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Введение
Бурное развитие науки и техники в наши дни было бы невозможно без успе-
хов в решении сложных комплексных задач. В решении этих задач наравне со
специалистами самых разных профессий — физиками, врачами, инженерами,
технологами — участвуют и специалисты-математики, механики.

В современной технике широко используются процессы, основанные на приме-
нении полупроводников, лазеров, плазмы, пучков заряженных частиц. Расчет
этих процессов требует, наряду с глубоким пониманием сложной физики про-
исходящих явлений, совершенного владения современными методами вычисли-
тельной математики.

Выбор оптимальных режимов таких классических технологических процессов,
как процессы кристаллизации, плавки, сварки, также связан с учетом тонких
физических эффектов и требует проведения большого числа сложных расчетов.

В медицине для диагностики и лечения используются лазерное излучение, пуч-
ки заряженных частиц, рентгеновское излучение. В основе всех подобного рода
расчетов лежит математическое моделирование физических процессов, которое
сейчас стало одним из основных методов исследования в науке и технике.

Изучением математических моделей физических явлений занимается матема-
тическая физика.

Рассказ о математических моделях мы начинаем с несколько шуточного приме-
ра. Согласно известной легенде, мысль о законе всемирного тяготения возникла
у Ньютона, когда он наблюдал за падением яблока. Сколько времени понадо-
билось Ньютону для открытия Великого закона Природы?

Если пренебречь сопротивлением воздуха и считать начальную скорость паде-
ния яблока равной нулю, то время падения t, ускорение свободного падения g
и высота h, с которой упало яблоко, связаны между собой соотношением

h =
gt2

2
, (1)

из которого находим

t =

√
2h

g
.
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Приняв g = 10м/сек2, h = 2м, мы получим t ≈ 0, 6 сек. Итак, чтобы открыть
Великий закон Природы, нужно менее секунды времени. Проанализируем те-
перь ход наших рассуждений в процессе решения этой задачи. Мы рассматри-
ваем физическое явление — падение яблока. Когда падало яблоко, ветка яблони
качалась, яблоко в полете вертелось. Ньютон думал, и происходило еще много
других событий, тем или иным образом связанных друг с другом. Нас инте-
ресует только одна характеристика явления — зависимость времени падения
яблока от высоты.

Тем самым мы делаем первый шаг: строим физическую модель явления, вы-
делив в рассматриваемом процессе только существенное для нас: связь между
временем падения яблока и высотой.

Второй шаг: описание физического процесса — падения яблок уравнением (1).
Уравнение (1) является математической формулировкой закона свободного па-
дения тел, открытого, по существу, еще Галилеем на основе анализа эксперимен-
тальных данных. Уравнение (1). как и следовало ожидать, не отражает многих
второстепенных черт явления: колебания ветки, удара яблока о землю и т.д. Но
это уравнение позволяет вычислить интересующую нас характеристику явле-
ния.

Третий шаг: мы решаем уравнение (1) и находим время t. Решение уравнения
(1) — это чисто математическая задача, и правила, по которым мы находим
решение уравнения (1), не зависят от физического смысла переменных t, g, h.
Решение этого уравнения мы могли бы поручить человеку, который ничего не
знает о рассматриваемом нами явлении.

Четвертый шаг: решение уравнения (1) мы интерпретируем как время падения
яблока и, наконец, на основе наших расчетов делаем определенные выводы о
времени, необходимом для открытия закона всемирного тяготения.

Далеко не всегда интерпретация результата решения математической задачи
в терминах физической модели явления очевидна. Ясно, что это описание —
очень грубое приближение.

Естественно желание получить более точные результаты. Здесь мы сталкива-
емся с одной из центральных проблем математической физики — проблемой
выбора между подробностью описания явления и возможностью эффективно
провести численные расчеты. Чем точнее мы пытаемся учесть все процессы в
происходящем явлении, тем сложнее становится его математическое описание
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и тем труднее получить количественную информацию на основе этого описа-
ния. Случается так, что математическая формулировка физических законов,
описывающих явление, настолько сложна, что непосредственно на основе этой
формулировки с помощью современных вычислительных средств нет возмож-
ности получить количественную информацию о явлении. Именно такая ситуа-
ция типична для большинства задач современной математической физики.

В задаче о вычислении времен падения яблока мы руководствовались следую-
щей схемой исследования.

Изучаемое явление

��

Физическая модель

��

Математическая задача

��

Решение математической задачи

��
Интерпретация решения

математической задачи в терминах
физической модели

��
Сопоставление физической

модели и явления
Для вычисления нужной характеристики явления нам пришлось дать его ма-
тематическое описание. Это математическое описание называется математиче-
ской моделью явления.

Слово ‘’модель” происходит от латинского слова modus (мера, масштаб, спо-
соб действия). В частности, оно означает копию предмета, служащую для его
изучения. Совершенно очевидно, что для этого модель должна правильно вос-
производить свойства предмета. Например, процесс обтекания самолета возду-
хом зависит от формы самолета, поэтому форма обдуваемых в аэрогидродина-
мических трубах моделей точно повторяет форму самолетов. Математическая
модель физического явления — это обычно система уравнений, описывающих
элементарные физические процессы, из которых складывается явление. Мате-
матическая модель предназначена для расчета характеристик физического яв-
ления. Для изучения средствами математики доступна лишь математическая
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модель явления. В нашем примере, математическая модель падения яблока —
это уравнение (1). ту же физическую модель мы могли бы исследовать и на
другой математической модели, например, решая дифференциальное уравне-
ние

dt

ds
=

1√
2gs

, t(h) = 0. (2)

Можно показать, что алгебраическое уравнение (1) и дифференциальное урав-
нение (2) описывают одну и ту же физическую модель. Если бы мы попытались
рассчитать время падения яблока с очень большой высоты, нам пришлось бы
учитывать сопротивление воздуха, форму яблока и ряд других факторов. Для
этого нужно было бы строить другую физическую модель. Таким образом, одно
и тоже явления может изучаться на разных физических моделях, а одна и та же
физическая модель может описываться разными математическими моделями.

Задача специалиста по математической физике состоит в исследовании мате-
матической модели физического явления, причем это исследование он должен
уметь провести так, чтобы оно служило познанию физической сущности яв-
ления. Обычно специалист по математической физике участвует в построении
математической модели на основе физической модели, осуществляет исследо-
вание возникшей математической задачи, решает ее и принимает участие в ин-
терпретации решения математической задачи в терминах физической модели.

В ранний период развития математической физики, ее математическим аппа-
ратом была теория дифференциальных уравнений в частных производных.

На математическую физику часто смотрели просто как на посвященный прило-
жениям раздел теории дифференциальных уравнений в частных производных.

В то же время, сама теория дифференциальных уравнений в частных производ-
ных развивалась главным образом в процессе решения задач математической
физики: физические аналогии подсказывали правильную математическую под-
становку задачи и иногда показывали их пути и решения.

Многие современные математические теории (теория потенциала, теория ор-
тогональных рядов, теория интегральных уравнений) развились из различных
приемов решения дифференциальных уравнений математической физики.

Уравнения, связывающие значения неизвестной функции в данной точке и зна-
чения ее производных в той же точке, называются дифференциальными. Если
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неизвестные функции зависят лишь от одной переменной, то такие уравнения
носят название обыкновенных дифференциальных уравнений.

Если функции зависят от нескольких переменных и в уравнение входят частные
производные по этим переменным, то такие дифференциальные переменные
называются дифференциальными уравнениями в частных производных.

Первым уравнением в частных производных было уравнение малых колебаний
струны

∂2u

∂t2
=
∂2u

∂x2
. (3)

Оно было получено Б. Тейлором в 1715 г. и изучено Ж.Л. Даламбером и Л.
Эйлером в 1745-1747 гг. В уравнении (3) функция u(x, t) — это отклонение
от положения равновесия точки струны с координатой x в момент времени t.
Масштаб измерения времени и расстояния выберем так, чтобы скорость рас-
пространения сигнала по струне была равна единице.

В 1760 году в работах французского математика Ж.Л. Лагранжа появилось
уравнение Лапласа

∂2u

∂x2
+
∂2u

∂y2
= 0.

Это уравнение встречается в работах Л. Эйлера 1752 г. П. Лапласом оно было
опубликовано в 1785 г. П. Лаплас систематически занимался изучением это-
го уравнения. Этому уравнения удовлетворяет потенциал электростатического
поля в двумерной области, в которой отсутствуют заряды. В 1813 г. С. Пуас-
сон получил обобщение этого уравнения на тот случай, когда в области есть
заряды, распределенные с плотностью ρ(x, y)

∂2u

∂x2
+
∂2u

∂y2
= −4πρ(x, y). (4)

Уравнение (4) называется уравнением Пуассона. Уравнения (3) и (4) лишь про-
стейшая форма рассмотренных Эйлером, Лапласом и Пуассоном уравнений.
Эти авторы рассматривали и более сложные уравнения.

К середине XVIII века было уже получено достаточное количество результатов
по уравнениям с частными производными. В 1766 году Эйлер рассмотрел вопрос
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о приведении дифференциальных уравнений второго порядка к каноническому
виду путем введения новых переменных{

ξ = x− t,
η = x = t.

Он преобразовал уравнение (3) к легко интегрируемому виду

∂2u

∂ξ ∂η
= 0

и предложил метод решения уравнения (3).

Начала теории дифференциальных уравнений в частных производных впервые
были изложены в знаменитом ‘’Интегральном исчислении” Л. Эйлера, которое
вышло в 1768 году. Итак, в XVIII веке начали закладываться основы новой вет-
ви анализа — теории дифференциальных уравнений с частными производными.
В начале XIX века происходит новое значительное расширение области прило-
жения математического анализа. Основным аппаратом новых областей являют-
ся дифференциальные уравнения. Поэтому проблемы, связанные с дифферен-
циальными уравнениями в частных производных, становятся основными про-
блемами. Кроме того, оказалось, что при анализе физического процесса уравне-
ние появляется вместе с дополнительными условиями. т.е. возникают краевые
задачи, т.е. создается непосредственно теория уравнений математической физи-
ки, уравнений, связанных непосредственно с конкретной физической задачей.
Основное внимание в XIX веке сосредотачивается на решении краевых задач.
Вокруг решения этих проблем группируются большие коллективы ученых, об-
разуются научные школы. В Париже образовалась известная Политехническая
школа. Здесь успешно работает Ж.Б. Фурье, который при изучении процесса
теплопроводности впервые получил уравнение теплопроводности

∂u

∂t
=
∂2u

∂x2
. (5)

Его работа ‘’Аналитическая теория тела” была опубликована в 1822 году. Урав-
нение (5) описывает, например, распределение температуры в тонком стержне,
если температура не меняется на поперечном сечении. Здесь u(x, t) — темпера-
тура сечения стержня с координатой x в момент времени t. В Берлине создает-
ся Берлинская политехническая школа, в которой работают Дирихле, Нейман,
Гаусс. Большая группа исследователей математических методов физики име-
лись в Англии (Грин, Стокс, Томпсон, Гамильтон, Максвелл). В вышедшей в
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1873 году работе ‘’Трактат об электричестве и магнетизме” Дж. К. Максвелл
предложил принятую ныне математическую модель электродинамики. В ее ос-
нову Дж. К. Максвелл положил уравнения, которые теперь носят его имя. В
математической физике уравнения Максвелла сыграли выдающуюся роль: на-
ряду с уравнениями гидродинамики, они долго были и главным источником
задач, и основой самых значительных успехов математической физики.

Большой вклад в развитие математической физики внесли крупные русские
ученые М.В. Остроградский, В.Я. Буняковский, А.М. Ляпунов и В.А. Стеклов.
Буняковский и Остроградский получили математическую подготовку в Париже
и, возвратившись в Россию, основали Петербургскую математическую школу,
одним из главных направлений которой была разработка методов решения за-
дач математической физики.

Одним из первых и до сих пор одним из самых общих и глубоких результатов
в теории дифференциальных уравнений в частных производных является до-
казанная в 1874 году С.В. Ковалевской знаменитая теорема о том, что задача
Коши (задача решения уравнения с начальными условиями) для уравнений с
аналитической зависимостью от производных и независимых переменных все-
гда имеет аналитическое решение.

Основы статистического подхода к построению математических моделей фи-
зических явлений были заложены в работах Р. Клазиуса, Дж. К. Максвелла,
Л. Больцмана и систематически изложены Л. Больцманом в ‘’Лекциях по ки-
нетической теории газов” (1872). Статистические идеи в значительной степени
подготовили мышление физиков к восприятию квантовой механики. Наиболь-
шее развитие статистический подход получил в работах Дж. Гиббса.

Итак, в XIX веке рассматриваются не только задачи, возникающие из практи-
ки, но и уделяется большое внимание чисто теоретическим вопросам. Разрабо-
танные при исследовании конкретных задач идеи и методы оказались приме-
нимы к широким классам уравнений. Исследуются вопросы существования и
единственности решения уравнения в частных производных, его зависимость от
данных, о функциональных свойствах решения. В конце этого века были зало-
жены основы общей теории уравнений с частными производными, в частности,
уравнений математической физики.

В XX веке углубляется решение общих теоретических проблем уравнений с
частными производными. В начале века в теоретической физике произошла
‘’революция”, которая привела к изменению точек зрения на многие рассмат-
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риваемые математической физикой модели и установлению более четких гра-
ниц их применимости. Тогда же стала ощущаться необходимость более строгого
подхода к основам математической физики. В 1900 г. Д. Гильберт среди своих
знаменитых проблем сформулировал проблему аксиоматического построения
физики. Работа по аксиоматике и анализу логической структуры различных
физических теорий является важным разделом современной математической
физики.

В 1916 г. А. Эйнштейн предложил носящие его имя уравнения теории тяготе-
ния, а в 1932 г. Джон фон Нейман опубликовал книгу ‘’Математические начала
квантовой механики”, в которой подводится итог великим открытиям пионеров
квантовой теории.

Работы Гиббса, Эйнштейна, фон Неймана, Гильберта по своему духу связаны
с новейшим периодом развития математической физики. В этот период проис-
ходит широкое проникновение в теорию уравнений с частными производными
методов различных областей анализа. Функциональный анализ нашел широ-
кое применение в решении многих проблем уравнений математической физики.
Здесь нужно отметить работы советского математика С.Л. Соболева. Он впер-
вые ввел пространство обобщенных функций и стал систематически изучать
обобщенные решения дифференциальных уравнений в частных производных.

В настоящее время в математической физике широко используются идеи теории
вероятностей, современной геометрии и топологии для нахождения обобщенно-
го решения. Все это позволяет расширить круг рассматриваемых задач, позво-
ляет изучать с единой точки зрения более интересные задачи, не поддающиеся
исследованиям.

Т.к. практическое использование результатов теоретических исследований тре-
бует получения ответа на поставленную задачу в числовой форме, то в XX веке
и позже стало уделяться большое внимание численному интегрированию урав-
нений с частными производными. Кроме того, в последнее время актуальной
проблемой математической физики стала проблема решения нелинейных диф-
ференциальных уравнений. Основным же методом решения нелинейных урав-
нений является численное интегрирование. Эти методы открывают широко поле
применения ЭВМ к решению задач уравнений математической физики. Поэто-
му в последнее время в математической физике произошли фундаментальные
изменения, связанные с широким применением компьютеров и создание на их
базе нового метода исследования — вычислительного эксперимента, который
существенно расширяет класс эффективно решаемых математической физикой
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задач. Вычислительный эксперимент — это эксперимент над математической
моделью явления, который состоит в том, что по одним параметрам модели
вычисляются другие ее параметры и на этой основе делаются выводы о свой-
ствах явления, описываемого математической моделью.

В заключении следует отметить, что многие проблемы современной математи-
ческой физики, связанные с квантовой теорией, статистической физикой, био-
физикой и др., приводят к задачам, не описываемыми дифференциальными
уравнениями. Задачи математической физики имеют свою специфику, не сво-
дящуюся только к проблемам теории дифференциальных уравнений и их обоб-
щений.
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I. Постановка задач математической физики. Кор-
ректность постановок задач математической фи-
зики
Лекции 1-2. Вывод уравнения колебаний струны. Поста-
новка смешанной задачи (задачи Коши-Адамара) и задачи
Коши для уравнения колебаний струны

Изучение физического процесса методами математической физики происходит
по следующим этапам.

I. Математическая формулировка задачи (постановка задачи математической
физики).

II. Решение задачи.

III.Физическая интерпретация решения.

Математическая формулировка задачи проводится по следующему плану.

1. Идеализация процесса, т.е. замена реального процесса моделью, учитываю-
щей лишь наиболее существенные черты процесса и пренебрегающие рядом его
второстепенных черт (построение физической модели).

2. Выбор функции, характеризующей процесс, и основных законов и принципов,
по которым он происходит.

3. На основании выбранных законов вывод уравнения относительно выбранной
функции.

4. Вывод дополнительных краевых условий: граничных, заданных на границе
рассматриваемой среды, начальных, относящихся к моменту времени, с кото-
рого начинается изучение явления.

Совокупность уравнения и дополнительных условий называется задачей мате-
матической физики.

1.1. Малые плоские поперечные колебания струны с закрепленными
концами

Пусть две конечные точки струны длины l закреплены, а сама струна туго на-
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тянута между этими точками. Если вывести струну из положения равновесия,
например, оттянуть (игра на гитаре) или ударить по ней (игра на рояле), то
струна начнет колебаться. Дадим математическую формулировку этому про-
цессу.

1. Определим физическую модель струны. Струна — упругая, невесомая, абсо-
лютно гибкая нить:

• упругая — после выведения из положения равновесия, струна вновь стре-
мится занять его;

• невесомая — пренебрегается действие силы тяжести, т.е. предполагается,
что силы натяжения настолько значительны, что действием силы тяжести
можно пренебречь;

• абсолютно гибкая — не сопротивляется изгибу, т.е. изменению ее формы,
не связанному с изменением ее длины. Это означает, что если мысленно
разрезать струну в точке и удалить часть, лежащую по одну сторону от
этой точки, то сила натяжения, заменяющая действие отброшенной части,
будет направлена по касательной к мгновенному профилю струны;

• нить — пренебрегается толщина струны.

Будем предполагать, что все точки струны двигаются перпендикулярно ее по-
ложению равновесия, причем в каждый момент времени струна лежит в одной
и той же плоскости. Кроме того, будем пренебрегать сопротивлением среды, в
которой колеблется струна.

2. Процесс колебания струны характеризуется вектором смещения точки стру-
ны. Но в силу выбранной модели процесс колебания будет характеризоваться
одной скалярной функцией u(x, t) — отклонение от положения равновесия точ-
ки струны с абсциссой x в момент времени t. При этом положение равновесия
струны выберем за ось x.
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При каждом фиксированном значении t = t0 график функции u(x, t0) дает
форму струны в этот момент времени. Тогда частная производная ∂u

∂x(x, t0) дает
угловой коэффициент касательной в точке x. ∂u∂x(x, t0) = tgα(x, t0), где α(x, t0)
- острый угол между положительным направлением касательной к профилю
струны в точке x в момент времени t0 и положительным направлением оси x.

При фиксированном x = x0 u(x, t) дает закон движения точки x0 вдоль пря-
мой, параллельной оси u. Тогда ∂u

∂t (x0, t) - скорость движения точки, ∂2u
∂t2 (x0, t)

- ускорение движения.

В качестве законов, характеризующих этот процесс, выбираем следующие за-
коны.

1. Принцип Даламбера (второй закон Ньютона): все силы, действующие на
колеблющуюся систему, включая и силу инерции, должны уравновеши-
ваться.

2. Закон Гука: упругая сила пропорциональна деформации (удлинению, уко-
рочению).

3. Приступаем к выводу уравнения относительно функции u(x, t). Отметим,
что рассматриваются малые колебания, при которых отклонение u значительно
меньше длины струны, а значит угол α(x, t) мал, а значит мал и tgα(x, t),
поэтому квадратами u и ∂u

∂x и их производными можно пренебречь по сравнению
с самими величинами.

Для вывода уравнения выделим в структуре элементарный участок [x, x+∆x].
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Остальную часть струны отбросим, заменяя действие отброшенных частей дей-
ствием сил напряжения.

Применяя выбранные законы к этому элементу струны, получим некоторое ра-
венство относительно функции и ее производных. Разделив полученное равен-
ство на ∆x и осуществив предельный переход при ∆x → 0, получим искомое
уравнение.

Покажем, что при всех наших предположениях величина силы натяжения
T (x, t) ≡ T0, T0 – const, т.е. не зависит ни от точки приложения, ни от времени.
Рассмотрим длину s участка [M1̂,M2]

s =

x+∆x∫
x

√
1 + u2

x dx ≈
x+∆x∫
x

dx = ∆x,

т.к. мы рассматриваем малые колебания.

Т.о., при наших предположениях удлинения струны со временем не происходит,
поэтому на основании закона Гука величина силы натяжения не меняется со
временем, т.е. T (x, t) ≡ T (x).

Покажем теперь, что сила натяжения не зависит и от x. Найдем проекции на
ось x и ось u сил ~T (x+ ∆x) и ~T (x).

Прx ~T (x+ ∆x) = T (x+ ∆x) Cosα(x+ ∆x, t)

Прx ~T (x) = −T (x) Cosα(x, t)

Прu ~T (x+ ∆x) = T (x+ ∆x) Sinα(x+ ∆x, t)

Прu ~T (x) = −T (x) Sinα(x, t)

На основании сформулированного выше принципа Даламбера, сумма проекций
всех сил на ось x и ось u, действующих на элемент [x, x + ∆x], включая и
силы инерции, должна равняться нулю. Т.к. мы рассматриваем поперечные
колебания, то внешняя сила и сила инерции направлены вдоль оси u.

Итак, приравнивая нулю сумму проекций на ось x, имеем

T (x+ ∆x) Cosα(x+ ∆x, t)− T (x) Cosα(x, t) = T (x+ ∆x)− T (x) = 0,
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при этом в силу малости колебаний мы учтем, что

Cosα = 1√
1+tg2α

= 1√
1+u2x
≈ 1,

Sinα = tgα√
1+tg2α

= ux√
1+u2x
≈ ux.

(1.1)

Таким образом, T (x+ ∆x) ≡ T (x), т.е. T (x) ≡ T0 – const.

Для вывода уравнения приравняем нулю сумму проекций всех сил на ось u.
Предположим, что на струну действует внешняя сила, равномерно распреде-
ленная по струне, причем, как мы указывали, она действует параллельно оси
u. Пусть f(x, t) — непрерывная линейная плотность внешней силы, т.е. величи-
на силы, рассчитанная на единицу длины. Тогда на весь участок [M1̂,M2] вдоль
оси u действует сила f(x, t)∆x.

Для нахождения силы инерции участка [M1̂,M2] воспользуемся выражением
(−mutt(x+ θ∆x, t)), где m — масса элемента, 0 < θ < 1. Если ρ(x) — непре-
рывная линейная плотность струны, то m = ρ(x) ∆x. Т.о. проекция на ось u
силы инерции задается выражением (−ρ(x) ∆xutt(x+ θ∆x, t)).

Приравняем нулю сумму проекций всех сил на ось u.

T0 (Sinα(x+ ∆x, t)− Sinα(x, t)) + f(x, t)∆x− ρ(x) ∆xutt(x+ θ∆x, t) =

= T0

(
∂u

∂x
(x+ ∆x, t)− ∂u

∂x
(x, t)

)
.+ f(x, t)∆x− ρ(x) ∆xutt(x+ θ∆x, t) = 0,

при этом мы учли формулу (1.1).

Делим теперь обе части полученного соотношения на ∆x и переходим к пределу
при ∆x → 0, тогда получим уравнение вынужденных колебаний струны под
действием внешней силы.

T0
∂2u

∂x2
+ f(x, t)− ρ(x)utt(x, t) = 0. (1.2)

Если ρ(x) ≡ ρ0 = const (струна однородна), то уравнение (1.2) запишется в
виде

∂2u

∂t2
= a2 ∂

2u

∂x2
(x, t) + p(x, t), (1.3)

где a2 = T0
ρ0
, p(x, t) = f(x,t)

ρ0
.
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При f(x, t) ≡ 0 получим уравнение свободных колебаний струны

∂2u

∂t2
(x, t) = a2 ∂

2u

∂x2
(x, t). (1.4)

Если струна колеблется в среде с сопротивлением, пропорциональным скорости
∂u
∂t , то уравнение примет вид

∂2u

∂t2
(x, t) = a2 ∂

2u

∂x2
(x, t)− β ∂u

∂t
+ f(x, t).

4. Сформулируем теперь дополнительные условия.

а) Начальные условия. Процесс колебания будет существенно зависеть от то-
го, каким образом струна выводится из положения равновесия. Можно оття-
нуть струну и отпустить без начальной скорости, т.е. можно задать начальную
форму струны. Можно заставиться колебаться струну, придав точкам струны
начальную скорость при помощи удара. В общем случае, начальные условия
запишутся в виде 

u(x, 0) = ϕ(x),

∂u

∂t
(x, 0) = ψ(x),

0 ≤ x ≤ l, (1.5)

где ϕ(x), ψ(x) — заданные функции, выражающие смещение и скорость точек
струны в начальный момент t = 0.

б) Граничные условия.

I. Т.к. в случае жесткого крепления отклонения концов не происходит, то{
u(0, t) = 0,
u(l, t) = 0,

t ≥ 0, (1.6)

при этом заметим, что условия (1.5), и (1.6) должны быть согласованы, т.е.
должны быть выполнены условия согласованности между граничными и на-
чальными условиями

ϕ(0) = ϕ(l) = 0.

Кроме граничных условий (1.6) встречаются граничные условия и других ти-
пов.
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II. Если концы струны перемещаются параллельно оси u по заданным законам,
то граничные условия принимают вид{

u(0, t) = µ1(t),
u(l, t) = µ2(t),

t ≥ 0, (1.7)

причем µ1(0) = ϕ(0), µ2(0) = ϕ(l).

III. В случае упругого закрепления концов, граничные условия имеют вид
∂u

∂x
(0, t)− k1

T0
u(0, t) = 0,

∂u

∂x
(l, t) +

k2

T0
u(l, t) = 0,

t ≥ 0, (1.8)

где k1, k2 — коэффициенты упругости заделки концов x = 0 и x = l.

IV. В общем случае, граничные условия записываются в виде
αu(0, t) + β

∂u

∂x
(0, t) = θ1(t),

γ u(l, t) + δ
∂u

∂x
(l, t) = θ2(t).

t ≥ 0. (1.9)

Итак, задача о малых поперечных колебаниях струны привела нас к следующей
задаче математической физики.

В области A∞ = [0, l]×[0,∞) найти функцию u(x, t), удовлетворяющую уравне-
нию (1.3) в области A∞ = (0, l)× (0∞), начальным условиям (1.5) при 0 ≤ x ≤ l
и граничным условиям одного из видов (1.6), (1.7), (1.8), (1.9) при t ≥ 0.

Отметим, что к этой математической задаче сводятся многие другие физиче-
ские задачи:

1) малые продольные колебания стержня;
2) крутильные колебания вала;
3) продольные колебания жидкости и газов в тонкой трубке;
4) распределение электрического тока в проводе.

Поставленная выше задача называется смешанной задачей (задачей Коши-Адамара).

Для уравнения (1.3) могут быть поставлены и другие задачи.
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I. Пусть струна достаточно длинная и нас интересует колебание ее точек, доста-
точно удаленных от концов, причем в течении малого промежутка времени. В
этом случае режим на концах не будет оказывать существенного влияния и его
не учитывают. Струну считают при этом бесконечной (идеализация достаточно
длинной струны). Задача ставится так:

Найти решение уравнения (1.3) в области (−∞,∞)× (0,∞), удовлетворяющее
начальным условиям (1.5) при −∞ < x <∞.

II. Рассматриваются задачи и для полубесконечной струны.

Найти решение уравнения (1.3) в области (0,∞)× (0,∞), удовлетворяющее на-
чальным условиям (1.5) при 0 ≤ x <∞ и граничному условию

u(0, t) = µ(t), t ≥ 0.

III. Ставятся задачи и только с граничными условиями. Характер процесса для
моментов времени, достаточно удаленных от начального, вполне определяется
граничными условиями, т.к. влияние начальных возмущений благодаря трению,
присущему всякой реальной системе, с течением времени ослабевает. Эта задача
на установившийся режим ставится так:

Найти решение уравнения (1.3) в области A∞, удовлетворяющее одному из гра-
ничных условий (1.6)-(1.9) при t ≥ 0.
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Лекция 3. Уравнения колебаний мембраны, колебание упру-
гого тела. Общее уравнение колебаний. Колебание балки

2.1. Малые поперечные колебания мембраны

Мембрана – упругая, свободно-изгибающаяся, натянутая пленка. Предположим
что в состоянии равновесия мембрана занимает некоторую область Ω плоскости
(x1, x2) с границей ∂Ω.

Пусть мембрана каким-то образом выведена из положения равновесия.

1. Будем предполагать, что все ее точки движутся перпендикулярно положению
равновесия, т.е. мы рассматриваем поперечные колебания мембраны.

2. Т.к. мы рассматриваем поперечные колебания, то в качестве функции, ха-
рактеризующей процесс, выберем функцию u(x, t) = u(x1, x2, t) — отклонение
точки x = (x1, x2) мембраны в момент t от положения равновесия. При фик-
сированном x0 = (x0

1, x
0
2) функция u(x0, t) дает закон колебания точки x0, а

∂u
∂t (x

0, t), ∂
2u
∂t2 (x0, t) определяют, соответственно, скорость и ускорение движения.

При фиксированном t = t0 функция u(x, t0) дает форму мембраны в момент t0.
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Мы рассматриваем малые колебания мембраны, поэтому, как и в случае струны,
будем пренебрегать квадратами u, ∂u

∂x1
, ∂u
∂x2

и их произведениями по сравнению
с самими величинами.

3. Для вывода уравнения рассмотрим элементарную площадку ABCD с изме-
рениями ∆x1 и ∆x2. Пусть A1B1C1D1 - положение этой площадки в момент t. В
силу малости колебаний, изменением площади площадки ABCD можно прене-
бречь. Действие отброшенной части мембраны заменим действием сил натяже-
ния ~T1, ~T2, ~T3, ~T4, распределенными вдоль границы A1B1C1D1. Т.к. мембрана
не сопротивляется изгибу и сдвигу, то вектор натяжения лежит в плоскости,
касательной к мгновенной поверхности мембраны и перпендикулярен линии
разреза. Так как мы предполагаем, что мембрана находится под действием рав-
номерного натяжения, то T1 = T2 = T0∆x1, T3 = T4 = T0∆x2, где T0 — величина
силы натяжения, действующая на единицу длины линии разреза. В силу наших
предположений, T0 – const, т.е. не зависит ни от точки приложения, ни от вре-
мени.

Применяя к элементу A1B1C1D1 принцип Даламбера и переходя к пределу при
∆x1, ∆x2 → 0, получим уравнение малых поперечных колебаний мембраны

ρ(x)
∂2u

∂t2
= T0∆u,

где ρ(x) — поверхностная плотность мембраны, ∆ ≡ ∇2 = ∂2

∂x21
+ ∂2

∂x22
- лапласиан,

∇ = ∂
∂x1
~ı+ ∂

∂x2
~ - оператор Гамильтона.

Если есть внешняя сила, поверхностная плотность которой f(x, t), то уравнение
примет вид

ρ(x)
∂2u

∂t2
= T0∆u+ f(x, t). (2.1)

Если мембрана однородна, т.е. ρ(x) ≡ ρ0 = const, то получим

∂2u

∂t2
= a2∆u+ F (x, t),

где a2 = T0
ρ0
, F (x, t) = f(x,t)

ρ0
.

4. Сформулируем теперь начальные и граничные условия.
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Процесс колебания мембраны будет зависеть от того, каким образом мембрана
выведена из положения равновесия. Если придать точкам мембраны начальное
отклонение и начальную скорость, то начальные условия будут иметь вид

u(x, 0) = ϕ(x),

∂u

∂t
= ψ(x),

x = (x1, x2) ∈ Ω. (2.2)

Будем считать, что край мембраны закреплен. Тогда отклонение мембраны на
границе ∂Ω отсутствует, и граничное условие примет вид

u
∣∣
∂Ω

= 0, t ≥ 0. (2.3)

Итак, задача о колебании мембраны сведена к следующей математической за-
даче.

В области A∞ = Ω × [0,∞) найти функцию u(x, t), удовлетворяющую уравне-
нию (2.1) в области A∞ = Ω × (0,∞), начальным условиям (2.2) при x ∈ Ω и
граничному условию (2.3).

2.2. Малые колебания упругого, однородного, изотропного тела

Пусть в положении равновесия тело занимает некоторый объем Ω. Выведем
тело из положения равновесия (например, ударим по нему), тогда оно начнет
колебаться. Рассмотрим эти колебания. Процесс колебания будет характеризо-
ваться вектором смещения
~v(x, t) = ~v(x1, x2, x3, t) = v1(x1, x2, x3, t)~ı+ v2(x1, x2, x3, t)~+ v3(x1, x2, x3, t)~k
точки x = (x1, x2, x3) в момент t.

Будем предполагать, что мы рассматриваем колебания, при которых состав-
ляющие вектора ~v(x, t) вдоль осей не зависят от координат этих осей, т.е.
v1(x2, x3, t), v2(x1, x3, t), v3(x1, x2, t).

Т.о. во всех плоскостях, параллельных плоскостям (x2, x3), (x1, x3), (x1, x2) ко-
лебания происходят одинаково. Если в этом колеблющемся теле вырезать плен-
ку, то она будет колебаться как мембрана. Поэтому, учитывая эту связь между
колебанием тела и мембраны, можно утверждать, что компоненты vi, i = 1, 3
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удовлетворяют уравнению поперечных колебаний мембраны, т.е.

∂2v1

∂t2
= a2

(
∂2v1

∂x2
2

+
∂2v1

∂x2
3

)
+ f1(x2, x3, t), (2.4)

∂2v2

∂t2
= a2

(
∂2v2

∂x2
1

+
∂2v2

∂x2
3

)
+ f2(x1, x3, t), (2.5)

∂2v3

∂t2
= a2

(
∂2v3

∂x2
1

+
∂2v3

∂x2
2

)
+ f3(x1, x2, t), (2.6)

где a2 = const, т.к. тело однородно и изотропно (его свойства не зависят от
направления), ~f(x, t) = f1~ı+ f2~+ f3

~k — внешняя сила.

Умножая (2.4), (2.5), (2.6), соответственно, на ~ı,~,~k и складывая их, получим
уравнение колебаний тела в векторной форме

∂2~v

∂t2
= a2∆~v + ~f(x, t). (2.7)

Предположим, что для вектора ~v существует скалярная функция u(x, t), удо-
влетворяющая условию ~v = gradu

def
= ∇u = ∂u

∂x1
~ı+ ∂u

∂x2
~+ ∂u

∂x3
~k, т.е. функция u(x, t)

— потенциал для вектора ~v(x, t). В этом случае можно получить скалярное
уравнение относительно функции u(x, t).

Действительно, пусть ~f = ∇F . Тогда из (2.7) имеем

∂2

∂t2
(∇u) = a2δ(∇u) +∇F.

Поменяем местами порядок операций, тогда получим

∇
(
∂2u

∂t2
− a2∆u− F

)
= 0,

откуда имеем

∂2u

∂t2
= a2∆u+ F (x, t). (2.8)

Уравнение (2.8) — волновое уравнение относительно потенциала u(x, t) вектор-
ного поля, образованного смещением колеблющихся частиц.
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Аналогично предыдущим случаям можно записать граничные и начальные
условия.

Итак, мы рассмотрели некоторые виды волнового движения:

1) поперечные колебания струны;
2) поперечные колебания мембраны;
3) колебания твердого тела.

Существуют и другие виды волновых движений:

1) звуковые волны (продольные волны);
2) электромагнитные волны (в том числе световые);
3) волны вероятности в квантовой механике;
4) волны на воде (поперечные волны).

2.3. Общее уравнение колебаний

Мы получили три уравнения (1.3), (2.1), (2.8), которые описывают колебатель-
ный процесс, соответственно, в одномерном, двумерном и трехмерном случае.

В общем случае колебательные процессы описываются уравнением колебаний

ρ(x)
∂2u

∂t2
=

n∑
i=1

∂

∂xi

(
p(x)

∂u

∂xi

)
− q(x)u+ f(x, t), (2.9)

где u(x, t) = u(x1, x2, ..., xn) зависит от n пространственных переменных x1, x2, ..., xn
и времени t, коэффициенты ρ(x), p(x) > 0, q ≥ 0 определяют свойства колеб-
лющейся среды, f(x, t) выражает интенсивность внешнего возмущения.

Если ввести операторы gradu
def
= ∇u, div~v =

n∑
i=1

∂xi
∂xi

, то уравнение (2.9) можно
переписать в виде

ρ(x)
∂2u

∂t2
= div (p(x) gradu)− q(x)u+ f(x, t),

или

ρ(x)
∂2u

∂t2
= ∇ (p(x)∇u)− q(x)u+ f(x, t),
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при этом мы учли, что div~v = ∇ · ~v.

В частности, при q(x) = 0, ρ, p = const, получим волновое уравнение

∂2u

∂t2
= a2∆u+ f1(x, t),

где a2 = p
ρ , f1(x, t) = f(x,t)

ρ .

2.4. Колебания балки

Главное отличие поперечных колебаний однородной тонкой балки от попереч-
ных колебаний струны в том, что балка оказывает сопротивление изгибу. Не
вдаваясь в механику тонких балок, отметим, что учет сопротивления изгибу
приводит (вместо волнового уравнения) к уравнению четвертого порядка

∂2u

∂t2
= −α2 ∂

4u

∂x4
, (2.10)

где α2 = K
ρ , K — модуль сдвига (чем больше K, тем жестче балка, тем выше

частота колебаний), ρ — линейная плотность балки (масса единицы длины).

Рассмотрим малые колебания балки длины l = 1, концы которой свободно опи-
раются на две опоры. Говоря свободно опираются, мы подразумеваем, что кон-
цы балки не перемещаются, но наклоны балки в концевых точках могут из-
меняться (концы балки закреплены с помощью штифтовых устройств). Ясно,
что на концах должны выполняться граничные условия u(0, t) = 0, u(1, t) = 0,
t ≥ 0.

Т.к. используя теорию тонких оболочек можно показать, что изгибающий мо-
мент в балке пропорционален величине ∂2u

∂x2 , а изгибающий момент в свободно
опирающемся конце должен быть равен нулю то задача о колебаниях балки
сводится к следующей математической задаче.

Найти решение уравнения (2.10) в области A∞ = (0, 1)× (0,∞), удовлетворя-
ющее начальным условиям

u(x, 0) = ϕ(x),

∂u

∂t
(x, 0) = ψ(x),

0 ≤ x ≤ 1,
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и граничным условиям 

u(0, t) = 0,

∂2u

∂x2
(0, t) = 0,

u(1, t) = 0,

∂2u

∂x2
(1, t) = 0,

t ≥ 0.

В случае, если конец x = 0 жестко закреплен, то граничное условие имеет вид
u(0, t) = 0, ∂u∂x = 0. При условии что конец x свободен, граничное условие имеет
вид ∂2u

∂x2 (1, t) = 0, ∂
3u
∂x3 (1, t) = 0.
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Лекции 4-5. Вывод уравнения теплопроводности. Поста-
новка задач для уравнения теплопроводности. Задача рас-
пространения тепла в однородном теле. Уравнение диф-
фузии. Уравнение конвективной диффузии. Общее урав-
нение диффузии

3.1. Задача распространения тепла в изотропном теле

Пусть имеется твердое тело Ω с границей ∂Ω, которое неравномерно нагрето, т.е.
различные его участки находятся при различной температуре. Тогда благодаря
теплопроводности в нем будет происходить движение тепла от более нагретых
частей к менее нагретым. Опишем этот процесс.

1. Примем следующу модель процесса: происходит механический перенос теп-
ла из мест с более высокой температурой в места с более низкой температурой
(тепло распространяется подобно движению жидкости). Все тепло идет на из-
менение температуры. Свойства тела не зависят от температуры.

Итак, идеализация состоит в том, что мы изучаем процесс, не касаясь молеку-
лярной природы процесса. Основной характеристикой этого процесса является
температура тела в данной точке x = (x1, x2, x3) в момент t. u(x, t) = u(x1, x2, x3, t).

2. Данный процесс будет характеризоваться следующими законами:

I. Закон сохранения энергии (все тепло идет на нагревание).

II. Количество тепла ∆Q, которое необходимо сообщить малому элементу тела
∆v, что повысить его температуру на ∆u равно

∆Q = c(x) ρ(x) ∆v∆u, (3.1)

где c(x) - удельная теплоемкость, ρ(x) - объемная плотность, ∆u - приращение
температуры по времени.

III. Закон внутренней теплопроводности (закон Фурье). Количество тепла ∆Q,
протекающее за малое время ∆t через малую площадку ∆S в точке x внутри
тела в сторону нормали ~n к этой площадке, равно

∆Q = −k(x)
∂u

∂n
∆S∆t, (3.2)
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где k(x) - коэффициент внутренней теплопроводности, не зависящий от u и
направления (зависимость k от u пренебрегается).

IV. Закон внешней теплопроводности (закон Ньютона, закон конвективного об-
мена между поверхностью твердого тела и окружающей его жидкой или газо-
образной средой). Количество тепла, входящее в тело через малую площадку
∆S на поверхности тела за время ∆t равно

∆Q = α(uo − u)∆S∆t,

где α - коэффициент теплообмена, u0 - температура окружающей среды.

3. Для вывода уравнения выделим внутри тела элементарный параллелепипед
∆v со сторонами ∆x1, ∆x2, ∆x3. Составим для этого элемента на основании
закона сохранения энергии баланс тепла за время ∆t. Этот элемент получит
тепло через 6 его граней.

Обозначим через ∆Qi - количество тепла, которое проникает в параллелепипед
через грани, перпендикулярные оси xi, i = 1, 3. Тогда по закону Фурье (3.2)
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имеем

∆Q1 = k
(
x1 + ∆x1, x

(1)
2 , x

(1)
3

) ∂u

∂x1

(
x1 + ∆x1, x

(1)
2 , x

(1)
3 , t

)
∆x2 ∆x3∆t−

− k
(
x1, x

(2)
2 , x

(2)
3

) ∂u

∂x1

(
x1, x

(2)
2 , x

(2)
3 , t

)
∆x2 ∆x3∆t, (3.3)

при этом мы учли, что направление нормали либо противоположно направле-
нию оси x1, либо совпадает с направлением оси x1.

∆Q2 = k
(
x

(1)
1 , x2 + ∆x2, x

(3)
3

) ∂u

∂x2

(
x

(1)
1 , x2 + ∆x2, x

(3)
3 , t

)
∆x1 ∆x3∆t−

− k
(
x

(2)
1 , x2, x

(4)
3

) ∂u

∂x2

(
x

(2)
1 , x2, x

(4)
3 , t

)
∆x1 ∆x3∆t, (3.4)

∆Q3 = k
(
x

(3)
1 , x

(3)
2 , x3 + ∆x3

) ∂u

∂x3

(
x

(3)
1 , x

(3)
2 , x3 + ∆x3, t

)
∆x1 ∆x2∆t−

− k
(
x

(4)
1 , x

(4)
2 , x3

) ∂u

∂x3

(
x

(4)
1 , x

(4)
2 , x3, t

)
∆x1 ∆x2∆t. (3.5)

Предположим также, что внутри тела есть источники тепла, объемная плот-
ность которых f(x, t). Тогда количество тепла, выделяемое источником в объ-
еме ∆v за время ∆t, равно

∆Q4 = f(x, t) ∆x1 ∆x2 ∆x3 ∆t. (3.6)

По закону сохранения энергии, все количество тепла, поступающее в объем ∆v
за время ∆t, можно выразить через приращение температуры ∆u на основании
(3.1)

∆Q = c
(
x

(5)
1 , x

(5)
2 , x

(5)
3

)
ρ
(
x

(5)
1 , x

(5)
2 , x

(5)
3

)
∆x1 ∆x2 ∆x3 ∆u. (3.7)

Тогда уравнение теплового баланса примет вид

∆Q =
4∑
i=1

∆Qi. (3.8)

Подставив (3.3)–(3.7) в (3.8) и разделив полученное равенство на ∆x1 ∆x2 ∆x3 ∆t,
получим

c
(
x

(5)
1 , x

(5)
2 , x

(5)
3

)
ρ
(
x

(5)
1 , x

(5)
2 , x

(5)
3

) ∆u

∆t
= f(x, t) +

[
k
∂u

∂x1

∣∣∣∣
x1+∆x1

− k ∂u

∂x1

∣∣∣∣
x1

]
1

∆x1
+

+

[
k
∂u

∂x2

∣∣∣∣
x2+∆x2

− k ∂u

∂x2

∣∣∣∣
x2

]
1

∆x2
+

[
k
∂u

∂x3

∣∣∣∣
x3+∆x3

− k ∂u

∂x3

∣∣∣∣
x3

]
1

∆x3
.
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Переходя к пределу при ∆xi → 0, i = 1, 3, ∆t → 0, получим уравнение тепло-
проводности

c(x) ρ(x)
∂u

∂t
=

3∑
i=1

∂

∂xi

(
k(x)

∂u

∂xi

)
+ f(x, t),

или

c(x) ρ(x)
∂u

∂t
= ∇ · (k(x)∇u) + f(x, t). (3.9)

Если тело однородно, что c, ρ, k = const, тогда уравнение (3.9) примет вид

∂u

∂t
= a2∆u+ f1(x, t),

где a2 = k
c ρ , f1(x, t) = f(x,t)

c ρ .

Если в теле нет источников, то f(x, t) = 0 и уравнение примет вид

∂u

∂t
= a2∆u.

4. Выведем дополнительные условия. Из физических соображений следует, что
для однозначного определения температуры необходимо знать распределение
температуры в начальный момент и тепловой момент на границе. Начальное
условие имеет вид

u(x, 0) = ϕ(x), x ∈ Ω, (3.10)

где ϕ(x) - заданная функция точек тела, определяющая температуру в момент
времени t = 0.

Запишем граничные условия.

I. На границе ∂Ω тела поддерживается заданная температура. Тогда условие
примет вид

u
∣∣
∂Ω

= ψ(y, t), (3.11)

где ψ(y, t) - известная функция точки поверхности y и времени t.
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II. На границе тела задан тепловой поток q(x, t) - количество тепла, поступа-
ющее в единицу времени через единицу площади поверхности тела. Граничное
условие примет вид

∂u

∂n

∣∣∣∣
∂Ω

= v(y, t), (3.12)

где v(y, t) = q(y,t)
k(y) .

В частности, в случае теплоизолированной границы, имеем

∂u

∂n

∣∣∣∣
∂Ω

= 0. (3.13)

III. На границе тела происходит теплообмен с внешней средой по закону Ньюто-
на. В данном случае, на основании закона Ньютона q = α(u0 − u), v = α

k (u0 − u),
поэтому граничное условие имеет вид(

∂u

∂n
+ h(x)u

) ∣∣∣∣
∂Ω

= w(y, t), (3.14)

где h(x) = α
k(x) , w(y, t) = h(y)u0(y, t).

Итак, задача распространения тепла в деле сведена к следующей математиче-
ской задаче.

Найти решение уравнения (3.9) в области A∞ = Ω× (0,∞), удовлетворяющее
начальному условию (3.10) и одному из граничных условий (3.11), (3.12), (3.13),
(3.14).

3.2. Задачи распространения тепла в однородном стержне

Известно, что эта задача сводится к следующей математической задаче

∂u

∂t
= a2∂

2u

∂x2
, a2 =

k

c ρ
, 0 < x < l, t > 0, (3.15)

u(x, 0) = ϕ(x), 0 ≤ x ≤ l, (3.16)
u(0, t) = 0, u(l, t) = 0, t ≥ 0. (3.17)

В данном случае, u(x, t) - температура сечения x в момент t (предполагается,
что каждое сечение есть изотермическая поверхность), температура концов x =
0 и x = l равна нулю, а начальная температура равна ϕ(x).
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Уравнение (3.15) связывает между собой величину ∂u
∂t - скорость изменения

температуры во времени, и ∂2u
∂x2 - вогнутость температурного профиля u(x, t),

которая служит мерой отличия температуры в данной точке от температуры
в соседних точках в некоторый момент времени. Уравнение (3.15) говорит о
том, что температура u(x, t) увеличивается (∂u∂t > 0) или уменьшается (∂u∂t < 0)
соответственно с тем, положительна или отрицательна вторая производная ∂2u

∂x2 .

//
x

OO u

0 lx−∆x

u(x−∆x, t)

x

u(x, t)

x+ ∆x

u(x+ ∆x, t)
��
�� ��

�� �� ��

OO
OO OO OO

OO

Посмотрим как можно интерпретировать величину ∂2u
∂2x на языке теплопровод-

ности. Если исходить из разложения Тейлора функции двух переменных

u(x+ ∆x, t) = u(x, t) +
∂u

∂x
(x, t)∆x+

∂2u

∂x2
(x, t)

(∆x)2

2!
+ ...

u(x−∆x, t) = u(x, t)− ∂u

∂x
(x, t)∆x+

∂2u

∂x2
(x, t)

(∆x)2

2!
− ...

можно получить следующую аппроксимацию

∂2u

∂x2
≈ 1

(∆x)2
(u(x+ ∆x, t)− 2u(x, t) + u(x−∆x, t)) =

=
2

(∆x)2

(
u(x+ ∆x, t) + u(x−∆x, t)

2
− u(x, t)

)
. (3.18)

Из (3.18) можно получить следующую интерпретацию ∂2u
∂x2 . Если температу-

ра u(x, t) меньше среднего значения температуры в двух соседних точках, то
∂2u
∂x2 > 0 (здесь полный поток тепла вдоль оси x положителен). Если темпера-
тура u(x, t) равна среднему значению температур в двух соседних точках, то
∂2u
∂x2 = 0 (здесь полный поток тепла вдоль оси x равен нулю). Если температу-
ра u(x, t) больше среднего значения температуры в двух соседних точках, то
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∂2u
∂x2 < 0 (здесь полный поток тепла вдоль оси x отрицателен). Другими словами,
если температура в точке x больше, чем средняя температура в двух соседних
точках (x−∆x) и (x+ ∆x), то температура в точке x будет уменьшаться. Сле-
довательно, точная скорость уменьшения температуры, а именно величина ∂u

∂t ,
пропорциональна этой разности.

Итак, в данном случае мы имеем смешанную задачу (3.15), (3.16), (3.17).

Если предположить, что температура концов изменяется по законам g1(t) и
g2(t), то граничные условия примут вид{

u(0, t) = g1(t),
u(l, t) = g2(t),

t ≥ 0.

В случае если на концах x = 0 и x = l заданы потоки (задано количество тепла
q1(t) и q2(t), проходящее через сечение x = 0 и x = l в единицу времени), то
граничное условие примет вид

∂u
∂x

(0, t) = −q1(t)
k s

,

∂u
∂x

(l, t) =
q2(t)
k s

,

t ≥ 0.

В случае теплоизолированных концов, граничное условие перейдет в условие
∂u
∂x

(0, t) = 0,

∂u
∂x

(l, t) = 0,

t ≥ 0.

Предположим теперь, что левый конец x = 0 заключен в контейнер с жидко-
стью, температура которой меняется по закону u1(t) и выше температуры конца
x = 0, а правый конец помещен в другую жидкость с температурой u2t. Тогда
граничное условие, на основании закона Ньютона, примет вид

∂u
∂x

(0, t) = α
k

(u(0, t)− u1(t)),

∂u
∂x

(l, t) = α
k

(u(l, t)− u2(t)).

Одной из типичных задач в случае стержня является следующая:
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Медный стержень длиной 200 см, боковая поверхность которого теплоизолиро-
вана, имеет начальную температуру 0◦C. Верхний конец стержня x = 0 теп-
лоизолирован, а нижний конец омывается движущейся водой, которая имеет
постоянную температуру g(t) = 20◦C.

Математическая модель этой задачи запишется следующим образом

∂u

∂t
= a2∂

2u

∂x2
, a2 = 1.16 см2/с, 0 < x < 200, t > 0,

u(x, 0) = 0◦C, 0 ≤ x ≤ 200,
∂u
∂x

(200, t) = −α
k

(u(200, t)− 20),

∂u
∂x

(0, t) = 0,

t ≥ 0.

3.3. Уравнение диффузии

Если среда неравномерно заполнена газом, то имеет место диффузия его из
мест с более высокой плотностью (концентрацией) в места с более низкой плот-
ностью. Это явление имеет место и в растворах, если концентрация растворен-
ного вещества не постоянна в обьеме.

Построим математическую модель диффузии вещества в неподвижной среде,
занимающей ограниченную область Ω с границей ∂Ω, причем задана плотность
источников f(x, t). Пусть диффузия происходит с поглощением (например, ча-
стицы диффундирующего вещества вступают в химическую реакцию с веще-
ством среды), причем скорость поглощения в каждой точке x ∈ Ω пропор-
циональна плотности диффундирующего вещества. Начальное распределение
плотности известно, а на границе ∂Ω поддерживается заданная плотность.

В качестве функции характеризующей процесс возьмем функцию u(x, t) - плот-
ность диффундирующего вещества в точке x = (x1, x2, x3) в момент t. Вместо
закона Фурье воспользуемся законом Нэрнста, согласно которому поток частиц
вещества ∆Q через элементарную площадку ∆S в точке x в момент t в направ-
лении нормали ~n равен

∆Q = −D(x)
∂u

∂n
(x, t) ∆s∆t,

где D(x) - коэффициент диффузии.
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Выделим элементарный параллелепипед с измерениями ∆x1, ∆x2, ∆x3 и на
основании закона сохранения массы запишем уравнение баланса массы диф-
фундирующего вещества за время ∆t

∆Q =
3∑
i=1

∆Qi, (3.19)

где ∆Q1 - поток вещества через 6 граней параллелепипеда,
∆Q2 = f(x, t) ∆x1 ∆x2 ∆x3 ∆t - приток вещества за счет действия источников,
∆Q3 = −q u∆x1 ∆x2 ∆x3 ∆t - убыль вещества за счет поглощения. На основа-
нии закона сохранения массы

∆Q = ρ(x) ∆u∆x1 ∆x2 ∆x3,

где ρ(x) - коэффициент плотности, ∆u = u(x, t+ ∆t)− u(x, t).

Подставив ∆Q1, ∆Q2, ∆Q3 и ∆Q в (3.19), получаем уравнение диффузии, опи-
сывающее процесс диффузии в объеме Ω

ρ(x)
∂u

∂t
= ∇ · (D(x) ∆u)− q u+ f(x, t).

Т.к. начальное распределение плотности известно, то начальное условие имеет
вид

u(x, 0) = ϕ(x), x ∈ Ω.

На границе поддерживается заданная плотность, поэтому

u
∣∣
∂Ω

= ψ(y, t), y ∈ ∂Ω, t ≥ 0.

Если граница ∂Ω непроницаема, то граничное условие примет вид

∂u

∂n

∣∣∣∣
∂Ω

= 0.

Если же граница полупроницаема, причем диффузия через границу происхо-
дит по закону, подобному закону Ньютона для конвективного теплообмена, то
граничное условие запишется в виде(

∂u

∂n
+ h(x)u

) ∣∣∣∣
∂Ω

= w(y, t),
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где h(x) = α
D(x)

, w(x, t) = h(x)u0(x, t).

3.4. Уравнение конвективной диффузии. Общее уравнение диффузии

Рассмотрим теперь задачу о распределении концентрации некоторого вещества,
выходящего из земли и попадающего в восходящие потоки воздуха. Будем учи-
тывать как диффузию вещества, так и конвективный перенос воздухом, кото-
рый движется со скоростью ~v. Диффузия - это проникновение вещества через
воздух, конвекция - это перемещение вещества вместе с движущимся воздухом.

Выведем уравнение конвективной диффузии в одномерном случае.

Пусть u(x, t) - концентрация вещества в сечении x. Тогда конвективный поток
вещества слева направо через поперечное сечение x в единицу времени через
единицу площади равен v u(x, t). Диффузионный поток вещества слева направо
через поперечное сечение x равен −D ∂u

∂x
(x, t). На основании закона сохранения

массы имеем

v (u(x, t)− u(x+ ∆x, t)) s∆t+D

(
∂u

∂x
(x+ ∆x, t)− ∂u

∂x
(x, t)

)
∆t = ρ∆u s∆x.

Умножая на 1
∆x∆t и переходя к пределу при ∆x,∆t→ 0, получим уравнение

∂u

∂t
= D1

∂2u

∂x2
− v1

∂u

∂x
, D1 =

D

ρ
, v1 =

v

ρ
.

Рассмотрим случай, когда имеет место только конвективный механизм перено-
са. Типичный пример – задача о сбросе некоторого вещества в реку (скорость
течения реки v). Пусть x – расстояние вниз по течению от места сброса. Если
вещество не диффундирует в воде, то концентрация u(x, t) вещества является
решением следующей задачи
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∂u

∂t
= −v1

∂u

∂x
, 0 < x <∞, t > 0,

u(x, 0) = 0, 0 ≤ x <∞, (Чистая вода в начальный момент),

u(0, t) = p, t ≥ 0, (Постоянная концентрация в месте сброса).

В общем случае процессы распространения тепла и диффузии описываются
уравнением диффузии

p(x)
∂u

∂t
= ∇(p(x)∇u)− q(x)u+ f(x, t), (3.20)

где u(x, t) – искомая функция, x = (x1, x2, ...xn) ∈ Ω ⊂ Rn, t > 0.
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Лекция 6. Стационарное тепловое поле. Уравнение Пуас-
сона, Лапласа. Постановка граничных задач. Вывод урав-
нения неразрывности. Движение несжимаемой однород-
ной жидкости. Задача обтекания твердого тела. Коррект-
ность постановок задач математической физики. Пример
Адамара.

4.1. Стационарное тепловое поле. Уравнение Пуассона, Лапласа. По-
становка граничных задач

Предположим, что для тела на границе и внутри создан такой режим, что
температура не меняется со временем, но в различных точках различна, то есть
мы получаем так называемый установившийся процесс и u = u(x). Функция u

должна удовлетворять уравнению (3.9), поэтому, учитывая, что
∂u

∂t
= 0, из (3.9)

имеем

∇(k(x)∇u) + f(x) = 0.

В этом случае уравнение (3.20) примет вид

∇ · (p(x)∇u)− q(x)u = −f(x), (4.1)

и носит название стационарного уравнения. К уравнению (4.1) приводят многие
задачи электростатики, магнитостатики и гидромеханики.

При q(x) ≡ 0, p(x) = const из (4.1) получаем

∆u = −f1(x), f1(x) =
f(x)

p
. (4.2)

При n = 2, 3 уравнение (4.2) носит название уравнения Пуассона. При f1 ≡ 0,
т.е. в случае отсутствия источников, имеем

∆u = 0 — уравнение Лапласа.

Так как в данном случае процесс стационарный, то для этих уравнений ставятся
задачи только с граничными условиями.

Найти решение уравнения (4.1), удовлетворяющее одному из граничных усло-
вий (3.11), (3.12), (3.13), (3.14), причем функции ψ, v, w не зависят от t. За-
дача с условием (3.11) для уравнения (4.2) – первая граничная задача (задача
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Дирихле). Задача с условием (3.12), (3.13) – вторая граничная задача (зада-
ча Неймана). Задача с условием (3.14) – третья граничная задача. Заметим, в
приложениях встречаются задачи, в которых на одной части границы задается
условие (3.11), а на другой – условие (3.12). Это так называемая смешанная
граничная задача.

4.2. Вывод уравнения неразрывности. Движение несжимаемой одно-
родной жидкости. Задача обтекания твердого тела

Рассмотрим движение идеальной жидкости, причем движение жидкости будем
рассматривать в Эйлеровых координатах. Движение сплошной среды в Эйле-
ровых координатах характеризуется вектором скорости ~v(x, t) = ~v(x1, x2, x3, t),
давлением p(x, t) и плотностью ρ(x, t). У нас в качестве сплошной среды – жид-
кость.Жидкость – сплошная среда, у которой в состоянии покоя действие одной
ее части на другую нормально к разделяющей их поверхности в любой ее точке.
Итак, если провести любую малую площадку через некоторую точку x поко-
ящейся жидкости, то действующая на эту площадку сила будет нормальна к
ней вне зависимости от ее ориентировки в пространстве. Идеальной жидкостью
называется сплошная среда, у которой это свойство имеет место не только в со-
стоянии покоя, но и при движении. Предположим, что в потоке жидкости есть
источники, плотность которых есть f(x, t).

Тогда величины ~v, ρ, p, f удовлетворяют нелинейной системе уравнений, назы-
ваемых уравнениями гидродинамики. В эту систему входят уравнение состоя-
ния, задающее связь между давлением и плотностью; уравнение Эйлера (век-
торное уравнение движения идеальной жидкости), которое является математи-
ческим выражением закона сохранения количества движения в гидродинамике;
уравнение неразрывности, которое является математическим выражением за-
кона сохранения массы в гидродинамике.

Выведем уравнение неразрывности. Для вывода уравнения возьмем внутри это-
го потока произвольный объем, ограниченный поверхностью ∂Ω и подсчитаем
изменение массы жидкости в этом объеме за время t2−t1 = ∆t. Масса жидкости
в этом объеме в момент t будет равна

M(t) =

∫
Ω

ρ(x, t) dx,

где dx = dx1 dx2 dx3 – элемент объема. Тогда изменение массы жидкости внутри
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Ω за время ∆t равно

∆M = M(t2)−M(t1) =

∫
Ω

(ρ(x, t2)− ρ(x, t1)) dx =

∫
Ω

 t2∫
t1

∂p

∂t
dt

 dx =

=

t2∫
t1

∫
Ω

∂p

∂t
dx dt. (4.3)

С другой стороны, по закону сохранения массы жидкости это изменение долж-
но равняться приращению количества Q1 жидкости, выделенной источниками,
минус количество Q2 жидкости, вытекающей через поверхность ∂Ω.

Очевидно, что

Q1 =

t2∫
t1

∫
Ω

f(x, t) dx dt. (4.4)

Подсчитаем Q2. Количество жидкости, вытекающей через поверхность ∂Ω за
время ∆t равно потоку вектора скорости через границу ∂Ω, то есть равно

Q2 =

t2∫
t1

∫
∂Ω

(
~P · ~n

)
ds dt =

t2∫
t1

∫
∂Ω

(ρ~v · ~n) ds dt,

где ~P = ρ~v – вектор плотности потока, ~n – внешняя нормаль. Применим к
интегралу правой части формулу Остроградского-Гаусса, тогда получим

Q2 =

t2∫
t1

∫
Ω

div ~P dx dt. (4.5)

Теперь на основании закона сохранения массы имеем

∆M = Q1 −Q2 (4.6)

или, учитывая(4.3), (4.4), (4.5) из (4.6) получим

t2∫
t1

∫
Ω

(
∂ρ

∂t
+ div(ρ~v)− f

)
dx dt = 0.
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Так как подинтегральное выражение непрерывно, а t1, t2 и Ω – произвольны,
то отсюда следует, что

∂ρ

∂t
+ div(ρ~v) = f. (4.7)

(4.7) – уравнение неразрывности.

Предположим теперь, что жидкость несжимаема и однородна, кроме того, от-
сутствуют источники, то есть ρ - const, f ≡ 0. Тогда из (4.7) получаем

div(~v) = 0. (4.8)

Пусть теперь рассматривается потенциальное (безвихревое) движение жидко-
сти, то есть существует функция u(x) такая, что ~v = ∇u. Тогда

div∇u = ∇ · (∇u) = ∇2u ≡ ∆u.

Уравнение (4.8) примет вид

∆u = 0. (4.9)

Рассмотрим задачу обтекания неподвижного твердого тела Ω с границей ∂Ω
потоком несжимаемой однородной жидкости, имеющей заданную скорость на
бесконечности ~v0 при отсутствии источников. Тогда эта задача приводится к
решению уравнения (4.8) с условием

vn
∣∣
∂Ω

= 0, lim
|x|→∞

~v = ~v0, (4.10)

где vn = ~v · ~n, ~n – внешняя нормаль к ∂Ω. Условие (4.10) имеет место, так
как сквозь ∂Ω жидкость не проникает, и к ∂Ω жидкость прилипает без пустот.
Поэтому скорость частиц жидкости на ∂Ω должна быть перпендикулярна к
поверхности.

Если поток жидкости потенциальный, то задача сводится к решению уравнения
(4.9) с условием

∂u

∂n

∣∣∣∣
∂Ω

= 0, lim
|x|→∞

∇u = ~v0 (4.11)

так как

vn = ∇u · ~n =
3∑

k=1

∂u

∂xk
Cos(n, xk).
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4.3.Корректность постановок задач математической физики. Пример
Адамара

Понятие корректной постановки задачи математической физики было введено
Ж. Адамаром (1902 г.) в связи с желанием выяснить, какие типы граничных
условий наиболее естественны для различных типов дифференциальных урав-
нений.

Каждая задача математической физики отражает некоторый физический про-
цесс, поэтому на нее накладывается ряд требований, не обязательных для чисто
математических задач.

Дадим сначала понятие устойчивой задачи. Решение всякой количественной
задачи обычно заключается в нахождении решения u по заданным исходным
данным z, то есть u = ϕ(z). Будем считать u и z элементами некоторых мет-
рических пространств M и N с расстояниями между элементами ρM(u1, u2),
u1, u2 ∈ M , ρN(z1, z2), z1, z2 ∈ N . Метрика обычно определяется постановкой
задачи.

Задача определения решения u = ϕ(z) на пространстве M по исходным дан-
ным z ∈ N называется устойчивой на пространствах (M,N), если для любого
ε > 0 можно указать такое δ(ε), что из неравенства ρN(z1, z2) ≤ δ(ε) следует
ρM(u1, u2) ≤ ε, где u1 = ϕ(z1), u2 = ϕ(z2).

Задача математической физики называется поставленной корректно (правиль-
но) на паре пространств (M,N), если она удовлетворяет следующим требова-
ниям:

1. для всякого z ∈ N существует решение u ∈M ;

2. решение единственно;

3. задача устойчива на пространствах (M,N).

Первые два требования означают, что среди данных задачи нет несовместных
и их достаточно для единственного решения, то есть они характеризуют ма-
тематическую определенность задачи. Третье требование необходимо по той
причине, что в данных любой конкретной задачи, полученных из опыта, всегда
содержится некоторая погрешность, и нужно, чтобы малая погрешность в дан-
ных приводила к малой погрешности в решении. Иначе нет смысла отыскивать
такое решение, так как оно не может иметь физической интерпретации.
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Задача, не удовлетворяющая этим трем требованиям называется некорректно
поставленной. Однако следует отличать, что определение некорректно постав-
ленной задачи относится к данной паре метрических пространств (M,N), так
как в других метриках та же задача может быть корректно поставленной.

Приведем пример некорректно поставленной задачи (пример Адамара).

Рассмотрим задачу Коши для уравнения Лапласа

∂2u

∂x2
+
∂2u

∂y2
= 0, y > 0, (4.12)

u
∣∣
y=0

= ϕ(x),

∂u

∂y

∣∣∣∣
y=0

= ψ(x),

x ∈ R1. (4.13)

Пусть u(x, y) – решение задачи (4.12), (4.13). Рассмотрим функцию
v(x, y) = u(x, y) + Sinnx Shny

n2 , n ∈ N, причем функция Sinnx Shny
n2 также является

решением уравнения (4.12) с условиями v(x, 0) = u(x, 0) = ϕ(x),
∂v
∂y(x, 0) = ψ(x) + Sinnx

n . Выясним, как отличаются между собой начальный усло-
вия для u(x, y) и v(x, y).

|v(x, 0)− u(x, 0)| = 0,∣∣∣∣∂v∂y (x, 0)− ∂U

∂y
(x, 0)

∣∣∣∣ =

∣∣∣∣Sinnx

n

∣∣∣∣ . (4.14)

Первая часть (4.14) при n→∞ стремится к нулю, то есть может быть сделана
меньше любого сколь угодно малого числа.

Если теперь рассмотрим разность

|v(x, y)− u(x, y)| =
∣∣∣∣Sinnx Shny

n2

∣∣∣∣ ,
то при n → ∞, x 6= jπ, j ∈ Z, y > 0 она стремится к бесконечности, то есть
может быть сделана больше любого наперед заданного большого числа.

Таким образом, задача Коши для уравнения Лапласа поставлена некорректно,
так как не выполняется условие устойчивости решения. Тем не менее возможны
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корректные постановки этой задачи. Например, в класса функций, ограничен-
ных фиксированной постоянной, эта задача поставлена корректно при условии,
что ее решение существует.

Корректная постановка задачи трактовалась как условие, которому должна
удовлетворять всякая математическая задача, соответствующая какой-либо фи-
зической или технической задаче. Это поставило под сомнение целесообраз-
ность изучения некорректно поставленных задач. Однако эта точка зрения
естественна только в применении к некоторым явлениям, развивающимся во
времени. А, например, задача Коши для уравнения Лапласа, которая во всех
основных учебниках по математической физике приводится в качестве примера
задачи, лишенной физического смысла, оказалась очень важной для геофизи-
ки. Можно привести большое число некорректно поставленных задач, которые
являются и чисто математическими и имеют прикладной характер. Методы ре-
шения некорректно поставленных задач изложены в книге: А.Н. Тихонов, В.Я.
Арсенин "Методы решения некорректных задач".
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II. Классификация и приведение к каноническо-
му виду дифференциальных уравнений второго
порядка
Лекции 7-8. Классификация и приведение к каноническо-
му виду в случае n независимых переменных

1.1. Классификация дифференциальных уравнений, линейных отно-
сительно старших производных (квазилинейных)

Рассмотрим уравнение вида

n∑
i,j=1

ai,j(x)
∂2u

∂xi ∂xj
+ Φ(x, u,∇xU) = 0, (1.1)

где ai,j(x), i, j = 1, n, – заданные вещественные функции, причем ai,j(x) ∈ C(Ω),
Ω ⊂ Rn, ∇xu =

(
∂u
∂x1
, ∂u∂x2 , ...,

∂u
∂xn

)
, Φ(x, u,∇xu) – заданная функция своих аргу-

ментов, u(x) ∈ C2(Ω), x = (x1, x2, ..., xn).

Обозначим через A(x) функциональную матрицу с элементами ai,j(x),
A(x) = ||ai,j(x)||n1 . Эту матрицу называют матрицей старших коэффициентов
уравнения (1.1). Заметим, что A(x) всегда можно считать симметрической мат-
рицей, то есть ai,j(x) = aj,i(x). Действительно, перепишем сумму, входящую в
уравнение (1.1) следующим образом

n∑
i,j=1

ai,j(x)
∂2u

∂xi ∂xj
=

n∑
i,j=1

a′i,j(x)
∂2u

∂xi ∂xj
+

n∑
i,j=1

a′′i,j(x)
∂2u

∂xi ∂xj
, (1.2)

где a′i,j = 1
2(ai,j + aj,i), a

′′
i,j = 1

2(ai,j − aj,i).

Если учесть теперь, что ∂2u
∂xi ∂xj

= ∂2u
∂xj ∂xi

, получим
n∑

i,j=1

a′′i,j = 0, поэтому из (1.2)

имеем
n∑

i,j=1

ai,j(x)
∂2u

∂xi ∂xj
=

n∑
i,j=1

a′i,j(x)
∂2u

∂xi ∂xj
,

причем матрица ||a′i,j(x)||n1 – симметрична.
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Пусть A(x0) = ||ai,j(x0)||n1 – постоянная матрица, которая является значением
матрицы A(x) в некоторой точке x0 ∈ Ω. Тогда собственные значения такой
матрицы определяются как корни уравнения

det(A(x0)− λE) = 0,

где E – единичная матрица.

В алгебре доказано, что если A(x0) – симметрическая матрица, то все ее соб-
ственные значения вещественны.

Определение. Пусть n+ – число положительных, n− – число отрицательных,
n0 – число нулевых собственных значений матрицы A(x0)(n = n+ + n− + n0).
Тогда говорят, что уравнение (1.1) имеет тип (n+, n−, n0) в точке x0.

Уравнение (1.1) принадлежит типу (n+, n−, n0) на некотором множестве, если
оно принадлежит этому типу в каждой точке этого множества.

Замечание 1. Если изменить знаки всех членов уравнения (1.1), то матрица
A(x0) заменится на матрицу −A(x0), и собственные значения матрицы −A(x0)
будут отличаться от собственных значений матрицы A(x0) только знаком, то
есть числа n+, n− поменяются местами. Типы (n+, n−, n0) и (n−, n+, n0) поэтому
будем считать тождественными, то есть (n+, n−, n0) ≡ (n−, n+, n0).

Замечание 1. Если уравнение (1.1) имеет постоянные коэффициенты, то мож-
но говорить о типе уравнения во всем пространстве Rn.

Среди всех уравнений в математической физике выделяют три основных типа
уравнений в Rn.

1) тип (n, 0, 0) ≡ (0, n, 0) называется эллиптическим;

2) тип (n− 1, 1, 0) ≡ (1, n− 1, 0) называется гиперболическим;

3) тип (n− 1, 0, 1) ≡ (0, n− 1, 1) называется параболическим.

Отметим также, что уравнение типа (n−r, r, 0) ≡ (r, n−r, 0), r ≥ 2, называется
ультрагиперболическим.

Рассмотрим несколько примеров.
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1. Уравнение колебаний струны

∂2u

∂t2
= a2 ∂

2u

∂x2
+ ϕ(x, t) (1.3)

Перепишем (1.3) в виде

∂2u

∂t2
− a2 ∂

2u

∂x2
− ϕ(x, t) = 0 (x1 = t, x2 = x).

Составим матрицу старших коэффициентов(
1 0
0 −a2

)
.

Определим собственные значения матрицы A.

|A− λE| = det

(
1− λ 0

0 −a2 − λ

)
= 0,

откуда λ1 = 1, λ2 = −a2.

Заметим, что можно было бы сразу найти эти собственные значения, так как
матрица A – диагональная (собственные значения совпадают с диагональными
элементами).

Итак, уравнение (1.3) имеет тип (1, 1, 0) в R2, т.к. n+ = 1, n− = 1, n0 = 0, то
есть уравнение гиперболического типа в R2.

2. Уравнение теплопроводности

∂u

∂t
= a2

(
∂2u

∂x2
1

+
∂2u

∂x2
2

+
∂2u

∂x2
3

)
+ ϕ(x, t)

A =


0 0 0 0
0 −a2 0 0
0 0 −a2 0
0 0 0 −a2

 ,

тип (0, 3, 1) ≡ (3, 0, 1), то есть уравнение параболического типа в R4.

3. Уравнение Пуассона

∆u = ϕ, ∆ ≡
n∑
i=1

∂2u

∂x2
i

,
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тип (n, 0, 0) ≡ (0, n, 0), то есть уравнение эллиптического типа в Rn.

4. Уравнение Трикоми

y
∂2u

∂x2
+
∂2u

∂y2
= 0, (x1 = x, x2 = y), (1.4)

A(y) =

(
y 0
0 1

)
, λ1 = y, λ2 = 1.

В данном случае возможны ситуации:

1) если y > 0, то тип (2, 0, 0) ≡ (0, 2, 0) – эллиптический;

2) если y < 0, то тип (1, 1, 0) – гиперболический;

3) если y = 0, то тип (1, 0, 1) ≡ (0, 1, 1) – параболический;

Таким образом, если рассматривать уравнение в R2, то оно будет иметь раз-
личный тип в разных частях R2. Такие уравнения носят название уравнений
смешанного типа. Верхняя полуплоскость (y > 0) – область эллиптичности,
нижняя полуплоскость (y < 0) – область гиперболичности, ось x (y = 0) –
линия параболического вырождения уравнения (1.4).

1.2. Приведение к каноническому виду квазилинейных дифференци-
альных уравнений

Поставим задачу: упростить уравнение (1.1) с помощью замены независимых
переменных. Сделаем в уравнении (1.1) замену

y = y(x) или yl = yl(x1, x2, ..., xn), l = 1, n, (1.5)

причем yl ∈ C2(Ω) и det J(x) 6= 0, где J(x) =
∣∣∣∣∣∣ ∂yl∂xi

∣∣∣∣∣∣n
1
– матрица Якоби.

Так как det J(x) 6= 0, то в некоторой окрестности можно выразить переменные
x через y: x = x(y). Обозначим u[x(y)] ≡ ũ(y), тогда ũ[y(x)] ≡ u(x). Для
удобства не меняем обозначения функции.

Выразим теперь производные по старым переменным через производные по
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новым переменным.

∂u

∂xi
=

n∑
l=1

∂u

∂yl

∂yl
∂xi

, (1.6)

∂2u

∂xi ∂xj
=

∂2u

∂xj ∂xi
=

∂

∂xj

(
∂u

∂xi

)
=

n∑
l=1

∂

∂xj

(
∂u

∂yl

)
∂yl
∂xi

+
n∑
l=1

∂u

∂yl

∂2yl
∂xj ∂xi

=

=
n∑
l=1

(
n∑
k=1

∂2u

∂yk ∂yl

∂yk
∂xj

)
∂yl
∂xi

+
n∑
l=1

∂u

∂yl

∂2yl
∂xj ∂xi

=

=
n∑

l,k=1

∂2u

∂yl ∂yk

∂yl
∂xi

∂yk
∂xj

+
n∑
l=1

∂u

∂yl

∂2yl
∂xj ∂xi

.

Подставляя (1.6) в (1.1), получим

n∑
i,j=1

ai,j(x)

 n∑
l,k=1

∂2u

∂yl ∂yk

∂yl
∂xi

∂yk
∂xj

+
n∑
l=1

∂u

∂yl

∂2yl
∂xj ∂xi

+ Φ1(y, u(y),∇yu) =

=
n∑

l,k=1

∂2u

∂yl ∂yk

(
n∑

i,j=1

ai,j(x)
∂yl
∂xi

∂yk
∂xj

)
+ Φ2(y, u(y),∇yu) = 0.

Итак, при замене (1.5) уравнение (1.1) перейдет в уравнение
n∑

l,k=1

ãl,k(y)
∂2u

∂yl ∂yk
+ Φ2(y, u(y),∇yu) = 0, (1.7)

где

ãl,k(y) =
n∑

i,j=1

ai,j(x)
∂yl
∂xi

∂yk
∂xj

. (1.8)

Можно показать, что матрица старших коэффициентов Ã(y) = ||ãl,k(y)||n1 урав-
нения (1.7) также симметрическая.

Покажем теперь, что тип уравнения (1.1) является инвариантом относительно
невырожденного гладкого преобразования (1.5), то есть замена (1.5) сохраняет
тип уравнения. Фиксируем точку x0 и обозначим y0 = y(x0). Запишем формулу
(1.8) в фиксированной точке

ãl,k(y
0) =

n∑
i,j=1

ai,j(x
0)
∂yl (x

0)

∂xi

∂yk (x0)

∂xj
. (1.9)
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Перепишем формулу (1.9) в матричной форме

Ã(y0) = J(x0)A(x0) JT (x0), (1.10)

где JT (x0) – матрица, транспонированная к матрице J(x0).

Формула (1.10) очевидна, если переписать формулу (1.9) в виде

ãl,k(y
0) =

n∑
i=1

∂yl (x
0)

∂xi

n∑
j=1

ai,j(x
0)
∂yk (x0)

∂xj
.

Из (1.10) получим выражение A(x0) через Ã(y0)

J−1(x0) Ã(y0) = J−1(x0) J(x0)A(x0) JT (x0) = A(x0) JT (x0),

J−1(x0) Ã(y0)
(
JT (x0)

)−1
= A(x0) JT (x0)

(
JT (x0)

)−1
= A(x0),

A(x0) = J−1(x0) Ã(y0)
(
JT (x0)

)−1
= J−1(x0) Ã(y0)

(
J−1(x0)

)T
. (1.11)

Из линейной алгебры известно, что для всякой симметрической матрицы су-
ществует невырожденное преобразование, которое переводит исходную матри-
цу в диагональную, причем число положительных, отрицательных и нулевых
собственных значений исходной матрицы равно, соответственно, числу положи-
тельных, отрицательных и нулевых диагональных элементов в этой приведен-
ной диагональной матрице.

Пусть матрицаA(x0) преобразуется к диагональному виду с помощью невырож-
денного линейного преобразования, матрицу которого обозначим δ, (det δ 6= 0).

δ A(x0) δT = G, (1.12)

где матрица G имеет вид

G =



+1
+1

. . .
+1

n+ 0 0

0

−1
−1

. . .
−1

n− 0

0 0

0
0
. . .

0

n0



.

51



Подставим теперь (1.11) в (1.12), тогда получим

δ
[
J−1(x0)Ã(y0)

(
J−1(x0)

)T]
δT =

(
δ J−1

)
Ã(y0)

(
δ J−1

)T
. (1.13)

Таким образом, мы получили, что матрица Ã(y0) приводится с помощью невы-
рожденного преобразования (det δJ−1 6= 0) к тому же диагональному виду G,
то есть число положительных, отрицательных и нулевых собственных значе-
ний матрицы A и Ã совпадают. Это означает, что уравнения (1.1) и (1.7) имеют
один и тот же тип в соответствующих точках. Этим обстоятельством можно
воспользоваться для упрощения уравнения (1.1).

Возьмем произвольную точку x0 ∈ Ω. С помощью невырожденного преобразо-
вания с матрицей δ (det 6= 0) приведем матрицу A(x0) к диагональному виду
(1.12). Сделаем теперь в уравнении (1.1) замену y = δ x. Так как матрица Яко-
би этой замены J(x0) = δ, то из (1.13) следует Ã(y0) = G, так как δ δ−1 = E.
Уравнение (1.1) перейдет в уравнение (1.7), которое будет иметь вид

n∑
l=1

αl
∂2u

∂y2
l

+ Φ2(y, u,∇yu) = 0, (1.14)

где α = 0,±1.

Уравнение (1.14) можно переписать в виде

r∑
l=1

∂2u

∂y2
l

−
m∑

l=r+1

∂2u

∂y2
l

+ Φ2(y, U,∇yu) = 0. (1.15)

Вид (1.15) называется каноническим видом уравнения (1.1).

Замечание 1. Очевидно, что тип уравнения тесно связан со своим канони-
ческим видом, поэтому тип уравнения можно определять и по каноническому
виду.

Определение. Если в (1.15) m = n и все слагаемые одного знака (т.е. r = m
или r = 0), то уравнение (1.1) – эллиптического типа; если m = n, а одно
слагаемое противоположно остальным по знаку (то есть r = 1 или r = n − 1),
то уравнение (1.1) – гиперболического типа; еслиm = n−1 и r = 0 или r = n−1,
то уравнение (1.1) – параболического типа.
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Замечание 2. Т.к. преобразование уравнения зависит от значений коэффици-
ентов при старших производных в (1.1) при x = x0, то в случае, когда эти
коэффициенты постоянны, уравнение (1.1) можно привести к каноническому
виду в области Ω.

53



Лекция 9. Классификация и приведение к каноническому
виду в случае двух независимых переменных

Возникает вопрос: нельзя ли привести уравнение (1.1) к каноническому виду
в области в случае, когда коэффициенты не постоянны. Чтобы такое приведе-
ние было возможно, необходимо n функций yl, l = 1, n подчинить следующим
условиям

ãlk = 0, l 6= k, l, k = 1, n, ãll = εlâ11, l = 2, n,

ã11 6= 0, εl = 0,±1.

Итак, всего число условий

N(n) = C2
n + n− 1 =

n(n− 1)

1 · 2
+ n− 1 =

(n− 1)(n− 2)

2
(2.1)

Из (2.1) следует, что при n ≥ 3 N(n) > n, т.е. мы имеем что число условий
больше числа функций yl (l = 1, n), на которые надо наложить условия. Таким
образом, при n ≥ 3 мы задачу, вообще говоря, не разрешим, т.е. невозможно
уравнение (1.1) привести к каноническому виду в области.

При n = 2 имеем N(2) = 2, т.е. число условий совпадает с числом функций,
поэтому в этом случае задача разрешима.

Перепишем уравнение (1.1) при n = 2 в виде

a(x, y)
∂2u

∂x2
+ 2 b(x, y)

∂2u

∂x ∂y
+ c(x, y)

∂2u

∂y2
+ Φ

(
x, y, u,

∂u

∂x
,
∂u

∂y

)
= 0, (2.2)

т.е. мы ввели обозначения x1 = x, x2 = y, a11 = a, a12 = a21 = b, a22 = c.

Не уменьшая общности можно считать, что a(x, y) 6= 0. Если же a(x, y) = 0,
то c(x, y) 6= 0 и тогда меняя местами x и y получим уравнение, в котором
a(x, y) 6= 0. Если же a(x, y) = 0, c(x, y) = 0, то b(x, y) 6= 0. Если теперь в этом
случае в уравнении (2.2) сделать замену{

ξ = x+ y,
η = x− y, ,

то получаем уравнение, в котором ã(ξ, η) 6= 0.

Сделаем в уравнении (2.2) замену{
ξ = ξ(x, y)
η = η(x, y),

(2.3)
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при этом вы ввели обозначения y1 = ξ, y2 = η.

Предположим, что для замены (2.3) выполняется условие

det J =
D(ξ, η)

D(x, y)
=

∣∣∣∣ ξx ξy
ηx ηy

∣∣∣∣ 6= 0

Уравнение (2.2) перейдет в уравнение

ã(ξ, η)
∂2u

∂ξ2
+ 2 b̃(ξ, η)

∂2u

∂ξ ∂η
+ c̃(ξ, η)

∂2u

∂η2
+ Φ2

(
ξ, η, u,

∂u

∂ξ
,
∂u

∂η

)
= 0, (2.4)

где введены обозначения ã11 = ã, ã12 = ã21 = b̃, ã22 = c̃.

На основании формулы (1.8) имеем

ã(ξ, η) = a

(
∂ξ

∂x

)2

+ 2 b
∂ξ

∂x

∂ξ

∂y
+ c

(
∂ξ

∂y

)2

b̃(ξ, η) = a

(
∂ξ

∂x

∂η

∂x

)
+ b

(
∂ξ

∂x

∂η

∂y
+
∂ξ

∂y

∂η

∂x

)
+ a

(
∂ξ

∂y

∂η

∂y

)
c̃(ξ, η) = a

(
∂η

∂x

)2

+ 2 b
∂η

∂x

∂η

∂y
+ c

(
∂η

∂y

)2

(2.5)

Заметим, что в этом случае

A =

(
a b
b c

)
, Ã =

(
ã b̃

b̃ c̃

)

Кроме того, в силу формулы (1.10), имеем

det Ã = detA (det J)2, δ̃ = δ
(
D(ξ,η)
D(x,y)

)2

,

δ = b2 − ac, δ̃ = b̃2 − ãc̃.
(2.6)

Если потребовать, что бы замена (2.3) была такова, чтобы в уравнении (2.4)
ã = c̃ = 0, то из (2.5) следует, что функции ξ и η должны удовлетворять
одному и тому же дифференциальному уравнению

a

(
∂z

∂x

)2

+ 2 b
∂z

∂x

∂z

∂y
+ c

(
∂z

∂y

)2

= 0. (2.7)
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Уравнение (2.7) эквивалентно двум линейным уравнениям первого порядка

a
∂z

∂x
+
(
b−

√
b2 − ac

) ∂z
∂y

= 0, (2.8)

a
∂z

∂x
+
(
b+

√
b2 − ac

) ∂z
∂y

= 0. (2.9)

Для решения уравнений (2.8) и (2.9) им ставятся в соответствие системы обык-
новенных уравнений, которые в данном случае вырождаются в уравнения

∂x

∂a
=

∂y

b−
√
b2 − ac

, (2.10)

∂x

∂a
=

∂y

b+
√
b2 − ac

. (2.11)

Уравнения (2.10) и (2.11) можно записать в виде однородного уравнения

a dy2 − 2 b dx dy + c dx2 (2.12)

Очевидно, что решение уравнения (2.12) зависит от знака δ = b2 − ac.

a) Пусть δ > 0 в Ω, тогда уравнение (2.12) имеет два вещественных различных
первых интеграла {

ϕ(x, y) = C1

ψ(x, y) = C2.
(2.13)

Известно, что тогда функции z = ϕ(x, y), z = ψ(x, y) являются решениями
уравнения (2.7). С геометрической точки зрения, интегралы (2.13) определяют
два семейства кривых на плоскости, которые называются характеристиками
уравнения (2.2). Уравнение (2.7) называют характеристическим уравнением,
а уравнение (2.12) дифференциальным уравнением характеристики уравнения
(2.2).

Выясним как связано уравнение (2.12) с уравнением

det(A− λE) = 0, (2.14)

определяющим собственные значения матрицы A. Уравнение (2.14) в данном
случае имеет вид ∣∣∣∣ a− λ b

b c− λ

∣∣∣∣ = 0, λ2 − (a+ c)λ− δ = 0. (2.15)
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Очевидно, что если λ1 и λ2 - корни уравнения (2.15), то на основании теоремы
Виета λ1λ2 = −δ. Поэтому, если δ > 0, то λ1λ2 < 0, тогда имеем λ1 > 0, λ2 < 0
или λ1 < 0, λ2 > 0. На основании приведенной выше классификации уравне-
ний получим, что уравнение (2.2) имеет тип (1,1,0), т.е. является уравнением
гиперболического типа.

Сделаем в уравнении (2.2) замену{
ξ = ϕ(x, y),
η = ψ(x, y).

Тогда в уравнении (2.4) â = ĉ = 0, а в силу (2.6) b̂ 6= 0. Получим канонический
вид уравнения гиперболического типа

∂2u

∂ξ ∂η
+ Φ3

(
ξ, η, u,

∂u

∂ξ
,
∂ξ

∂η

)
= 0, Φ3 =

Φ2

b̃
. (2.16)

Замечание. Сделав в уравнении (2.16) замену

{
ξ = α + β,
η = α− β

можно привести уравнение (2.16) к виду

∂2u

∂α2
− ∂2u

∂β2
+ Φ4

(
α, β, u,

∂u

∂α
,
∂u

∂β

)
= 0,

т.е. к приведенному выше каноническому виду уравнения гиперболического ти-
па.

б) Пусть δ ≡ 0. Тогда отсюда следует, что a+ c 6= 0. Предположим противное,
что a+ c = 0, a = −c, тогда δ = b2 + a2 = 0, a = b = 0, c = 0. Это невозможно.

Уравнение (2.15) примет вид λ2−(a+c)λ = 0, λ1 = 0, λ2 = a+c 6= 0. Уравнение
(2.2) имеет тип (1, 0, 1) ≡ (0, 1, 1), т.е. является уравнением параболического
типа.

В этом случае, уравнение (2.12) имеет единственный двукратный корень. Урав-
нение (2.2) имеет единственное семейство характеристик ϕ̃(x, y) = C. Сделаем
в уравнении (2.2) замену {

ξ = ϕ̃(x, y),

η = ψ̃(x, y),
(2.17)
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где ψ̃(x, y) - любая функция, причем ψ̃ ∈ C2 и удовлетворяет условию D(ϕ̃,ψ̃)
D(x,y) 6= 0.

При замене (2.17) ã = 0, b̃ = 0 в силу (2.6), при этом c̃ 6= 0. Доказать последнее
можно от противного. Предположив что c̃ = 0, мы придем к противоречию с
условием a(x, y) 6= 0.

Уравнение (2.4) примет вид

∂2u

∂η2
+ Φ4

(
ξ, η, u,

∂u

∂ξ
,
∂u

∂η

)
= 0.

Это и есть канонический вид уравнения параболического типа.

Замечание. Рассуждая аналогично, можно получить канонический вид

∂2u

∂ξ2
+ Φ5

(
ξ, η, u,

∂u

∂ξ
,
∂u

∂η

)
= 0.

в) Пусть δ < 0. Тогда λ1, λ2 > 0 или λ1, λ2 < 0 и уравнение (2.2) имеет тип
(2, 0, 0) ≡ (0, 2, 0), т.е. является уравнением эллиптического типа.

Уравнение (2.2) не имеет вещественных характеристик. Если a, b, c - аналити-
ческие функции переменных x, y, то уравнение (2.12) имеет два комплексно
сопряженных первых интеграла.

ϕ(x, y) = ϕ1(x, y) + ıϕ2(x, y) = C,

ψ(x, y) = ϕ(x, y).

В этом случае сделаем замену{
ξ = Reϕ = ϕ1(x, y),
η = Imϕ = ϕ2(x, y),

(2.18)

тогда ã = c̃, b̃ = 0. Действительно, т.к. функция z = ξ + ıη удовлетворяет
уравнению (2.7), то имеет место тождество

a

(
∂ξ

∂x
+ ı

∂η

∂x

)2

+ 2b

(
∂ξ

∂x
+ ı

∂η

∂x

) (
∂ξ

∂y
+ ı

∂η

∂y

)
+ c

(
∂ξ

∂y
+ ı

∂η

∂y

)2

= 0.
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Приравнивая нулю вещественную и мнимую часть левой части, получим

a

(
∂ξ

∂x

)2

+ 2 b
∂ξ

∂x

∂ξ

∂y
+ c

(
∂ξ

∂y

)2

= a

(
∂η

∂x

)2

+ 2 b
∂η

∂x

∂η

∂y
+ c

(
∂η

∂y

)2

,

a

(
∂ξ

∂x

∂η

∂x

)
+ b

(
∂ξ

∂x

∂η

∂y
+
∂ξ

∂y

∂η

∂x

)
+ c

(
∂ξ

∂y

∂η

∂y

)
= 0.

Уравнение (2.4) примет вид

∂2u

∂ξ2
+
∂2u

∂η2
+ Φ6

(
ξ, η, u,

∂u

∂ξ
,
∂ξ

∂η

)
= 0, Φ6 =

Φ2

ã
.

Это и есть канонический вид уравнения эллиптического типа.
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III. Задача Коши для дифференциального урав-
нения второго порядка
Лекция 10. Понятие характеристики уравнения. Постанов-
ка задачи Коши для дифференциального уравнения вто-
рого порядка. Теорема Коши-Ковалевской

1.1. Понятие характеристики уравнения

Рассмотрим квазилинейное дифференциальное уравнение второго порядка

n∑
i,j=1

aij(x)
∂2u

∂xi ∂xj
+ Φ(x, u,∇xu) = 0. (1.1)

Определение. Уравнение вида

n∑
i,j=1

aij(x)
∂ω

∂xi

∂ω

∂xj
= 0 (1.2)

называется характеристическим уравнением для уравнения (1.1). Если функ-
ция ω(x) ∈ C1(Ω) удовлетворяет уравнению (1.2), то (n−1)-мерная поверхность
ω(x) = C, где C - произвольная постоянная, называется характеристической
поверхностью уравнения (1.1) или характеристикой уравнения (1.1).

При n = 2 уравнение (1.1) имеет вид

a(x, y)
∂2u

∂x2
+ 2 b(x, y)

∂2u

∂x ∂y
+ c(x, y)

∂2u

∂y2
+ Φ1

(
x, y, u,

∂u

∂x
,
∂u

∂y

)
= 0. (1.3)

Характеристическое уравнение для уравнения (1.3) имеет вид

a(x, y)

(
∂ω

∂x

)2

+ 2 b(x, y)
∂ω

∂x

∂ω

∂y
+ c(x, y)

(
∂ω

∂y

)
= 0.

На предыдущей лекции было показано, что уравнение (1.3) имеет характери-
стические линии, причем в случае уравнения гиперболического типа уравнение
(1.3) имеет два вещественных семейства характеристик{

ω1(x, y) = C1,
ω2(x, y) = C2.
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В случае n = 2 мы убедились, что знание характеристик уравнения (1.3) дает
возможность привести уравнение к более простому виду.

Пусть ωk = Ck (k = 1,m) - характеристики уравнения (1.1), причем ωk ∈ C2(Ω).
Если в уравнении (1.1) сделать замену yl = yl(x1, ..., xn), причем выберем
yl = ωl(x), l = 1,m, то учитывая что

ãlk =
k∑

i,j=1

aij(x)
∂yl
∂xi

∂yk
∂xj

, (1.4)

получим, что ãll = 0, l = 1,m.

Отметим важное свойство характеристик: характеристики уравнения (1.1) ин-
вариантны относительно невырожденной замены независимых переменных.

Итак, пусть ω(x) - решение уравнения (1.2) и пусть в уравнении (1.1) сделана
замена

y = y(x), yl = yl(x1, x2, ..., xn), (1.5)

причем yl ∈ C2(Ω), det

∣∣∣∣∣∣∣∣∂yl∂xi

∣∣∣∣∣∣∣∣n
1

6= 0.

Тогда существует обратное преобразование x = x(y), и функция ω(x) перейдет
в функцию ω(x) = ω[x(y)] ≡ ω(y) (для удобства, обозначения функции не
меняем). Утверждаем, что функция ω(y) будет решением уравнения

n∑
l,k=1

ãlk(y)
∂ω

∂yl

∂ω

∂yk
= 0, (1.6)

которое является характеристическим для уравнения
n∑

l,k=1

ãlk(y)
∂2u

∂yl ∂yk
+ Φ2(y, u,∇yu) = 0, (1.7)

которое получено из уравнения (1.1) с помощью преобразование (1.5).

Действительно,

∂ω

∂xi
=

n∑
l=1

∂ω

∂yl

∂yl
∂xi

,
∂ω

∂xj
=

n∑
k=1

∂ω

∂yk

∂yk
∂xj

. (1.8)
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Подставляя (1.8) в (1.2), получим

n∑
i,j=1

aij(x)

(
n∑
l=1

∂ω

∂yl

∂yl
∂xi

) (
n∑
k=1

∂ω

∂yk

∂yk
∂xj

)
=

n∑
i,j=1

aij(x)
n∑

l,k=1

∂ω

∂yl

∂yl
∂xi

∂ω

∂yk

∂yk
∂xj

=

=
n∑

l,k=1

(
n∑
i,j

∂yl
∂xi

∂yk
∂xj

)
∂ω

∂yl

∂ω

∂yk
=

n∑
l,k=1

ãlk(y)
∂ω

∂yl

∂ω

∂yk
= 0,

при этом мы учли (1.4).

1.2. Постановка задачи Коши. Роль характеристик в постановке за-
дачи Коши

Пусть в пространстве Rn дана некоторая поверхность, которая ни в какой своей
точке не касается характеристик уравнения (1.1). Пусть в каждой точке Γ зада-
но некоторое направление ~l(x), не касательное к Γ. В окрестности поверхности
Γ требуется найти решение уравнения (1.1), удовлетворяющее условиям

u
∣∣
Γ

= ϕ(x),
∂u

∂l

∣∣∣∣
Γ

= ψ(x), (1.9)

где ϕ, ψ - заданные функции, причем ϕ ∈ C2(Γ), ψ ∈ C(Γ). Поверхность Γ
называется поверхностью Коши, ϕ, ψ - данными Коши.

Рассмотрим, например, задачу Коши для уравнения колебаний струны

∂2u

∂y2
= a2∂

2u

∂x2
, x ∈ R1, t > 0,

u
∣∣
y=0

= ϕ(x),
∂u

∂y

∣∣∣∣
y=0

= ψ(x), x ∈ R1.
(1.10)

Характеристическое уравнение для уравнения (1.10) имеет вид(
∂ω
∂y

)2

− a2
(
∂ω
∂x

)2
= 0, поэтому характеристиками уравнения (1.10) будут два се-

мейства прямых x+ ay = C1, x− ay = C2. В данном случае Γ = R1, направле-
ние ~l совпадает с направлением оси y и касательное направление к Γ не совпа-
дает с характеристическим y′ = ±1

a .

Выясним теперь, для чего в постановке задачи Коши нужно требование, чтобы
поверхность Γ не касалась характеристик уравнения (1.1). Оказывается, если
поверхность Γ совпадает с характеристической поверхностью, то задача Коши
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может не иметь решений, а если имеет, то решение может быть не единствен-
ным.

Итак, допустим, что в задаче (1.1), (1.9) поверхность Γ является характеристи-
кой, т.е. Γ определяется уравнением

Γ : y(x1, x2, ..., xn) = 0,

причем y ∈ C2 и y является решением уравнения
n∑

i,j=1

aij(x)
∂y

∂xi

∂y

∂xj
= 0. (1.11)

Совершим в уравнении (1.1) невырожденную замену

yl = yl(x1, x2, ..., xn), l = 1, n, (1.12)

причем yl ∈ C2, y1, y2, ...., yn−1 выберем произвольно, а yn = y.

При замене (1.12) уравнение (1.1) перейдет в уравнение (1.7), а уравнение (1.2)
перейдет в уравнение (1.6). В силу инвариантности, характеристика Γ перейдет
в характеристику Γ̃ уравнения (1.7), причем Γ̃ будет гиперплоскостью

Γ̃ : yn = 0.

При этой замене в уравнении (1.7) коэффициент ãnn = 0 в силу (1.11), т.е.
по отношению к переменной yn уравнение (1.7) первого порядка. Таким обра-
зом, можно рассматривать такую ситуацию, что уравнение (1.1) не содержит
производной ∂2u

∂x2n
, т.е. уравнение (1.1) можно записать в виде

n−1∑
i,j=1

aij(x)
∂2u

∂xi ∂xj
+ 2

n−1∑
i=1

ani(x)
∂2u

∂xn ∂xi
+ Φ(x, u,∇xu) = 0 (1.13)

В качестве Γ берем гиперповерхность Γ : xn = 0. Для простоты будем считать,
что направление ~e совпадает с направлением оси xn, т.е. условия Коши будут
иметь вид 

u(x1, x2, ..., xn−1, 0) = ϕ(x1, x2, ..., xn−1),

∂u

∂xn
(x1, x2, ..., xn−1, 0) = ψ(x1, x2, ..., xn−1).

(1.14)
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Докажем следующий результат: зная данные Коши (1.14), можно найти первые
производные от искомой функции на Γ. Дифференцируя первое условие (1.14),
получим 

∂u

∂xj
(x1, x2, ..., xn−1, 0) =

∂ϕ

∂xj
(x1, x2, ..., xn−1),

∂u

∂xn
(x1, x2, ..., xn−1, 0) = ψ(x1, x2, ..., xn−1).

Теперь можем найти все вторые производные на Γ, дифференцируя первые
производные по xi, i = 1, n− 1, т.е. по направлениям, касательным к Γ.

∂2u

∂xi ∂xj
(x1, x2, ..., xn−1, 0) =

∂2ϕ

∂xi ∂xj
(x1, x2, ..., xn−1), i = 1, n− 1, j = 1, n− 1

∂2u

∂xn ∂xi
(x1, x2, ..., xn−1, 0) =

∂ψ

∂xi
(x1, x2, ..., xn−1), i = 1, n− 1.

Таким образом, мы вычислили на Γ все производные, входящие в уравнение
(1.13).

n−1∑
i,j=1

aij(x)
∂2φ

∂xi ∂xj
+ 2

n−1∑
i=1

ani(x)
∂ψ

∂xi
+ Φ(x, u,∇xu) = 0 (1.15)

Итак, вывод: если Γ является характеристической поверхностью, то данные
Коши ϕ и ψ нельзя задавать произвольно. Они должны быть связаны между
собой условием (1.15). Если условие (1.15) не выполняется, то задача Коши не
имеет решений. Если условие (1.15) выполняется, то решение, вообще говоря,
может быть, но не будет единственным. В этом можно убедиться на примере.

∂2u

∂x1 ∂x2
= 0 (1.16)

u
∣∣
x2=0

= ϕ(x1),

∂u

∂x2

∣∣
x2=0

= ψ(x1).

В данном случае Γ : x2 = 0 - характеристика, т.к. характеристиками уравнения
(1.16) являются два семейства прямых x1 = C1, x2 = C2. Т.к. Γ - характеристи-
ка, то для разрешимости задачи должно выполняться условие (1.15). В данном
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случае условие (1.15) примет вид ∂ψ
∂x1

= 0, т.к. a11 = 0, a12 = a21 = 1
2 . Т.о.

ψ(x1) ≡ a, a – const. Решение задачи существует и определяется формулой

u(x1, x2) = ϕ(x1) + ax2 + C(x2),

где C(x2) - произвольная функция класса C2 и удовлетворяющая условию
C(0) = C ′(0) = 0. Решение не единственно.

1.3. Теорема Коши-Ковалевской

Задачу Коши можно ставить не только для уравнений в частных производных
второго порядка, но и для уравнений порядкаm, а также для систем уравнений
с частными производными.

Для того, чтобы сформулировать эту задачу введем удобные для дальнейшего
обозначения.

Пусть α = (α1, α2, ..., αn) - вектор n-мерный, компоненты которого неотрица-
тельные целые числа, т.е. αk ∈ N, k = 1, n. Такой вектор называется муль-
тииндексом порядка n (т.е. мультииндексом называется упорядоченная после-
довательность целых неотрицательных чисел). Через |α| обозначим величину

|α| =
n∑
k=1

αk и назовем ее длиной мультииндекса.

Пусть f = f(x), x ∈ Rn. Через Dαf обозначим производную функции f(x)
порядка |α|, т.е.

Dαf = Dα1
1 D

α2
2 ...D

αn
n f(x) =

∂|α|f(x1, x2, ..., xn)

∂xα1
1 ∂xα2

2 ... ∂
αn
xn

,

D0f = f, Dj =
∂

∂xj
, j = 1, n, D = (D1, D2, ..., Dn).

Будем пользоваться также следующими сокращенными обозначениями

xα = xα1
1 x

α2
2 ... x

αn
n , α! = α1!α2! ... αn!.

Определение. Функция f(x) = f(x1, x2, ..., xn) от n переменных называется
аналитической в окрестности точки x0 = (x0

1, x
0
2, ..., x

0
n), если в окрестности этой

точки (т.е. при достаточно малых |xj − x0
j |, j = 1, n) она представима своим

равномерно сходящимся рядом Тейлора f(x) =
∑
|α|≥0

Dαf(x0)
α! (x − x0)α, где α -

мультииндекс.
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Линейным уравнением порядка m называется уравнение с частными производ-
ными вида ∑

|a|≤m

aα(x)Dαu = f(x). (1.17)

где aα(x) — заданные функции точки x ∈ Rn, называемые коэффициентами
уравнения, f(x) — свободный член, суммирование в (1.17) проводится по всем
мультииндексам α таким, что |α| ≤ m. Т.о. левая часть уравнения (1.17) пред-
ставляет собой некоторую линейную комбинацию всевозможных производных
функции u, не превышающих m и самой функции.

Выделим одну из независимых переменных x∗ = (x1, x2, ..., xn, xn+1) ∈ Rn+1,
например xn+1 и положим xn+1 = t. Пусть на плоскости t = 0 в окрестности
точки x0 = (x0

1, x
0
2, ..., x

0
n) заданы начальные условия

∂ju

∂tj

∣∣∣∣
t=0

= ϕj(x) = ϕ(x1, x2, ..., xn). (1.18)

Задача Коши состоит в том, чтобы в некоторой окрестности Γ точки (x0, 0)
найти решение уравнения (1.17), удовлетворяющее условию (1.18).

К числу первых результатов общей теории уравнений с частными производны-
ми принадлежит теорема Ковалевской С.В. Теорема Ковалевской, или, как ее
часто называют теорема Коши-Ковалевской, занимает важное место в теории
уравнений с частными производными. Теорема дает ответ на вопрос, при каких
предположениях задача Коши (1.17), (1.18) имеет решение.

Эта теорема наряду с двумя другими работами была представлена в 1874 году
С.В. Ковалевской (1850 — 1891) в Геттингенский университет в качестве док-
торской диссертации и была опубликована в 1875 году. В 1842 году О. Коши,
систематически изучавший задачу с начальными условиями для дифференци-
альных уравнений, которая в настоящее время носит название задачи Коши,
доказал существование аналитических решений этой задачи для обыкновенных
дифференциальных уравнений и для некоторых классов уравнений с частными
производными. Этим вопросам он посвятил четыре статьи. С.В. Ковалевская
не знала этих статей, и в своей работе опиралась на лекции своего учителя К.
Вейерштрасса, где рассматривалась задача с начальными условиями для обык-
новенных дифференциальных уравнений. Исследование С.В. Ковалевской при-
дало вопросу о разрешимости задачи Коши для уравнений и систем с частными
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производными в классе аналитических функций завершенный характер. А. Пу-
анкаре писал: ‘’Ковалевская значительно упростила доказательство и придала
теореме окончательную форму”.

Сформулируем теорему Коши-Ковалевской для нормальной системы уравне-
ний (для вектор-функции u(x, t) = (u1, u2, ..., uN)), т.е. системы относительно
N неизвестных функций ui(x, t), i = 1, N

∂miui
∂tmi

= Φi(x, t, u1, ...., uN , ..., D
α0
t D

α
xuk, ...), (1.19)

где α0 ≤ mi− 1 - индекс, α = (α1, α2, ..., αn) — мультииндекс, причем |α| ≤ mi.

Из (1.19) видно, что для каждой из неизвестных функций ui существует свой
высший порядок mi производной от этой функции. Независимая переменная t
играет особую роль среди прочих независимых переменных, так как, во-первых,
среди производных наивысшего порядка mi от каждой функции ui, входящей в
данную систему, должна содержаться производная ∂miui

∂tmi , и, во-вторых, система
(1.19) разрешима относительно этих производных.

Пусть даны начальные условия

∂jui
∂tj

= ϕij(x), j = 0,mi − 1, i = 1, N, (1.20)

где ϕij(x) — заданные функции.

Теорема Коши-Ковалевской.

Если функции ϕij(x) аналитичны в окрестности некоторой точки
x0 = (x0

1, x
0
2, ..., x

0
n), а функции Φi аналитичны в окрестности точки

(x0, 0, ϕ1 0(x
0), ..., ϕN 0(x

0), ..., Dαϕkα0
(x0), ...), то задача Коши (1.19), (1.20) име-

ет аналитическое решение в окрестности точки (x0, 0), притом единственное в
классе аналитических функций.
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