### КРАТКИЕ СООБЩЕНИЯ

УДК 543.422.4+543.226+547.565

## Е. И. Борисоглебская, Л. И. Потапова, В. В. Горбачук, А. В. Герасимов, А. Р. Бурилов, Э. М. Касымова, А. Р. Каюпов, В. В. Ковалев, Л. И. Маклаков, В. И. Коваленко

# ТЕРМИЧЕСКИЙ АНАЛИЗ НЕКОТОРЫХ ПРОИЗВОДНЫХ КАЛИКС[4]ФЕНОЛОВ И КАЛИКС[4]РЕЗОРЦИНОВ

В отличие от каликс[4]фенолов и незамещенных каликс[4]резорцинов 2гидроксиэтоксипроизводные каликс[4]резорцинов с конформационноподвижным спейсером – OCH<sub>2</sub>CH<sub>2</sub>- между ароматическими фрагментами и гидроксильными группами кристаллизуются без образования сольватов и/или клатратов, возможной причиной этого является потеря формы полости молекулами.

Каликс[4]арены (каликс[4]фенолы и каликс[4]резорцины) часто называют «третьим поколением молекул-хозяев», макроциклами с «почти неограниченными возможностями» благодаря легкости их получения и модификации [1, 2]. Сложное строение и богатые конформационные возможности каликс[4]аренов, предполагающие широкую перспективу их практического применения, обусловливают повышенный интерес к изучению структуры каликс[4]аренов и их физико-химических свойств. Как правило, молекулы каликс[4]фенолов и каликс[4]резорцинов имеют чашеобразную форму, и поэтому способны включать в свою полость и удерживать в ней широкий круг молекул и ионов, то есть, способны быть хранилищами и переносчиками различных молекул и ионов по типу «гость хозяин» [1-4]. Благодаря наличию у них гидроксильных групп, каликс[n]арены легко подвергаются химической модификации, что позволяет обеспечивать высокую селективность связывания «гостей» за счет оптимального расположения функциональных групп на ободке молекулярной «чаши», т.е. этот класс соединений успешно может быть использован в качестве платформ высокоселективных комплексообразователей в процессах экстракции [5, 6]. Все чаще для увеличения селективности процессов экстракции с использованием каликсаренов предпринимаются попытки создания полостей определенных размеров, причем ведущую роль здесь играет нековалентное связывание, т.е. полость фиксируется системой водородных связей [7, 8].

На сегодняшний день исследования в области химии каликс[4]аренов очень актуальны. Синтезированы многочисленные производные каликс[4]аренов, которые широко применяются в разных областях жизнедеятельности человека: в медицине, в промышленности, в экологии и т.д. [9-11]. Изучение взаимосвязи «структура – свойство» важно для решения задач экологии (связывание и хранение паров и газов) [9, 10], энергетики, а также для создания интеллектуальных систем распознавания вкуса и запаха [12, 13]. В связи с этим наиболее интересными свойствами каликс[4]аренов, обеспечивающими их широкое применение, являются сорбционные свойства. В качестве методов, позволяющих исследовать возможность включения «молекул – гостей» в полость каликс[4]аренов, часто используют рентгеноструктурный анализ [14-16] и ЯМР-спектроскопию [1]. Синхронный термический анализ – это метод, сочетающий методы дифференциальной сканирующей калориметрии (ДСК) и термогравиметрического (ТГ) анализа в одном эксперименте. Достоинство синхронного термического анализа в том, что в одном образце с определенной массой за одно измерение регистрируются и ДСК (тепловые) и ТГ (изменение массы) эффекты. В настоящей работе этот метод использован нами для определения возможности включения «молекул – гостей» в полость каликсарена. Изучением сорбционных свойств каликс[4]фенолов методом термического анализа интенсивно занимаются Горбачук В.В. с сотрудниками [17-20], возможность включения низкомолекулярных веществ в полость каликс[4]резорцинов и их 2-гидроксиэтоксипроизводных методом термического анализа, насколько нам известно, не исследовалась.

Цель работы: сравнительное исследование сорбционных свойств *трет*-бутильных и адамантановых производных каликс[4]фенолов (А), незамещенных каликс[4]резорцинов (Б) и 2-гидроксиэтоксипроизводных каликс[4]резорцинов (В) методом синхронного термического анализа с привлечением ИК-спектроскопии.

Объекты исследования:



ТГ/ДСК кривые регистрировались для *трет*-бутильных и адамантановых производных каликс[4]фенолов, незамещенных каликс[4]резорцинов и 2-гидроксиртоксипроизводных каликс[4]резорцинов.

На ДСК кривой (рис. 1, кривая 1) нагревания образца *трет*-бутилкаликс[4]фенола от комнатной температуры до 600°С регистрируется эндотермический пик при температуре 345.7°С, очевидно связанный с плавлением *трет*-бутилкаликс[4]фенола, которое переходит в разложение, о чём свидетельствуют последующие эндо – пики (рис. 1). Действительно, при анализе ТГ кривой (рис. 1, кривая 2) можно видеть, что существенное изменение массы образца происходит при температурах выше 356°С. На ТГ кривой в температурном интервале от 100 до 336°С регистрируется небольшое уменьшение массы образца (рис. 1, кривая 2). Незначительные потери в массе (до пика плавления потери массы составляют около 3-4% от общей массы образца), вероятно, объясняются удалением из образца малых молекул, сольватных или межкристаллитных. Незначительное количество таких маленьких молекул объясняется тем, что *трет*-бутильные группы одной молекулы *трет*-бутилкаликс[4]фенола, тем самым, закрывая доступ в полость каликсарена небольшим молекулам растворителя или воды [21].

Зная, какие низкомолекулярные молекулы сорбированы каликсфенолом, всегда можно рассчитать их количество. В данном случае было взято 6,852 мг образца. 4% соот-

ветствуют 0,2741 мг вещества. Если допустить, что низкомолекулярное вещество, сорбированное каликсфенолом, вода, то на две молекулы *трет*-бутилкаликс[4]фенола (М=648 г/моль) приходится три молекулы воды.



Рис. 1 - ТГ/ДСК кривые нагревания образца трет-бутилкаликс[4]фенола от комнатной температуры до 600°С

На ДСК кривой (рис. 2, кривая 1) нагревания образца каликс[4]фенола с фрагментами адамантилуксусной кислоты от комнатной температуры до 600°С регистрируется несколько пиков, причем один из них соответствует экзотермическому процессу (рис. 2, кривая 1).



Рис. 2 - ТГ/ДСК кривые нагревания образца каликс[4]фенола с фрагментами адамантилуксусной кислоты по верхнему ободу

Этот экзо-эффект наблюдается для каликс[4]фенола с фрагментами адамантилуксусной кислоты при температуре 198°С (рис. 2). Чтобы понять причину наблюдаемого эффекта, нами был проведён эксперимент с нагреванием вышеуказанного вещества до температуры 210°С. При наблюдении в поляризационном микроскопе при комнатной температуре видим, что исходное вещество аморфно, при повышении температуры до 190°С наблюдается переход в жидкое состояние, после чего начинает кристаллизоваться.

Описанные выше эффекты можно объяснить таким образом: так как после синтеза вещество подвергают очистке с последующим вынужденным осаждением, оно при этом не успевает закристаллизоваться. При нагревании до 210°С, происходит удаление низкомолекулярных веществ (около 0,8% согласно ТГ (рис. 2, кривая 2), а молекулы каликсарена начинают кристаллизоваться (что удается наблюдать в поляризационном микроскопе). При этом выделяется энергия (экзотермический процесс).

Нагревание вещества до 284,8°С приводит к плавлению, при этом образец темнеет. Поэтому пик при 284,8°С, скорее всего, относится к действительному плавлению каликс[4]фенола с фрагментами адамантилуксусной кислоты. Пики выше 350°С, вероятнее всего, характеризуют ступенчатое разложение вещества, эти процессы характеризуются большой потерей массы.

Масс-анализатор показывает, что в кристаллическом каликс[4]феноле с фрагментами адамантилуксусной кислоты присутствуют молекулы воды, спирта, хлороформа и толуола.

Для каликс[4]фенола с фрагментами адамантилмуравьиной кислоты на ДСК кривой при 333,6°С наблюдается сильный эндотермический пик (рис. 3, кривая 1), очевидно связанный с плавлением, которое переходит в разложение, о чем свидетельствуют три эндо – пика при 471.6, 495,3 и 530,4°С. Действительно, при анализе ТГ кривой (рис. 3, кривая 2) можно видеть, что существенное изменение массы образца происходит при температуре выше 400°С. На ТГ кривой в температурном интервале от 100 до 400°С происходит потеря более десяти процентов от общей массы. Масс-анализатор QMS 403 Aeolos<sup>®</sup> показывает, что в кристаллической ячейке каликс[4]фенола с фрагментами адамантилмуравьиной кислоты содержатся молекулы воды и спирта.



Рис. 3 - ТГ/ДСК кривые нагревания образца каликс[4]фенола с фрагментами адамантилмуравьиной кислоты по верхнему ободу

При анализе ТГ кривых исследованных каликс[4]фенолов мы наблюдаем, что нагревание примерно до 100°С и выше сопровождается потерей массы вещества, то есть, вероятнее всего происходит удалением малых сольватных, внеполосных молекул (воды, молекул растворителя), остающихся всегда в каликс[4]феноле после его очистки и перекристаллизации. Интересно, что масса образца продолжает убывать и при более высоких температурах (около 200°С). Так как температуры плавления и разложения каликс[4]фенолов очень высоки (существенно выше 200°С), то потери массы можно связать, на наш взгляд, с удалением внутриполостных, клатратных молекул. Тот факт, что их удаление происходит при таких высоких температурах, показывает, что они очень сильно связаны с молекулой каликс[4]фенола.

Похожая картина наблюдается и при нагревании незамещенных каликс[4]резорцинов.

На ДСК кривой нагревания (рис. 4, кривая 1) образца незамещенного каликс[4]резорцина с  $R_1 = C_5 H_{11}$  регистрируется два пика: при 92,6°С и при 298,4°С Пик при 298,4°С соответствует плавлению вещества с последующим разложением. Пик при 92,6°С, как показывает масс-анализатор, связан с удалением сольватных молекул воды. Анализ ТГ кривой (рис. 4, кривая 2) показывает, что при этой температуре происходит потеря 1,64 % от общей массы образца.



# Рис. 4 - ТГ/ДСК кривые нагревания образца незамещенного каликс[4]резорцина с R<sub>1</sub>= C<sub>5</sub>H<sub>11</sub>

Для других незамещенных каликс[4]резорцинов с  $R_1 = C_7 H_{15}$  и  $R_1 = C_9 H_{19}$  ТГ/ДСК кривые схожи с таковыми для каликс[4]резорцина с  $R_1 = C_5 H_{11}$ . То есть, производные каликс[4]фенолов и незамещенные каликс[4]резорцины ведут себя как типичные «молекулы – полости», теряя при нагревании захваченные при кристаллизации небольшие сольватные и клатратные молекулы. Плавление и разложение производных каликс[4]фенолов происходит не в точке, а в некотором интервале температур (на ДСК кривых этим процессам соответствуют широкие пики). Нагревание незамещенных каликс[4]резорцинов сопровождается плавлением (этому процессу соответствует узкий интенсивный пик на ДСК кривой).

Анализ ДСК кривых трёх 2-гидроксиэтоксипроизводных каликс[4]резорцинов показал, что все образцы плавятся фактически в точке, а не в широком интервале температур, как в случае производных каликс[4]фенолов. Так эндотермический пик при 254.9°C на ДСК кривой для 2-гидроксиэтоксипроизводного каликс[4]резорцина с  $R_1 = C_5H_{11}$  соответствует плавлению (рис. 5, кривая 1). Анализ ТГ кривой показал, что в отличие от производных каликс[4]фенолов и незамещенных каликс[4]резорцинолов, здесь с нагреванием практически не происходит потери массы образцов, как показано на примере 2гидроксиэтоксипроизводного каликс[4]резорцина с  $R_1 = C_5H_{11}$  (рис. 5, кривая 2).



Рис. 5 - ТГ/ДСК кривые нагревания 2-гидроксиэтоксипроизводного каликс[4]резорцина с R<sub>1</sub> = C<sub>5</sub>H<sub>11</sub> от комнатной температуры до 350°С

Для двух других 2-гидроксиэтоксипроизводных каликс[4] резорцинов картины аналогичные.

Нами обнаружена интересная зависимость температуры плавления 2гидроксиэтоксипроизводных от длины алифатического радикала R<sub>1</sub> (рис. 6).



Рис. 6 - Зависимость температуры плавления 2-гидроксиэтоксипроизводных каликс[4] резорцинов от длины алифатического радикала

ИК-спектры кристаллических 2-гидроксиэтоксипроизводных каликс[4]резорцина с разными алифатическими радикалами R<sub>1</sub>, которые различаются только длиной алифатической цепи, похожи и имеют общие группы полос, отличающиеся только по интенсивности полос поглощения метиленовых цепочек.

В области поглощения гидроксильных групп мы наблюдаем широкую полосу с частотой полосы поглощения  $v_{OH}$ : 3345 см<sup>-1</sup> для производного каликс[4]резорцина с алифатическим радикалом  $C_5H_{11}$  (3353 см<sup>-1</sup> – для каликс[4]резорцина с алифатическим радикалом  $C_7H_{15}$  и 3346 см<sup>-1</sup> – для каликс[4]резорцина с алифатическим радикалом  $C_9H_{19}$ ). Хорошо известно [22], что такая частота  $v_{OH}$  характерна для обычных спиртов.

Таким образом, изучив ТГ/ДСК кривые производных каликс[4]фенолов, незамещенных каликс[4]резорцинов и 2-гидроксиэтоксипроизводных каликс[4]резорцинов, можно заключить, что

 производные каликс[4]фенолов и незамещенные каликс[4]резорцины ведут себя как типичные "молекулы-полости", в то время как 2-гидроксиэтоксипроизводные каликс[4]резорцинов представляют собой обычные органические молекулы;

 наличие конформационно-подвижного спейсера в молекуле 2гидроксиэтоксипроизводного каликс[4]резорцина, по-видимому, приводит к серьезной конформационной перестройке молекул, при этом они теряют форму полости и кристаллизуются без образования сольватов и/или клатратов;

 имеет место влияние длины алифатического радикала R<sub>1</sub> на температуру плавления 2-гидроксиэтоксипроизводных каликс[4]резорцинов.

### Экспериментальная часть

*пара*-(3-Карбоксиметил-1-адмантил)каликс[4]фенол [23], *пара*-(3-карбокси-1адмантил)каликс[4]фенол [23] были впервые синтезированы в Московском государственном университете профессором Ковалевым В.В. и его коллегами Шоковой Э.А. и Вацуро И.М. На последней стадии очистки все соединения были перекристаллизованы из смеси хлороформа с метанолом и высушены в вакууме при 140°С (кипящий ксилол). *пара-трет*-Бутилкаликс[4]фенол был получен по известной методике [24] Антипиным И.С., Соловьевой С.Е. и сотрудниками лаборатории химии каликсаренов (ХК) ИОФХ имени А.Е. Арбузова.

2-Гидроксиэтоксипроизводные каликс[4]резорцинов [25] были впервые получены Буриловым А.Р. и сотрудниками лаборатории элементорганического синтеза (ЭОС). Каликс[4]резорцины также были получены в лаборатории ЭОС по известной методике [26].

В данной работе для изучения структуры и системы водородного связывания каликс[4]фенолов и каликс[4]резорцинов использовались методы инфракрасной спектроскопии, поляризационная микроскопия и синхронного термического анализа (ТГ/ДСК анализа). ИК спектры соединений регистрировали на Фурье-спектрометре Vector 22, (Bruker, Германия) в среднем ИКдиапазоне (4000-400 см<sup>-1</sup>), оптическое разрешение 4 см<sup>-1</sup>. Образцы готовили в виде таблеток с бромистым калием.

Использовался поляризационный микроскоп МИН–8 (ЛОМО, СССР) с 64х –кратным увеличением, образцы помещались между двумя покровными стеклами, на нагревательный столик Boëtius M 665/2996 (Германия).

ДСК и ТГ измерения были проведены на приборе NETZSCH STA 449C Jupiter (Германия) в атмосфере аргона в диапазоне температур от + 30°C до + 600°C Скорость нагрева составляла 10 град/мин. Образцы ЖК помещали в негерметизированные (для свободного отвода выделяющихся продуктов и уменьшения влияния избыточного давления) алюминиевые тигли. Масса образцов определялась с использованием внутренних весов прибора, чувствительность 0,1 мкг. Определение низкомолекулярных веществ, захваченных каликс[4]фенолом или каликс[4]резорцином проводилось с помощью квадрупольного масс-спектрометра QMS 403 Aeolos<sup>®</sup>, сопряженного с термическим анализатором NETZSCH STA 449C Jupiter.

#### Литература

- 1. *Gutsche, C.D.* Calixarenes: Monographs in Supramolecular Chemistry / C.D Gutsche. Cambridge: Royal Society of Chemistry, 1989. 223 p.
- 2. *Böhmer, V.* Calixarenes, Macrocycles with (Almost) Unlimited Possibilities / V. Böhmer// Angew. Chem. Int. Ed. Engl. 1995. Vol. 34. P. 713-745.
- Mogck, O. NMR Studies of the Reversible Dimerization and Guest Exchange Processes of Tetra Urea Calix[4]arenas Using a Derivative with Lower Symmetry / O. Mogck [et. al.] // J. Am. Chem. Soc. – 1997. – Vol. 119. – P. 5706-5712.
- 4. *Chapman, R.G.* Elucidation of "Twistomers" in Container Compounds / R.G Chapman, J.C. Sherman // J. Am. Chem. Soc. 1999. V. 121. P. 1962-1963.
- Adams, H. Selective Adsorption in Gold-Thiol Monolayers of Calix-4-resorcinarenes / H. Adams, F. Davis, C.J.M Stirling // J.Chem.Soc., Chem.Commun. 1994. V. 21. P. 2527-2529.
- Cram, D.J. Host-Guest Complexation. 46. Cavitands as Open Molecular Vessels Form Solvates / D.J. Cram, S. Karbach, H.-E. Kim, C.B. Knobler, E.F.Maverich, J.L Ericson, R.S. Helgeson // J. Am. Chem. Soc. – 1988. – Vol. 110. - P. 2229-2237.
- Leigh, A. Unusual Host Guest π– Arene...H Bonding in a "Hooded" Cavitand: the First Solid-State Structure of a calix[4]resorcinarene with Underivatised Hydroxy Groups / A. Leigh [et. al.] // J. Chem. Soc., Chem. Commun. – 1994. - P. 389-390.
- 8. *Rudkevich, D.M.* Intramolecular Hydrogen Bonding Controls the Exchange Rates of Guests in a Cavitand / D.M Rudkevich., G. Hilmersson, J. Rebek // J. Am. Chem. Soc. 1997. V. 119. P. 9911-9912.
- 9. Антипин, И.С. Экстракция технеция (VII) тетракетонами и тетраэфирами каликс[4]аренов из кислых и щелочных сред / И.С.Антипин, С.Е. Соловьева, И.И Стойков // Известия Академии наук, Серия Химическая. – 2004. – №1. – С. 1-6.
- 10. *Atwood, J.L.* A crystalline organic substrate absorbs methane under STP conditions / J.L. Atwood [et. al.] // Chem. Commun. 2005. P. 51 53.
- 11. *Molenveld, P.* Dinuclear metallo-phosphodiesterase models: application of calix[4]arenes as molecular scaffolds / P. Molenveld, J.F.J. Engbersen, D.N Reinhoudt // Chem. Soc. Rev. 2000. 29. P. 75-86.
- 12. *Kalchenko, V.I* Calixarene-based QCM sensors array and its response to volatile organic vapours / V.I Kalchenko [et. al.]// Materials Science. 2002. Vol. 20. № 3. P.73-88.
- O'Sullivan, C.K. Commercial quartz crystal microbalances theory and applications / C.K. O'Sullivan , G.G. Guilbault // Biosensors & Bioelectronics. – 1999. – Vol.14. – P.663-670.
- 14. *Atwood, J.L.* A new type of material for recovery of hydrogen from gas mixtures / J.L. Atwood, L.J. Barbour, A. Jerga // Angew. Chem.. Int. Ed. 2004. Vol. 43. P. 2948 2950.
- 15. *Dalgano, S.J.* Engineering void space in organic van der Waals crystals: calixarenes lead the way / S.J. Dalgano [et. al.] // Chem. Soc. Rev. 2007. Vol. 36. P. 236 245.
- 16. *Thallapally, P.K.* Sorption of nitrogen oxides in a nonporous crystal / P.K. Thallapally, B.P. McGrail, J.L. Atwood // Chem. Commun. 2007. P. 1521 1523.
- 17. *Gorbatchuk, V.V.* Molecular recognition of organic guest vapor by solid adamantylcalix[4]arene / V.V. Gorbatchuk [et. al.] // Rus. Chem. Bull., International Ed. 2004. Vol.53. P. 60 65.
- Gorbatchuk, V.V. Influence of the molecular size on the thermodynamic parameters of host guest complexes between solid tert-butylcalix[4]arene and vapours of organic compounds / V.V. Gorbatchuk [et. al.] // Mendeleev Commun. Electronic Vers., Issue 1. – 1999. – P.1 – 44.
- Gorbatchuk, V.V.Estimation of the free energy of the supramolecular effect on host guest complex between solid tert-butylcalix[4]arene and vapors of organic compounds / V.V. Gorbatchuk [et. al.] // J. Inclusion Phenomena Macrocyclic Chem. – 1999. – Vol. 35. – P. 389 – 396.
- 20. Зиганшин, М.А. Влияние размера макроцикла каликсарена на термодинамические параметры образования соединений включения в системах парообразный "гость" твердый "хозяин" / М.А. Зиганшин [и др.] // Изв. АН, Сер. «Химия». 2004. № 7. С. 1478 1485.

- Enright, G.D. Thermally programmable gas storage and release in single crystals of an organic van der Waals host / G.D. Enright [et. al.] // J. Am. Chem. Soc. – 2003. – Vol. 125. – P. 9896 – 9897.
- 22. Беллами, Л. Инфракрасные спектры сложных молекул / Л. Беллами. М.: ИЛ., 1963. 590 с.
- 23. Shokova, E. A. p-(3-Carboxy- and 3-carboxymethyl-1-adamantyl)calix[4]arenes: synthesis and arming
- with amino acid units / E. A. Shokova [et. al.] // Tetrahedron Letters. 2004. Vol.45. P. 6465–6469.
- 24. *Gutsche, C.D.* Calixarenes. 18. Synthesis Procedures for p-tert-Butyicalix[4]arene / C.D. Gutsche, M. Iqbal, D. Stewart // J.Org.Chem. 1986. Vol. 51. P. 742-745.
- 25. *Касымова, Э.М.* 1,3-Бис(2-гидроксиэтокси)бензол в синтезе каликс[4]резорцинов / Э.М. Касымова [и др.]// Ж. Общ. Хим. 2007. Т. 77. Вып. 8. С.1395-1396.
- 26. *Tunstad, L.M.* Host Guest Complexation. 48. Octol Blocks for Cavitands and Carcerands / L.M. Tunstad [et. al.] // J. Org. Chem. 1989. Vol. 54. P. 1305-1312.

© Е. И. Борисоглебская – канд. хим. наук, мл. науч. сотр. ин-тута органической и физической химии имени А.Е. Арбузова, Каз.НЦ РАН; Л. И. Потапова – ст. препод. каф. физики КГАСУ; В. В. Горбачук – д-р хим. наук, проф. хиимического ин-тута имени А.М. Бутлерова; А. В. Герасимов – асп. того же института; А. Р. Бурилов – д-р хим. наук, вед. науч. сотр. ин-тута органической и физической химии имени А.Е. Арбузова, Каз.НЦ РАН; Э. М. Касымова – канд. хим. наук, мл. науч. сотр. того же института; А. Р. Каюпов – асп. того же института; В. В. Ковалев – д-р хим. наук, гл. науч. сотр. МГУ; Л. И. Маклаков – д-р хим. наук, зав. каф. физики КГАСУ; В. И. Коваленко – д-р хим. наук, проф. зав. лаб. ин-тута органической и физической химии имени А.Е. Арбузова, Каз.НЦ РАН.