1(x, y, z, t) = \frac{\prod_0 z}{8(\pi\kappa)^{3/2}} \int_0^t \frac{\exp\left(-\frac{\rho^2}{4\kappa(t-\tau)}\right)}{(t-\tau)^{5/2}} d\tau.$$

Его значение известно [16], и функция p_1 определяется:

$$p_1(x, y, z, t) = \frac{\Pi_0 z}{2\pi\rho^3} \left[erfc \frac{\rho}{2(\kappa t)^{1/2}} + \frac{\rho}{(\pi\kappa t)^{1/2}} \exp\left(-\frac{\rho^2}{4\kappa t}\right) \right].$$

Окончательно решение исходной задачи нахождения давления с учетом формул (13), (21) приобретает вид:

$$p(x, y, z, t) = \frac{\Pi_0 z}{2\pi\rho^3} \left[erf \frac{\rho}{2(\kappa t)^{1/2}} - \frac{\rho}{(\pi\kappa t)^{1/2}} \exp\left(-\frac{\rho^2}{4\kappa t}\right) \right].$$
 (23)

Выражение (23) может быть записано в иной форме:

$$p(x, y, z, t) = -\frac{\Pi_0}{2\pi} \frac{d}{dz} \left[\frac{1}{\rho} erf \frac{\rho}{2(\kappa t)^{1/2}} \right],$$

что позволяет вычислить следующий интеграл:

 \sim

$$\int_{z}^{\infty} p(x,y,\xi,t)d\xi = \frac{\Pi_0}{2\pi\rho} erf \frac{\rho}{2(\kappa t)^{1/2}}.$$

Таким образом, согласно формуле (20) осадка поверхности полупространства описывается выражением

$$u_s(r,t) = \frac{(1-2\nu)\Pi_0}{2\pi E r} erfc \frac{r}{2(\kappa t)^{1/2}}.$$
(24)

При $\nu = 0$ эта формула совпадает с результатом, полученным в работе [10].

3. Нормальная нагрузка, распределенная по кругу.

Пусть нагрузка Π_0 распределена равномерно по кругу радиуса r = a.

Используя представление (24), по принципу суперпозиции можно найти осадку поверхности полупространства в точке r = 0:

$$u_s(0,t) = \frac{(1-2\nu)\Pi_0}{2\pi E} J(t),$$

где

$$J(t) = \int_{0}^{a} \rho \left[\int_{0}^{2\pi} \frac{d\theta}{\rho} - \int_{0}^{2\pi} \frac{1}{\rho} erf \frac{\rho}{2(\kappa t)^{1/2}} d\theta \right] d\rho$$

После введения безразмерных величин

$$T = \frac{2(\kappa t)^{1/2}}{a}, \ U_s = \frac{u_s E}{\Pi_0 a}$$

и вычисления интеграла искомая осадка описывается выражением

$$U_s(0,T) = (1-2\nu)f(T)$$

где

$$f(t) = erfc\frac{1}{T} + \frac{T}{\pi^{1/2}} \left[1 - \exp\left(-\frac{1}{T^2}\right) \right].$$

При $\nu = 0$ эта формула также совпадает с результатом, полученным в работе [10].

Заключение.

Показано, что в условиях гипотезы К. Терцаги и пренебрежении сжимаемостью скелета и жидкости осадка поверхности упругого насыщенного полупространства при его нормальном нагружении есть функционал от давления жидкости. Получено аналитическое выражение для давления при нагружении полупространства нормальной сосредоточенной силой. Установлено, что в процессе консолидации соответствующая осадка при произвольном коэффициенте Пуассона ν отличается от известной величины осадки, найденной в рамках теории М. Био при $\nu = 0$, лишь на коэффициент пропорциональности $1 - 2\nu$. Тот же вывод справедлив и по отношению к осадке центра круга при равномерном нормальном нагружении поверхности по кругу.

Работа выполнена при поддержке гранта РФФИ 12-01-00333а.

Литература

- 1. Терцаги К. Теория механики грунтов. М.: Госстройиздат, 1961. 507 с.
- 2. *Герсеванов Н.М.* Основы динамики грунтовой массы. М., Л.: Гл. ред. строительной лит., 1937. 242 с.
- 3. Флорин В.А. Основы механики грунтов. Т. 1 Л.: Стройиздат, 1959. 356 с.
- 4. Флорин В.А. Теория уплотнения земляных масс М.: Стройиздат, 1948. 284 с.
- Bio M.A. General theory of three dimensional consolidation // J. Appl. Phys. 1941. -V. 12, No 2. - P. 155-164.
- Bio M.A. Consolidation settlement under a rectangular load distribution // J. Appl. Phys. - 1941. - V 12, No 5. - P. 426-430.
- Mc Namee G., Gibson R.E. Displacement functions and linear transforms applied to diffusion through porous elastic media // Quart. J. mech. Appl. Math. - 1960. - V. 13. -P. 98-111.
- 8. Партон В.З. Одна задача теории консолидации насыщенных жидкостью уплотняемых пористых сред // Инж. журн. – 1965. – Т. V, № 1. – С. 176–180.
- 9. Веригин Н.Н. Консолидация грунта под гибким фундаментом (плоская задача)// Основания, фундаменты и механика грунтов. – 1961. – № 5. – С. 20–23.

- 10. Партон В.З. Осесимметричная задача теории консолидации насыщенных жидкостью уплотняемых пористых сред // Докл. АН СССР. – 1965. – Т. 160, № 4. – С. 785–788.
- 11. *Николаевский В.Н.* Механика пористых и трещиноватых сред. М.: Недра, 1984. 232 с.
- 12. Егоров А.Г., Костерин А.В., Скворцов Э.В. Консолидация и акустические волны в насыщенных пористых средах. Казань: Изд-во Казан. ун-та, 1990. 105 с.
- 13. Новацкий В. Теория упругости. М.: Мир, 1975. 875 с.
- 14. Джонсон К. Механика контактного взаимодействия. М.: Мир, 1989. 510 с.
- Полянин А.Д. Справочник по линейным уравнениям математической физики. М.: Физматлит, 2001. – 576 с.
- Градитейн И.С., Рыжик И.М. Таблицы интегралов, сумм, рядов и произведений. М.: Физматгиз, 1962. – 1100 с.

Костерин Александр Васильевич – профессор кафедры аэрогидромеханики, Казанский (Приволжский) федеральный университет, г. Казань, Россия.

Скворцов Эдуард Викторович – профессор кафедры моделирования экологических систем, Казанский (Приволжский) федеральный университет, г. Казань, Россия. E-mail: *eduard.scvortsov@rambler.ru*