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Seepage through earth dam with clay core and toe drain: the Casagrande–Numerov
analytical legacy revisited
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aDepartment of Soils, Water and Agricultural Engineering, Sultan Qaboos University, Muscat, Sultanate of Oman; bInstitute of Mathematics and
Mechanics, Kazan Federal University, Kazan, Russia

ABSTRACT
Seepage through a zoned earth-filled dam with a vertical clay core, two permeable shoulders and
toe drain are studied. Seepage through the core and the downstream shoulder are coupled. The
flow rate and phreatic surface are found. The hodograph method is used, viz. a conformal mapping
of a rectangle in the complex potential plane onto a circular triangle. Numerically, MODFLOW 2005
simulated seepage with the refraction of the streamlines at the interfaces between the core and
both shoulders.
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1. Introduction

Hundreds of earth-filled dams have been constructed in the
MENA region (see e.g. Al-Saqri et al. 2016, Jaafar 2014) for
interception of wadi runoff, flood protection and managed
aquifer recharge of groundwater through the beds of dams’
reservoirs. These hydraulic structures (Figure 1(a)) are often
designed to withstand a relatively low head, H0, of several
meters of reservoir water, retained after rare flashfloods.
The embankments are long, up to several kilometers in
length, Lc, along the crest (Al-Saqri et al. 2016; Kacimov
and Brown 2015) and demarcate the reservoir area which
most of the time is dry. Consequently, unlike dams designed
for hydropower generation requiring high H0 and low Lc
(gorge sites), the recharge dams in flat areas are designed
and constructed with a tradeoff between the value of land
allocated for the structure (mainly reservoir), rapidity of
infiltration and groundwater replenishment, safety of the
embankment and cost of construction. The embankment
shoulders are made by bulldozing a cheap local soil (allu-
vium of a wadi flood plain), which is highly permeable.
A low-permeable clay core reduces seepage. The core is
the most expensive component of the embankment and
therefore it is made as thin as possible. The tailwater is
most often empty such that these dams are often called
‘dry’ (Sumi 2008). In rare cases, the tailwater is fed by
spillway flow over the dam crest and short periods of
releasing water from the reservoir through sluice gates.
Boiling, heaving, backward erosion, piping, sloughing, suf-
fusion and other seepage-triggered phenomena can destabi-
lize the embankments (see e.g. Design 1987). In order to
forestall exit seepage gradients a toe drain (a horizontal
filter in Figure 1(a)) is constructed in the downstream
shoulder. This drain is made of a course material (graded
gravel). It prevents outcropping of a phreatic surface on the
downstream soil slope. The drain diverts the seeped water
to a stilling basin or directly to the recharge zone down-
stream of the dam.

A Darcian seepage in cored and drained dams has been
theoretically studied since Kozeny, Terzaghi, Casagrande
and Pavlovsky (see e.g. Polubaronova-Kochina, 1962, here-
after abbreviated as PK). Nowadays, the textbooks and
engineering design charts reflect these ‘old’ analytical for-
mulae (see e.g. Cedergren 1989; Design 1987; FEMA 2011;
ICOLD 2013; Istomina 1957; National Research Council
2012; Nichiporovich 1973; Peter 1982; Tanchev 2014; The
International Levee (2013), Wolff (2002), Zhang et al.
(2016), Zhilenkov 1968).

Most recent studies of seepage through earth dams use
numerical models (FEM, BEM, FDM and CFD) that
allows to take into account steady-state and transient
flows through porous composites making the shoulders-
core-filter in Figure 1(a) (zoned dams and anisotropic soil
fillings) for purely saturated and saturated-unsaturated
flows (see e.g. Bardet and Tobita 2002; Borja and
Kishnani 1991; Darbandi et al. 2007; Liggett and Liu
1979; Ouria and Toufigh 2009; Tayfur et al. 2005) that
was not possible in analytical models. Unfortunately, the
‘dam problem’, analytically solved by PK for 2-D steady
seepage through a rectangular homogeneous embankment
without capillarity, is now days seldom used (see e.g.
Fukuchi 2018) as a benchmark for testing numerical
models, which are compared with each other rather
than with analytical formulae. In applied mathematics,
this analytical solution by PK formed a whole branch of
‘free-moving boundary value problems’ (see e.g. Caffarelli
and Friedman 1978; Friedman et al. 1987; Martin and
Vázquez 2013; Strack 2017), with numerous ramifications
in other fields of mathematical physics (Crank 1984).

One of the objectives of this paper is to revisit the old
analytical methods and solutions. We obtain new analytical
formulae for comparisons with simulations by FDM
(MODFLOW). This comparison of new and old analytical
results with numerical ones is a routine because of the
following:
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● all numerical codes use analytical solutions as
benchmarks,

● commercial numerical packages are often not available
when preliminary back-of-an envelope calculations are
carried out by engineers at the stage of dam design,

● most numerical packages are parameter-demanding
and it is recommended to apply a step-wise approach,
starting from the bottom of scaffolding complexity of
models where analytical solutions are indispensable,

● numerical packages operate always with dimensional
input parameters while analytical solutions can be
graphed and tabulated in dimensionless formats that
makes the analysis of trends easier,

among others.
Figure 1(b) below (see also Design 1987; The International

Levee 2013) shows a vertical cross-section of a damplaced on an
impermeable horizontal foundation Ox. The vertical axis Oy of
a Cartesian coordinate system coincides with an interface
between the core and upstream shoulder. In Figure 1(b) the
core is rectangular andmadeof clay of hydraulic conductivity k0.
Two dam shoulders have hydraulic conductivity k1. In a newly
constructed dam, the material of the toe drain is highly perme-
able, of a conductivity k2 and a double inequality k2≫k1≫k0
holds.A free (phreatic) surface inFigure 1(b) has three branches:
B0B1 in the upstream shoulder, B1B2 in the core and BAN in the
downstream shoulder. The segment BB2 is often modeled as
a seepage face (or ‘internal seepage face’ in the terminology of
Wu et al. 2013). A horizontal toe drain ACe, located distance L1
from the downstream face of the core, intercepts the seepage
dischargeQ. The magnitude ofQ should be small, and the locus
of BAN should be low that is achieved by selecting various
counter-seepage designs (see e.g. Rice and Duncan 2010).

The dashed line AAN0 in Figure 1(b) shows a tailwater
slope of a dam without any drain and the trapezium AAN1

AN2 AN3A depicts a tailwater filter which can be placed
inside the embankment or on the slope as a load (see e.g.
Moran and Toledo 2011). The angle α between the
impermeable foundation and AAN1 in Figure 1(b) varies
from 0 to π. The latter value corresponds to the case of
the toe drain in Figure 1(a).

Below a steady-state seepage is considered, i.e. a basic
regime from which the design of dams starts (see e.g.
Casagrande 1937; Fukuchi 2018; Kamble et al. 2014). The
motivation is two-fold. First, the theory of holomorphic func-
tions (PK, Strack 2017) is applied for obtaining new analytical
solutions to problems of free-boundary, steady 2-D seepage
through a cored dam shown in Figure 1(b). This theory deals
with characteristic flow functions presented in planes of com-
plex variables that is possible if the hydraulic head in seepage
obeys Laplace’s equation. Modern computer algebra, viz.
Wolfram’sMathematica (1991) makes the obtained analytical
solutions user/engineer-friendly. Second, a standard FDM
package (MODFLOW) is utilized for comparisons of numer-
ical and analytical models.

2. Seepage through cored dam to unclogged toe
drain

The key flow characteristics of 2-D, steady, capillarity-free
flow (Q, LN and the shape of BAN in Figure 1(b) where the
width of the downstream shoulder is Lt) are evaluated and
compared with approximate 1-D formulae (the Dupuit-
Forchheimer, DF, approximation), used by engineers since
Shaffernak–Casagrande (see e.g, Chahar 2004; Fukuchi

Figure 1. (a) 3-D earth dam with a core. (b) Vertical cross-section of flow domain for seepage through an earth-filled dam. (c) Vertical-face embankment and its
free surface with seepage into an unclogged toe drain (solid curves) sandwiched between Kozeny-Pavlovsky’s ‘expanded’ parabolic-face dam (dashed curves)
and ‘contracted’ dam (dotted curves).
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2018; Junghanns and Oestreich 1989; Mishra and Singh
2005).

2.1. Seepage through a downstream shoulder

The inequality k1≫k0 holds in this subsection and hence we
ignore the hydraulic resistance of the upstream shoulder and
assume that the hydraulic head there is constant, i.e. H0 = H1.
Consequently, the upstream vertical face of the core, B1O1, is
a constant-head boundary, and the branch B0B1 of the free
surface in the upstream shoulder is a horizontal segment. The
validity of this assumption will be later checked by
MODFLOW.

Numerov (see Aravin and Numerov, 1953 and PK) studied
flow in the downstream shoulder of Figure 1(b), with
a trapezoidal filter of an arbitrary angle α. The segment AAN1

in Figure1 (b) was a constant-head boundary, i.e. a seepage face
segment along AAN1 was ignored. Numerov used a conformal
mapping of a rectangle in the complex potential domain onto
an auxiliary domain. Then, in this domain, he solved the so-
called Hilbert problem (see e.g. Gakhov 1966) for the complex
physical coordinate. Numerov’s solution is prohibitively com-
plicated and – to the best of our knowledge – is not used in the
engineering practice. An alternative hodograph method (see
e.g. Obnosov et al. 2015) is used below for a special case of α= π
in Figure 1(b), for which the drain segment is both a constant
head and constant pressure boundary. Obviously, for this
horizontal outlet boundary the Shaffernak or Casagrande engi-
neering formulae (limited to the range 0 < α < π/2) are not
applicable.

Cartesian coordinates xOy (Figure 1(b)) and a complex
physical coordinate z = x+iy are introduced. The hydraulic
head h(x,y) in Gz is a harmonic function. A complex poten-
tial w ¼ φþ iψ is introduced, where ϕ ¼ �k1h is the velo-
city potential, and ψis a stream function. The Darcian

velocity, V
!ðx; yÞ; obeys the relation V

!ðx; yÞ ¼ �k1�h.
A complex Darcian velocity is V = u+iv, where u(x,y) and

v(x,y) are the horizontal and vertical components of V
!
.

First, as in PK, the hydraulic head along BO is assumed
to be – H, where H >0 is given. The flow rate QN is a part of
solution. A horizontal bed OA of a given length L1 is
a streamline ψ ¼ 0: Along the free-surface BAN two bound-
ary conditions are satisfied: ψ ¼ QN and ϕþ k1y ¼ 0 Along

the segment AAN, ϕ ¼ 0 Consequently, the complex poten-
tial domain Gw is a rectangle depicted in Figure 2(a).

The rectangle Gw is mapped onto an auxiliary half plane
Gζ (Figure 2(b)) by the Schwarz–Christoffel integral:

w ςð Þ ¼ c1

ðς
�a

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiða2 � t2Þðt2 � 1Þp þ iQN ; (1)

where a is the affix of point A in Gζ to be found later. The
mapping constant c1 is determined from the equality wB = -k1
H+iQN as:

c1 ¼ � k1H
I1

; I1 ¼
ð�1

�a

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiða2 � t2Þðt2 � 1Þp : (2)

For the sake of brevity, here and below the expressions of I1
and similar integrals via elliptic functions are omitted.

By considering the straight lines BA and ANA are chords
of circles of infinite radius, the hodograph domain GV is
regarded as a circular triangle (Figure 2(c)) which is
inversed to a half-strip GU of the function dz/dw (Figure 2
(d)). GU is mapped onto Gζ by the Schwarz-Christoffel
formula as:

dz
dw

ςð Þ ¼ d1

ða
ς

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � t2

p
ðt þ 1Þ

¼ d1ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 1

p log
ςþ a2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � ς2

p

aðςþ 1Þ

" # ; (3)

where the mapping constant d1 is found from the condition
dz=dw �að Þ ¼ �i=k1 (see Figure 2(c)) as:

d1 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 1

p
=ðπk1Þ: (4)

The integration appearing in Equation (3) is carried out by
substituting 1 + t = X*, dt = dX*, which converts the
integral into a standard form to use a mathematical table
(Gradshteyn and Ryzhik, 1962). The integration constant
has been determined by applying the condition at vertex
A and implemented in Equation (3).

with differentiation of Equation (1) involved, as:

Figure 2. Domains of characteristic functions for Numerov’s problem with a horizontal equipotential drain (shown earlier in Figure1b): complex potential
domain (a), auxiliary plane (b), hodograph domain (c), inverted hodograph (d).

ISH JOURNAL OF HYDRAULIC ENGINEERING 3



zðςÞ ¼
ðς
1

dz
dς

dς

¼ H
πI1

ðς
1
log

ςþ a2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � ς2

p
aðςþ 1Þ

" #
dςffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � ς2
p ffiffiffiffiffiffiffiffiffiffiffiffi

ς2 � 1
p

(5)

Here dz=dwand dw=dς are found from Equations (3)
and (1).

From Equation (5), at point A in Figure 1(b)

L1
� ¼ L1

H

¼ 1
πI1

ða
1

log
ςþ a2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � ς2

p
aðςþ 1Þ

" #
dςffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � ς2
p ffiffiffiffiffiffiffiffiffiffiffiffi

ς2 � 1
p :

(6)

The parameter a is evaluated from Equation (6) using the
FindRoot routine of Mathematica, with integrals computed
by the NIntegrate routine. Any other commercial (e.g.
MATLAB, COMSOL), or public (e.g. Python) code can be
equivalently used. It is noteworthy that the determination of
H in the composite section of Figure 1(b) has been dealt
separately.

Then, from Equations (1–2) at point B (ζ = 1):

Q�
N ¼ QN

k1H
¼ I0

I1
; I0 ¼

ð1
�1

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiða2 � t2Þð1� t2Þp ; (7)

wherefrom the dimensionless flow rate is evaluated.
Figure 3(a) shows Q�

NðL�1Þ calculated from Equations (6)
and (7) (curve 1). A dimensionless Numerov’s approxima-
tion, Q�

ap (see PK, p. 223 and Kacimov and Obnosov

2012) is:

Q�
ap ¼

Qap

k1H
; Qap ¼ k1

H2

L1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L12 þ 1=3H2

p (8)

Equation (8) is plotted in Figure 3(a) as curve 2.
Another approximate formulae follow from the Kozeny-

Pavlovsky (hereafter abbreviated as KP) solution of a 2D phrea-
tic flow from an ‘upstream infinity’ towards a slot drain (see PK,
Chapter II, Section 10). The analysis below follows Mishra and
Parida (2006). In the KP problem shown in Figure 1(c), the
phreatic surface is half of a parabola BNe (dashed line). The flow
net ismade of two families ofmutually orthogonal confocal half-
parabolas (streamlines and constant-head lines). Then, the
vertical upstream face BO of a homogeneous embankment
(held at a reservoir level H) can be sandwiched between two
parabolic upstream faces of fictitious embankments subject to
the same head drop H. The first one has an upstream face BCe

(Figure 1(c)), which is obtained by ‘expansion’ of the segment
BO (solid line in Figure 1(c)) of the real embankment. The
corresponding flow rate is Qe and a fictitious phreatic surface,
BANe, is a segment of parabola which outcrops at the horizontal
filter such that a segmentAANe has a length LNe. The second KP
domain is made by contraction of the real BO in Figure 1(c) to

Figure 3. (a) Dimensionless flow rates through the downstream shoulder in Figure1b, non-conjugated with the flow through the core, rigorous Q�
N for potential

2-D model (curve 1), approximation Q�
ap by eqn. (8), KP approximations Q�

e (curve 3), Qc* (curve 4) and dimensionless length L�N of an unclogged drain (curve 5),
all as functions of distance L�1 between the core and shoulder. (b) Dimensionless height H* of the ‘internal seepage face’ for a coupled flow through the core
and downstream shoulder as a function of relative conductivity k* of the core for dimensionless widths of the core l* = 1/4,1/8 and 1/16 (curves 1–3,
correspondingly).
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a fictitious parabolic-face BcCc (a dotted contour in Figure 1(c)),
which corresponds to a vertical-face embankment BcOc located
distanceL1c frompointA in Figure 1(c). The correspondingflow
rate isQc and phreatic surface isBcANc. According toMishra and
Parida (2006), the KP solution reads:

Q�
e ¼

Qe

k1H
¼ 1

L�1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L�12 þ 1

p ; L�Ne ¼ 0:5Q�
e ;

Q�
c ¼

Qc

k1H
¼ 1

2L�1
; L�Nc ¼ 0:5Q�

c :

(9)

PK emphasized that Equation (9) gives exactly the same
values of the flow rate as the DF approximation in a dam
problem where a face of the tailwater is assumed to be
a vertical constant-head segment (a seepage face boundary
is ignored in the DF model).

USBR (Design, 1987) stipulates theminimum length of LN as
one of the main criteria in dam design. For calculation of LN
Equation (5) is modified as:

dz
dw

¼ i
k1

arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ς2 � a2

p

ςþ a2
;

dw
dς

¼ ik1H

I1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ς2 � a2

p ffiffiffiffiffiffiffiffiffiffiffiffi
ς2 � 1

p (10)

and integrated from a to 1 and from �1 to �a. Curve 5
in Figure 3(a) shows the dimensionless length L�N ¼ LN=H
of the ‘active’ segment of the horizontal drain.

From the comparison theorems (see e.g. Gol’dshte˘ın
and Entov 1994; Ilyinsky and Kacimov 1992; Ilyinsky et al.
1998) two double inequalities follow:.

Q�
e <Q�

N <Q�
c ; L

�
Ne < L�N < L�Nc

They give an upper and lower bound for Q�
N and L�N of

a real embankment.
From comparison of curve 1 with curves 2–4 in

Figure 3(a), one can see that at L�1 < 1 (relatively ‘narrow’
shoulders) the approximations give significantly over-,
under-estimated values of the flow rate than the exact
formulae. Curve 5 in Figure 3(a) illustrates that for
‘narrow’ shoulders, the size of AAN in Figure 1(b) is
relatively large. In the vicinity of the outlet segment
AAN, most deleterious suffusion and drain-clogging phe-
nomena evolve in ‘old’ embankments.

2.2. Coupled flow through core and downstream
shoulder

Now, the flows in the core and downstream shoulder of
Figure 1(b) are coupled. In this case, H is a part of solution,
while H1 = H0 is given. For the case of α = π/2 (vertical
segment AAN0 in Figure 1(b)), Kacimov and Obnosov
(2012) illustrated how a potential 2-D flow in the core can
be conjugated with a DF flow in the downstream shoulder.
As Figure 3 shows, the DF approximation is poor for small
L1 in Figure 1(b).

A full 2-D solution for flow in the core alone, without
conjugation with flow in the downstream shoulder
(Figure 1(b)), is given by PK (see Kacimov and
Obnosov 2016). In the PK problem, H1 and H are given,
but the locus of point B2 (or H2 in Figure 1(b)) is not.
Hydraulic head, h0(x,y), and stream function ψ0(x,y), are
introduced in the core where both functions obey the
Laplace equation. In notations of Figure 1(b), the flow

domain is bounded by a vertical face B1O1 where h0(-l,y)
= H1, a vertical face OB where h0(0,y) = H < H1, a no-flow
segment O1O where ψ0(x,0) = 0, a free-surface B1B2 where
ψ0 = QNc (where QNc is the flow rate through the core), h0
(x,y)-y = 0 and a seepage face B2B where h0(0,y)-y = 0.
For flow in Figure 1(b), this boundary value problem
(BVP) is an approximation, valid for k1≫k0. The approx-
imation ignores flow refraction in the core and down-
stream. We recall (PK, Strack 2017) that in seepage flows
refraction on a heterogeneity of two porous media means
that a streamline at the interface of these media is con-
tinuous but not smooth that is mathematically equivalent
to the conditions of continuity of a normal component of
the Darcian velocity and a jump of the tangential compo-
nent. Figure 4 shows two refracting internal streamlines.
As analyzed by Liggett and Liu (1979), a refracted phrea-
tic surface B0Br approaches the interface Oy tangentially
to it, similarly with Casagrande’s three cases illustrated in
Liggett and Liu (their Figure 3(b,c,d)), which all degen-
erate into what is shown in our Figure 4. In the limit
k1 ! 1, the refraction problem transforms to the PK
problem with a seepage face. In this problem (see the
corresponding hodograph domain in PK), the free surface
at point Br is equivalent to B2 of Figure 1(b). For finite
but large k1, there is still seepage through the whole
segment BrO (see Figure 4), and it is incorrect to assume
the segment BrM1 in Figure 4 to be an impermeable
boundary (as Wu et al. 2013 did). In their conceptual
model, Wu et al. (2013) justified this artificial imperme-
able segment by the known phenomenon of capillary
barrier. But even for a dam core with high capillarity,
the flow topology near the interface in Figure 4 is differ-
ent from what Wu et al. (2013) postulated.

In Figure 4, the streamline O1OA does not experience
any refraction. Therefore, there is a streamline between two
bounding streamlines O1OA and BrM in Figure 4, which has
the strongest refraction.

In Figure 4, there is no ‘gap’ of the seepage face like BB2
in Figure 1(b). For k1≫k0 the segment BrM of the free
surface in the downstream shoulder is pretty close to Br
M1. Near point Br seepage in the shoulder resembles a thin
vertical film. Consequently, what is above the dotted
line MM1 in Figure 4 can be approximated by a regular

Figure 4. Refraction of the free surface and internal streamlines on the
vertical interface between a low-permeable core and highly permeable down-
stream shoulder.
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seepage face BB2 (Figure 1(b)) in the PK solution to the dam
problem.

The PK solution is mathematically complicated (see
Kacimov and Obnosov 2016), except Charny’s formula for
the total flow rate:

QNc ¼ k0
H1

2 � H2

2l
(11)

Equation (11) is exact and coincides with what the 1-D DF
theory predicts (see PK for details).

Obviously, from conservation of mass QN = QNc and
from Equations (11) and (7):

k0
H1

2 �H2

2l
¼ k1H

I0
I1

(12)

Now dimensionless quantities k� ¼ k0=k1, H�
1 ¼ H1=L1,

l� ¼ l=L1, H� ¼ H=L1, Q�
Nc ¼ QNc=ðk1LÞ are introduced.

Then, Equation (12) can be re-written as:

k�ðH�2
1 �H�2ÞI1 � 2H�l�I0 ¼ 0 (13)

The quadratic Equation (13) is solved with respect to H�for
given values of k�;H�

1 ; l
�

and I0/I1 as a function of the affix a. The positive root of
this equation is selected:

H� ¼ �l�
I0
k�I1

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H�

1
2 þ l�2

I02

k�2I12

s
(14)

Next, Equation (6) is engaged as:

H� ¼ πI1

ða
1

log
ςþ a2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � ς2

p

aðςþ 1Þ

" #
dςffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � ς2
p ffiffiffiffiffiffiffiffiffiffiffiffi

ς2 � 1
p

0
@

1
A

�1

(15)

Consequently, elimination of H* from Equations (14) and
(15) gives a single nonlinear equation with respect to a. This
equation is solved by the FindRoot routine of Mathematica.
After that H* is found from either Equation (14) or (13) and
Q�

Nc ¼ Q�
N is evaluated from Equation (11). The results of com-

putations of H*as a function of k* for l* = 1/4,1/8 and 1/16 are
shown in Figure 3(b), curves 1–3, correspondingly. These
graphs display a significant increase of the locus of point B in
Figure 1(b) with the increase of the core conductivity.

2.3. MODLFOW simulations

In this subsection, an FDM code,MODFLOW2005, (Simcore,
2012) is used to solve the problem in Figure 1(b) taking into
account both the upstream and downstream shoulders. In

order to compare with Wu et al. (2013) specific dam dimen-
sions were selected (Figure 5): the toe drain at the bottom of
the upstream dam shoulder has a length of 5 m and is at zero
head; the undrained upstream shoulder is also 5 m. All bound-
aries but the drain and reservoir in Figure 5 are impermeable.
The dam core is of 0.5 m width, with various k0 values. Both
dam shoulders have k1 = 2 m/day. The widths of the upstream
shoulder are L1 = 5 m. As the hydraulic resistance of the
upstream shoulder is small, for simplification of the grid gen-
eration a rectangular upstream shoulder is selected as shown
in Figure 5. The total width of the downstream shoulder is
10m. A constant-head boundary ofH1 = 8m is assigned to the
vertical upstream shoulder.

The model area was gridded with 47 columns and 80 layers
forming a total number of 3760 active cells. The spatial resolu-
tion of grid cells is more refined for the dam core and the area
around it as illustrated by Figure 5 (Δx = 0.5 m to Δx = 0.1 m,
whereas Δz = 0.1 m). The Preconditioned Conjugate Gradient
(PCG2) solver has been selected for solving the steady flow
equation with a convergence criterion of 0.001.

The results of computations are shown in Figure 6(a,b) for
different core conductivity values. Figure 6(a) illustrates the free
surface (water table) for three different k0 values. As is evident
from Figure 6(a), if the dam core becomes less permeable, the
free-surface drops sharply across the core and the downstream
shoulder. All seeping water is intercepted by the toe drain
(computations do not show ponding above the toe). In the
case of high k0 = 0.1 m/day, the length (5 m) of the drain is
too small to intercept all water seeped through the core and
hence seepage occurs through the whole downstream shoulder.
Figure 6(b) presents the velocity vectors and trajectories
(streamlines) of marked particles released across the depth at
the inlet vertical section of the upstream shoulder for k0 =
0.01 m/day.

Oden and Kikuchi (1980, Figs 4.2–4.5), Lacy and Prevost
(1987, Figure 7), Bardet and Tobita (2002, Fig.11), Herreros
et al. (2006, Figs. 10,12), Darbandi et al. (2007, Fig.13), Bazyar
and Graili (2012, Figs.15–16) studied similar rectangular two-
zoned dams and found that the locus of a phreatic surface on
a vertical interface between the zones is highly sensitive to the
method used. Wu et al. (2013) numerically modeled saturated-
unsaturated flow using the Richards equation. They also
ignored the upstream, low hydraulic-resistance shoulder and
considered a two-layered flow domain depicted in our Figure7.
Wu et al. (2013) considered a tailwater filled up to 2 m of water
depth. Below, a toe drain of a zero head is used, instead of
a 2 m constant head inWu et al. (2013). Instead ofH1 = 10m in
Wu et al. (2013), H1 = 8 m is assumed such that the total head
drop (8 m) across the dam is the same as in Wu et al.

Figure 5. Vertical cross-section of the dam, MODFLOW 2005-simulated flow domain.
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Dimensional values of k0 (0.1 m/day) and k1 (1 m/day) are kept
the same as that used by Wu et al. (2013). Figure 8(a) presents
the free surface in the two shoulders and core of the dam. This
curve drops sharply in the core and has a mild slope in the
shoulders. In Figure 8(b) we used the MODFLOW option of
plotting streamlines by releasingmarked particles at the inlet on
the three-zone rectangular domain of Figure 7. Specifically, the
red lines in Figure 8(b) depict the trajectories (pathlines) of
these particles. The arrows illustrate the Darcian velocity vec-
tors. Figure 8(b) illustrates that flow indeed converges towards
the toe drain.”

3. Concluding remarks

Safety of earth dams, especially aged ones, is a major
concern of geotechnical engineers. They discover that

seepage in zoned embankments, near drains, drain filters
and at the downstream slope of the dams may cause
collapse of the whole structure or its elements (see e.g.
France et al. 2018). Therefore, a thorough analysis of
seepage, in particular, the position of the phreatic sur-
face and the quantity of water intercepted by the
embankment toe drain (the main parameters of interest
in this paper) have to be investigated for different dam-
drain sizes and types of zonation. New analytical solu-
tions and numerical simulations are needed for this
analysis.

Casagrande (1937) pioneered in studies of phreatic flows
in zoned porous dams. Aravin and Numerov (1953) also
contributed to geotechnical and mathematical analysis of
seepage through earth (rock) filled dams; they also pio-
neered in solving Hilbert’s BVP for holomorphic functions.
Inspired by Casagrande, Aravin and Numerov, in this paper
we extended the Polubarinova-Kochina solution to the ‘dam
problem’, viz. steady, essentially 2-D, free-surface flows
through a low-permeable dam core conjugated with an
adjacent highly permeable porous downstream shoulder
towards an equipotential toe drain (horizontal filter).

In our analytical model, we ignored capillarity. Free-
boundary problems for a harmonic function (total head
and pressure head) are solved. Hydraulic coupling of
the core and shoulder zones of the dam is carried out.
Flow in the downstream shoulder of the dam is essen-
tially 2-D. Near the core–shoulder interface, seepage is
quasi-horizontal. Close to an unclogged toe drain (con-
stant piezometric head segment) the phreatic surface
(stream line) becomes vertical. The size of the ‘active’
segment of this drain is computed from the presented
2D analytical solution. The total seepage rate through
the dam and the size of the ‘active’ segment of the drain

Figure 6. (a). Free surface (extracted from MODFLOW 2005 output files) in the two shoulders and the dam core for k0 = 0.1, 0.01, and 0.005 m/day and k1 = 2 m/day.
(b). Trajectories of marked particles and velocity field for k0 = 0.01 m/day in the middle vertical section of the MODFLOW 2005 model.

Figure 7. MODFLOW 2005-simulated flow domain of Wu et al. (2013)
problem.
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are evaluated as functions of the sizes of the core and
shoulder, distance to the tow drain and hydraulic con-
ductivities of the two commingled subdomains.
Simulations by MODFLOW 2005 allow to study seepage
in piece-wise homogeneous porous dam bodies (there
are no analytical solutions to this problem with refrac-
tion along with interfaces between the shoulders and
core).
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