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1. INTRODUCTION

Below, a family of methods from the class of hybridizable discontinuous Galerkin (HDG) finite ele�
ment methods (FEM) intended for the approximate solution of second�order elliptic equations is pro�
posed and analyzed in terms of an abstract theory. HDG schemes are hybridizable versions of discontin�
uous Galerkin schemes (DG or DGFEM schemes) and occupy an intermediate position between the
finite�volume method and FEM (for more detail on DG schemes, see, e.g., [1, 2]). HDG schemes were
introduced in [3]. They have much in common with mixed hybridizable FEM schemes [4] and are also
formulated in terms of approximations to u, q, and λ, where u is the solution of the problem, q is the flux
vector, and λ is the trace of u on the interelement boundaries. The characteristic features of HDG schemes
are as follows: (a) they are based on discontinuous finite element spaces (of arbitrary accuracy), (b) locally
(elementwise) conservative, and (c) admit efficient implementation. For example, when such methods
are applied to linear problems, the unknowns corresponding to u and q can be elementwise eliminated
from the scheme to obtain a system of algebraic equations for determining only the unknown correspond�
ing to λ. For problems with a symmetric positive definite operator, the matrix of the system is symmetric
and positive definite as well. After λ is found, the other unknowns are also recovered elementwise. Note
also that HDG schemes do no face difficulties related to the approximation of the main and natural
boundary conditions.

The theory of HDG methods being developing at present is associated with linear problems. In con�
trast, we consider the nonlinear problem

(1)

where Ω is a bounded polyhedron in Rd with boundary ∂Ω, f ∈ L2(Ω), and d ≥ 2. The homogeneous
Dirichlet problem is used only for methodological reasons. The proposed approximate method and its
analysis can be straightforwardly extended to inhomogeneous boundary conditions, including mixed
ones.

Assume that the coefficients k(x, ξ) = (k1(x, ξ), k2(x, ξ), …, kd(x, ξ)) and k0(x, ξ) are continuous func�

tions of х ∈  for any ξ ∈ Rd + 1 and ki(·, 0) = 0, i = 0, …, d. Moreover, for any x ∈ Ω, we assume that

(2)
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(3)

To construct a discrete scheme, Eq. (1) is written as a system of first�order equations involving, in addi�
tion to u and q, a new unknown σ:

(4)

According to the theory of monotone operators, the above conditions ensure that problem (1) has a
unique weak solution in the Sobolev space Н1(Ω) (see, e.g., [5]); moreover, in (4), σ ∈ [L2(Ω)]d, u ∈

(Ω), q ∈ H(div; Ω) = {q ∈[L2(Ω)]d : ∇ · q ∈ L2(Ω)}.

The new vector unknown σ introduced into the schemes under consideration is a feature in which they
differ from known HDG schemes and mixed hybridizable FEM schemes. As a result, the complexity of
the method increases insignificantly, since the unknown can elementwise eliminated from the scheme.

This paper is organized as follows. In Section 2, we define a triangulation �h of Ω and abstract spaces
of discontinuous finite elements. In Section 3, a technique for the design of DG schemes is used to define
the initial family of HDG schemes. In Section 4, an equivalent formulation of the discrete problem is
derived by eliminating the variables corresponding to σ and q from the scheme. This formulation is called
basic. It uses the concept of a discrete gradient, whose properties are examined in Section 5. Simulta�
neously, we introduce two basic constraints on the finite element spaces ((H1) and (H2)), which ensure the
derivation of a stability estimate (Section 5) and an error estimate for the method (Sections 6, 7). The
accuracy of the scheme is estimated in terms of the errors of the orthogonal L2�projections of u, q, and λ
onto the corresponding finite element spaces. Optimal error estimates are obtained in Theorem 7 under
two conditions (H3) and (H4) added to (H1) and (H2). In Section 8, we discuss consequences of the abstract
conditions and give examples of finite element spaces satisfying them. Finally, in Section 9, we propose
and examine a solution method for systems of algebraic equations in the case of a linear original problem
and an iterative method for nonlinear problems. The condition number of the arising matrices is esti�
mated.

2. SPACES OF DISCONTINUOUS FINITE ELEMENTS

Let h be a small positive parameter, and let K1, K2, …, KN(h) be polyhedral domains in Rd generating a
partition of Ω (triangulation of Ω) into subdomains of maximum diameter h (which are referred to as finite

elements); i.e., (T1) h = maxidiam(Ki), (T2) Ki ∩ Kj =  for i ≠ j, and (T3)  = . Furthermore, let

�h denote the set of all finite elements and K be an arbitrary element of �h. By the faces of K, we mean its
(d – 1)�dimensional faces. The triangulation �h is assumed to be conformal; i.e., (T4) any face of K is
either a subset of the boundary ∂Ω or a face of a neighboring element L ∈ �h. Additionally, �h is assumed

to be affinely equivalent [6]; i.e., (T5) every K ∈ �h is the image of some  ∈  under a invertible affine

transformation: K = FK( ), FK(x) =  + bK, where  is a finite set of domains of various shapes with
a unit diameter, which are referred to as basis elements. Assume also that (T6) the triangulation is regular

[6]; i.e., ||BK|| ~ h and ~ h–1 for any K ∈ �h. For arbitrary functions f and g of h and, possibly, of K,

e, �h, and , the expression f ~ g ( f(v) ~ g(v)) means that there are constants such that g ≤ f ≤ Cg(cg(v) ≤
f(v) ≤ Cg(v) for all admissible v). Here and below, c and C possibly with indices denote various positive

constants independent of h, K, e, �h, or .

By an inner face of elements from �h, we mean a face e shared by two elements, say, K and L : e =

 ∩ . Otherwise, e is said to be a boundary face. Let �h and  denote the sets of all inner and boundary

faces, respectively, and  = �h ∪  be the set of all faces. Let e be an arbitrary face from  and nK be
the field of unit normals on ∂K directed outward with respect to K. By ∂K, we mean both the set of faces K and
the boundary of K, and |K| and |e| stand for the d� and (d – 1)�dimensional measures of K and e, respec�
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tively. The restriction (trace) of u onto D is designated as u|D. Similarly, for an arbitrary set of functions H(D),

let H(D)|S = {u|S, u ∈ H(D)} for S ⊂ .

The conventional notation Hs(D) is used for the Sobolev spaces of order s equipped with the standard
norm  and seminorms . By  and (·, ·)D, we mean the norm and the inner product in both

the inner space L2(D) and the vector space [L2(D)]d, while  and  denote the standard norm and

seminorm in [Hs(D)]d. We use the following notation:

The space Hs(�h) is the set of functions defined on Ω whose restrictions to an arbitrary element K ∈ �h

belong to Hs(K). This space is equipped with the norm  = . Let H(div; �h) = {w ∈

[L2(Ω)]d : w|K ∈ H(div; K), K ∈ �h}.

Every element K ∈ �h and every face e ∈  are assigned finite�dimensional spaces

such that

( ) V(K), W(K), and Λ(e) contain constant functions.

Throughout this paper, conditions (H0) and ( ) are assumed to hold. Define the finite�dimensional
spaces of functions

Here, Vh is used for approximating the solution u; Wh, for approximating σ and q; and Λh, for approx�
imating the trace of u on the interelement boundaries. Note that functions from Vh and Wh do not need to
be continuous on Ω and no boundary conditions are imposed on them. Thus, Vh ⊂ H1(�h) and Wh ⊂
H(div; �h). Moreover, u|e, w · n|e ∈ L2(e) for u ∈ Vh and w ∈ Wh.

Additionally, πV, πW, and πΛ denote local L2�orthoprojectors in Vh, Wh, and Λh, respectively; i.e., (πVu –
u, v)K = 0 ∀v ∈ V(K), (πWq – q, w)K = 0 ∀w ∈ W(K), and (πΛλ – λ, μ)e = 0 ∀μ ∈ Λ(e).

3. FAMILY OF HDG SCHEMES

First, we formulate auxiliary relations for the unknowns in Eqs. (4) and for the new unknown λ = .

Multiplying the restriction of the first equation in (4) to an element K by w ∈ W(K) and integrating the
result by parts, we obtain (σ, w)K + (u, ∇ · w)K – (u, w · nK)∂K = 0. Replacing u by λ in the third term yields

The following relations are straightforward:

(5)

Since q ∈ H(div; Ω), we conclude that, under the assumption  · n ∈ L2( ), it is true that

D
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These relations for the sought variables (σ, u, q, λ) are used to set up an approximate problem. Substi�
tuting the unknown functions by their approximation produces the following discrete problem for deter�
mining (σh, qh, uh, λh) ∈ Wh × Wh × Vh × Λh:

(6)

(7)

(8)

(9)

Note that scheme (6)–(9) is locally (elementwise) conservative. Indeed, let D be the union of an arbi�
trary set of finite elements and v|D = 1. After summation (8) over all K ∈ D, we obtain the relation

since, by virtue of (9),  = 0 for e = .

The method used to construct a discrete scheme is characteristic of finite�volume methods or DG
schemes. It can also be noted that, in the special case when Eq. (1) coincides with the Poisson equation
(q = k(x, u, σ) = σ, k0(x, u, σ) = 0), scheme (6)–(9) coincides with the hybridizable mixed FEM scheme
with suitably defined finite element spaces (see [4; 7, pp. 178–181]).

Equations (6)–(9) define the desired family of schemes. A particular scheme is obtained by specifying
the spaces {V(K), W(K), Λ(e)}. The main objective of the subsequent study is to identify the conditions on
the families of spaces in assumption (H0) that are responsible for the stability and accuracy of the scheme.

4. BASIC FORMULATION OF THE SCHEME

We introduce additional definitions and notation. Note that σh|K is uniquely determined by Eq. (6) if
uh|K and λh|∂K are given. By definition, uh|K = (uh|K, λh|∂K) is an approximation of u|K = (u|K, u|∂K), and the
function σh is an approximation of σ = ∇u. In this context, the operator (uh, λh)  σh defined element�
wise by (6) can be treated as a discrete analogue of the gradient. Denote it by ∇h, so σh = ∇huh. This can
be formalized as follows.

Let Λ(∂K) = {μ ∈ L2(∂K) : μ|e ∈ Λ(e), e ∈ ∂K}. We introduce the space V(K) = V(K) × Λ(∂K) with a
common element v = (v, μ) and define the operator ∇K : V(K)  W(K) according to the rule

(10)

The operator ∇K will be referred to as a local discrete gradient. Setting Vh = Vh × Lh = {v = (v, μ) : v|K =
(v|K, μ|∂K) ∈ V(K)}, we define the discrete gradient operator ∇h : Vh  Wh by the relations (∇hv)|K =
∇K(v|K); i.e.,

(11)

Let us obtain the basic formulation of scheme (6)–(9). Let vh = (vh, μh) ∈ Vh. For w = qh in (11), it is
true that –(vh, ∇ · qh)K = (∇hvh, qh)K – (μh, qh · nK)K. Combining this equality with (8) yields

(12)

Adding (12) to (7) with w = –∇hvh, we derive the identity

(13)

Note that σh = ∇huh according to (6). Summing up (13) over all K and using (9), we obtain an equivalent
problem for determining uh = (uh, λh) ∈ Vh, namely,

(14)

σh w,( )K uh ∇ w⋅,( )K λh w nK⋅,( )∂K–+ 0 w∀ W K( ), K �h,∈ ∈=

qh k · uh σh, ,( )– w,( )K 0 w∀ W K( ), K �h,∈ ∈=

∇ qh v,⋅( )K– k0 · uh σh, ,( ) v,( )K+ f v,( )K v∀ V K( ), K �h,∈ ∈=

qh n μ,⋅( )∂�h
0 μ∀ Λh.∈=

f k0 · uh σh, ,( )–( ) xd

D

∫ qh

∂D

∫ nDds⋅+ 0,=

qh K qh L–( )
e∫ nKds⋅ K L∩

∇Kv w,( )K v ∇ w⋅,( )K– μ w nK⋅,( )∂K w∀ W K( ).∈+=
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where ah(uh, vh) = (k(·, uh, ∇huh),  + (k0(·, uh, ∇huh),  and fh(vh) = ( f, . Then σh = ∇huh

and qh = πW(k(·, uh, σh)) are elementwise determined using the found solution.
Clearly, the properties of the form ah depend on the properties of the discrete gradient. Specifically,

condition (3) implies the estimate

(15)

If the functional v   determines the norm in Vh, then (15) means that ah is strongly monotone.
In this case, the unique solvability of the problem is easy to prove by relying on the theory of monotone
operators. Clearly, this property of the discrete gradient is critical to the unique solvability and stability of
the scheme. In what follows, we are interested only in the case where problem (14) is uniquely solvable.
Obviously, the solution (uh, λh, σh, qh) is a unique solution of scheme (6)–(9).

5. STABILITY OF THE SCHEME

Let V(∂K) = (v|∂K, v ∈ V(K)} and V0(K) = {(v, μ) ∈ V(K) : (v, μ) = (c, c), c ∈ R} be a one�dimensional
subspace of V(K) (of constant functions).

The basic constraints on the choice of the spaces V(K), W(K), and Λ(e) are as follows.
(H1) The following relation holds only for (v, μ) ∈ V0(K):

(H2) , , and  are affinely equivalent families. (If  is the basis

element corresponding to K, then, for example, V(K) is the image of some V( ) under an affine transfor�
mation (see [6]). An important example is given by spaces of polynomials. For particular spaces, condition

(H1) suffices to verify only on  by virtue of (H2).)

As compared with (H0), ( ), and (H2), condition (H1) is more restrictive: it relates all three spaces
(V, W, Λ) and, according to it, the local discrete gradient must vanish only on constant functions. In view
of condition (H2), in what follows, we will use the standard FEM technique for estimating the approxima�
tion error and reverse inequalities of the type |w|1, K ≤ ch–1|w|0, K, which are based on norm equivalence in
finite�dimensional spaces.

On V(K) we define the seminorm

It is easy to see that this is the norm on the quotient space V(K)/V0(K).
Theorem 1. Assume that conditions (H1, 2) hold; i.e., (H1) and (H2) are both satisfied. (The notation

(H1, 2, 3, …) is understood in a similar manner.) Then, for v ∈ V(K),

(a) ∇Kv = 0 is equivalent to v ∈ V0(K);

(b) ||∇Kv||0, K ~ supw ∈ W(K)\{0}|(∇Kv, w)K|/||w||0, K ~ |v|1, K.

Proof. Assertion (a) follows directly from (10) and (Н1). Let us prove (b). According to (10), we have

Let JK = supw ∈ W(K)|JK(w)K|/||w||0, K. In this definition, we pass from the element K to the corresponding

basis element  ∈ . Let x = FK( ) =  + bK be the transformation of  at K and |BK| = det(BK). The

notation  = v(x) is used for the image of a scalar function v under the transformation x = FK( ),

while  =  denotes the image of a vector function w (under the Piola transform).

We have (see, e.g., [7, p. 98])
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where  =  + … +  and  is the unit outward normal vector to . Denote by 

and  the minimal and maximal eigenvalues of the matrix . Then

(16)

The functional  defines a seminorm on V( ). According to (H1), the equality  = 0 implies

that ; i.e., the norm  on the finite�dimensional space V( )/V0( ) is equivalent to

. Thus, relation (16) implies the estimates

(17)

We change variables back to the original element in (17) and use the following well�known estimates
(see, e.g., [6]):

Since �h is regular, in these estimates, we have ||BK|| ~ h and  ~ h–1. Therefore, as is easy to see, (17)
implies (b). The theorem is proved.

Let us equip the above�introduced spaces H1(�h), Vh, Λh, Vh, and Wh with norms. Recently, various
norms of Hs(�h) have been extensively studied in the context of the theory of nonconformal finite ele�
ments and discontinuous Galerkin methods (see, e.g., [8–10] for s = 1 and [11] for s = 2). For example,
H1(�h) can be equipped with the norm

where [v] is the jump in v on  and [v] = v on  (in what follows, we use only the modulus [v]). An
interesting feature of this norm is that it satisfies the following analogue of a Poincare�type inequality [9]:

Therefore,

(18)

On Vh, we introduce the norm
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We introduce the norm  on Wh and  on Λh. The space Vh is equipped with the norm

The fact that this functional defines a norm follows from the condition μ = 0 on , μ ∈ Λh.

Theorem 2. Let conditions (H1, 2) hold. Then, for any v = (v, μ) ∈ Vh,

Proof. The first assertion follows from Theorem 1(b). To prove (b), we define the functional

and estimate it on Λh from below. Since (μ – v|K)2 + (μ – v|L)2 = 2(μ – (v|K + v|L)/2)2 + 0.5(v|K – v|L)2,

the definition of [v] implies that F(μ) ≥ 0.5 . Therefore, by virtue of estimate (19), we obtain

The theorem is proved.
Lemma 1. Let conditions (H1, 2) hold and 〈v〉K = |K|–1(v, 1)K. Then

Proof. In a similar manner to the proof of Theorem 1, we show that  ~  +

, which yields the assertion of the lemma.

Lemma 2. Under conditions (2), (3), and (H1, 2), the form аh is strongly monotone, Lipschitz�continuous,
and coercive; i.e., for u1, u2, v ∈ Vh, we have the estimates

Proof. The first assertion follows directly from estimate (15) and Theorem 2. Theorem 2 also implies
that  +  ≤  for any v = (v, μ) ∈ Vh. Now, the second estimate in the lemma is easily
derived from condition (2). To verify coercivity, it is sufficient to set u1 = v and u2 = 0 in the first estimate.

Theorem 3. Let conditions (2), (3), and (H1, 2) hold. Then discrete problem (6)–(9) has a unique solution
and this solution satisfies the stability estimate

where σi, h, qi, h, ui, h = (ui, h, λi, h) are the solution of scheme (6)–(9) with right�hand sides fi, i = 1, 2.
Proof. Consider problem (14). The linear functional fh is bounded in Vh uniformly in h, since |fh(v)| ≤

|| f ||0, Ω||v||0, Ω ≤ c||v||1, h according to Theorem 2. Then Lemma 2 and the theory of monotone operators
imply both the existence of a unique solution and the stability estimate ||u1, h – u2, h||1, h ≤ c|| f1 – f2||0, Ω.
Since σi, h = ∇hui, h, qi, h = πW(k(·, ui, h, σi, h)), Theorem 2 implies that

while the Lipschitz continuity of k and assertion (b) in Theorem 2 imply that

The assertion of the theorem follows from these estimates.
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2
c v 0 Ω,

2
.≥ ≥+≥+=

∇hv 0 Ω,
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v[ ] 1 h,

2∼ ∇v 0 K,
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h
1– μ v〈 〉K– 0 ∂K,

2
+( ).

K �h∈

∑=

∇Kv 0 K,
2 ∇v 0 K,

2

h
1– μ v〈 〉K– 0 ∂K,

2

ah u1 u1 u2–,( ) ah u2 u1 u2–,( )– c0 u1 u2– 1 h,
2

,≥

ah u1 v,( ) ah u2 v,( )– C0 u1 u2– 1 h, v 1 h, , ah v v,( ) c0 v 1 h,
2

.≥≤

∇hv 0 Ω, v 0 Ω, c v 1 h,

u1 h, u2 h,– 1 h, σ1 h, σ2 h,– 0 Ω, q1 h, q2 h,– 0 Ω, c  f1 f2– 0 Ω, ,≤+ +

σ1 h, σ2 h,– 0 Ω, ∇h u1 h, u2 h,–( ) 0 Ω, c u1 h, u2 h,– 1 h, ,≤=

q1 h, q2 h,– 0 Ω, c u1 h, u2 h,– 0 Ω, σ1 h, σ2 h,– 0 Ω,+( ) c u1 h, u2 h,– 1 h, .≤ ≤
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6. BASIC PROJECTORS

In what follows, we need projectors onto Wh and Vh, respectively. Their definition is based on the prop�
erties of the operators ∇K and ∇h and the corresponding orthogonal decompositions of discrete spaces.

Projector ΠW . The spaces W(K), V(K), and V(K) are equipped with inner products by setting

(·, ·)W(K) = (·, ·)K, (·, ·)V(K) = (·, ·)K, and (u, v)V(K) = (u, v)K + h(λ, μ)∂K. Let  : W(K)  V(K) be the
adjoint of the operator ∇K:

Let Φ(K) = ker( ) = {w ∈ W(K) : (w, ∇Kv)K = 0 ∀v ∈ V(K)}, Φ(K)⊥ = Im(∇K), V0(K) = ker(∇K), and

V0(K)⊥ = Im( ). Note that dimΦ(K)⊥ = dimV0(K)⊥ and

(20)

Note also that ∇K induces an isomorphism between the spaces V0(K)⊥ and Φ(K)⊥.

Theorem 4. Under condition (H1), there exists a projector ΠW : [H1(�h)]d  Wh and, for any q ∈
[H1(�h)]d, it is defined by the relations

(21)

(22)

(23)

Moreover, under condition (H2), it satisfies the estimate

(24)

Proof. Since W(K) = Φ(K) ⊕ Φ(K)⊥ and the operator ∇K is an isomorphism between V0(K)⊥ and Φ(K)⊥,
we conclude that the linear functional

is defined on W(K). To estimate its norm, we use the embedding inequality

and Theorem 1. (The dependence of the constants on h can be shown in a standard manner: on a basis

element,  by virtue of the embedding H1( ) ⊂ L2( ). From this, the required

estimate is derived by passing to K via an affine transformation and taking into account the regularity of �h.)
We have  and

Since  ≤ , it follows that

(25)

Now ΠWq|K ∈ W(K) is defined as the solution of the equation

(26)

∇K
*

∇K
*w v,( )

V K( )
∇ w v,⋅( )K– w nK μ,⋅( )∂K v∀+ v μ,( ) V K( ).∈= =

∇K
*

∇K
*

W K( ) Φ K( ) Φ K( )⊥, V K( )⊕ V0 K( ) V0 K( )⊥.⊕= =

∇ ΠWq v,⋅( )K ∇ q v,⋅( )K v∀ V K( ),∈=

ΠWq nK μ,⋅( )∂K q nK μ,⋅( )∂K μ∀ Λ ∂K( ),∈=

ΠWq w,( )K q w,( )K w∀ Φ K( ).∈=

ΠWq 0 K, c q 0 K, h q 1 K,+( ) q∀ H
1 �h( )[ ]

d
.∈≤

g w( )
∇ q v,⋅( )K– q nK μ,⋅( )∂K, w+ ∇Kv Φ K( )⊥,∈=

q w,( )K, w Φ K( )∈⎩
⎨
⎧

=

u 0 ∂K, ch
1/2–

h u 1 K, u 0 K,+( ) u∀ H
1

K( )∈≤

û
0 ∂K̂,

c û
1 K̂,

û
0 K̂,

+( )≤ K̂ ∂K̂

g
Φ K( )

⊥ w( ) q ∇v,( )K q nK μ v–,⋅( )∂K+=

g
Φ K( )

⊥ w( ) c q 0 K, ∇v 0 K, q 0 ∂K, μ v– 0 ∂K,+( )≤

≤ c q 0 K, h
1/2

q 0 ∂K,+( ) ∇v 0 K, h
1/2– μ v– 0 ∂K,+( )

≤ c q 0 K, h q 1 K,+( ) ∇Kv 0 K, c q 0 K, h q 1 K,+( ) w 0 K, .=

g Φ K( ) w( ) q 0 K, w 0 K,

g w( ) c q 0 K, h q 1 K,+( ) w 0 K, w∀ W K( ).∈≤

ΠWq w,( )K g w( ) w∀ W K( ).∈=
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Clearly, the solution of Eq. (26) exists and estimate (24) follows from (25). If q|K ∈ W(K), then, by defini�
tion of ∇K, we have g(w) = (g, ∇Kv)K = (q, w)K for w ∈ Φ(K)⊥. Since g(w) = (g, w)K for w ∈ Φ(K), it holds
that (ΠWq – q, w)K = 0 for any w ∈ W(K); i.e.,  is a projector onto W(K).

Let us obtain a characterization of ΠW. Choosing w ∈ Φ(K) in (26), we have (ΠWq – q, w)K = 0, i.e., (23).
According to (20), V(K) = V0(K) ⊕ V0(K)⊥. Let v ∈ V0(K)⊥. Then w = ∇Kv ∈ Φ(K)⊥ and

(27)

Clearly, this relation also holds for v ∈ V0(K), i.e., for all v ∈ V(K). By the definition of ∇K, the left�hand
side of (27) is equal to –(∇ · ΠWq, v)K + (ΠWq · nK, μ)∂K. Therefore,

This relation yields (21) for μ = 0 and (22) for v = 0. The theorem is proved.
In what follows, Pm(D) denotes the restriction of the set of polynomials of degrees at most m ≥ 0 in all

variables to the domain D.
Lemma 3. Let conditions (H1, 2) hold. Then, for any q ∈ [H1(�h)]d,

Proof. By virtue of ( ), we have W(K) ⊇ [P0(K)]d. Therefore, |q – πWq|0, K ≤ ch|q|1, K. The first estimate
in the lemma follows from the stability of ΠW, i.e., from estimate (24):

This also implies the estimate |q – ΠWq|0, K ≤ ch|q|1, K, since |πWq|1, K ≤ |q|1, K. We use the reverse inequality
in the following standard estimates:

Combining this with (24), we derive the final estimate of the lemma. The lemma is proved.

Projector ΠV. Let  = {λ ∈ L2( ) :  = 0}. We treat Vh as a subspace of H = L2(�h) × .

We introduce the following constraints on the chosen finite�element spaces:

where Wh(e, K) = {w · nK|e, w ∈ W(K)} for e ∈ ∂K.

To define the projector ΠV : H  Vh, we introduce the operators  : V(K)  W(K) and ∇∂K :
Λ(∂K)  W(K) by setting

According to (11), we have ∇Kv = v + ∇∂Kμ. Condition (H1) implies that both  and ∇∂K have zero

kernels. Let Φ0(K)⊥ = Im( ). Then W(K) = Φ0(K) ⊕ Φ0(K)⊥ and V(K) = Im(( )*).

Lemma 4. Let conditions (Н1, 2) hold. Then  ~ h–1||v||0, K and

The proof is similar to that of Theorem 1.
Lemma 5. Let conditions (H1, 2, 3) hold. Then there exists a projector �V : L2(Ω)  Vh such that, for any

w ∈ Wh and u ∈ L2(Ω)

(28)
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1
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d
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∇K
0
v w,( )W K( ) v ∇ w⋅,( )K, ∇∂Kμ w,( )W K( )– μ w nK⋅,( )∂K.= =

∇K
0 ∇K

0

∇K
0 ∇K

0

∇K
0
v 0 K,

∇∂Kμ 0 K, h
1/2– μ 0 ∂K, ; ∇K

0( )*w 0 K, h
1–

w 0 K, , w Φ0 K( )⊥.∈∼ ∼

�Vu u– ∇ w⋅,( )�h
�Vu 0 Ω, c u 0 Ω, ; �Vu u– 0 Ω, c πVu u– 0 Ω, .≤ ≤=
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Under conditions (H1, 2, 4) there exists a projector �Λ : L2( )  Λh such that

(29)

for any w ∈ Wh and λ ∈ .

Proof. For an element K ∈ �h we define an operator  : L2(K)  V(K) such that  for u ∈ L2(K)

is the solution of the equation (  – u, ∇ · w)K = 0 ∀w ∈ W(K). We write it in the form ( �Vu, w)K =
–(u, ∇ · w)K ∀w ∈ W(K). Then, by Lemma 4, we have

This implies the unique solvability of the equation under condition (H3) and also the estimate  ≤

c||u||0, K. Thus, defining �V as (�Vu)|K = , we obtain the first two relations in (28). The third esti�

mate in (28) follows from the second one, since both  and �V are projectors.

Let us prove the second part of the lemma. Each face is associated with the operator  : L2(e)  Λ(e).

Let λ ∈ L2(e). On the face e ∈  we set  = 0. On the internal face e =  ∩  the function  is

defined as the solution of the equation (  – λ, wn)e = 0 ∀wn ∈ Wn(e, K). Condition (H1) implies that,
for μ ∈ Λ(e), the relation (μ, wn)e = 0 ∀wn ∈ Wn(e, K) yields μ = 0. Therefore, by the second condition
in (H4) the equation is uniquely solvable and, by using the transition to a basis element and back, it is easy
to obtain

where W(e) = Wn(e, K)\{0}. Consequently,

(30)

Clearly,  is a projector on Λ(e). The projector �Λ is defined so that (�Λλ)|e = (λ|e). Then summing
estimates (30), we obtain the second estimate in (29), which implies the third estimate. Let us prove the
first relation in (29).

Let w ∈ Wh. On each face e =  ∩  the function wh = (wK – wL) · nK|e belongs to Wn(e, K) by virtue
of (H4). Therefore, (�Λλ – λ, (wK – wL) · nK)e = 0. Summing up these equalities over all e ∈ �h, we obtain
the first relation in (29). The lemma is proved.

Corollary 1. Let the projector ΠV = (ΠV, ΠΛ) : H  Vh be defined so that, for u = (u, λ) ∈ H: (а) ΠVu =
�Vu if condition (H3) holds; otherwise, ΠVu = πVu; (b) ΠΛu = �Λλ if condition (H4) holds; otherwise,
ΠΛu = πΛλ.

Then εH(u) = ||u – ΠVu||0, Ω + h1/2||u –  satisfies the estimate

Lemma 6. Let u ∈ (Ω), u = ( , ), the projector ΠV be defined in Corollary 1, and εV(u) =

||∇u – . Then εV = ||∇u –  under conditions (H1, 2, 3, 4)
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Proof. In view of the definition of ∇h, it is easy to see that, for w ∈ Wh

By the definition of ΠV, the term I1 vanishes under condition (H3). If condition (H4) holds, then I2 = 0.
Therefore, (∇u – ∇h(ΠVu),  = 0 ∀w ∈ Wh under conditions (H1–4). By the definition of πW, it follows

that ∇h(ΠVu) = πW(∇u). This proves the first assertion in the lemma.

According to the reverse inequalities, ||∇ · w||0, Ω ≤ ch–1||w||0, Ω and  ≤ ch–1/2||w||0, Ω for any w ∈ Wh.

Therefore, under conditions (H1, 2), we have

This implies the estimate for εV(u) under conditions (H1, 2). The other two estimates are derived in a similar
manner. The lemma is proved.

The subspace  of the space Wh:

(31)

Choosing μ = 0 outside an arbitrary internal face е =  ∩ , we obtain

(32)

where wn = (wK – wL) · nK|e. If condition (H4) holds, then wn ∈ Wn(e, K) and the dimensions of the spaces
Λ(e) and Wn(e, K) coincide. Since the adjoint equation (μ, wn)e = 0 ∀wn ∈ Wn(e, K), according to condi�
tion (H1), has only the trivial solution, we conclude that, under conditions (H1, 4) solution (32) is unique

and wn = 0; i.e., the normal components of w are continuous on �h. This means that  ⊂ H(div; Ω) under
conditions (H1, 4).

7. ERROR ESTIMATE FOR THE SCHEME

In this section, u is the solution of the original problem (1); the functions q, k0, and σ are defined
according to (4); u = (u, λ), where λ = ; and uh = (uh, λh) is an approximate solution.

First, we estimate the error of the scheme in discrete norms. Let ΠVu = (ΠVu, ΠΛu) be the projection
of the solution u in Vh as defined in Corollary 1. Then the function

characterizes the error of the scheme in Vh. Define the following measures of the error:

Theorem 5. Let conditions (2), (3), and (H1, 2) hold and q ∈ [H1(�h)]d. Then

Proof. It follows from (5) that –(∇ · q, eu)K + (k0, eu)K = ( f, eu)K. Combining this equality with identity (27)
yields

Summing up this identity over all K and taking into account that the second term vanishes when summed,

since the normal components of q ∈ H(div; Ω) are continuous on �h and eλ vanishes on , we obtain

(33)

Combining estimate (15) and the Lipschitz continuity of k and k0 with (33) produces
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– u ΠΛu– w n⋅,( )∂�h
+ I1 I2.+= =

w)�h

w
0 �h,
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.=
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2
ah uh e,( ) ah ΠVu e,( )–≤ fh e( ) ah ΠVu e,( )–=

=  f eu,( )�h
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It remains to be noted that  according to Theorem 2. The theorem is proved.

Theorem 6. Let the assumptions of Theorem 5 hold and σh = ∇huh. Then

Proof. According to Theorems 2 and 5, we have

where  ~  + . This yields the first estimate. Since  ≤ ,

it follows that  ≤  +  ≤  + ch1/2�h, which implies the second

estimate. The theorem is proved.
Theorem 7. Let the assumptions of Theorems 5 and 6 hold and qh = πW(k(·, uh, σh)). Then

Under the additional condition

,

it is also true that .

Proof. Theorem 6 implies  +  ≤ c�h and the second estimate of the lemma. Using
the Lipschitz continuity of k, we obtain

To prove the last inequality, we use the properties of the projector ΠW and apply Eqs. (5) and (8). For
v ∈ Vh, we obtain (∇ · (ΠWq – qh),  = (k0(·, u, σ) – k0(·, uh, σh), v)Ω. From this, by virtue of condition

( ) and the Lipschitz continuity of k0, it follows that ||∇ · (ΠWq –  ≤ c�h. Therefore, ||∇ · (q –

 ≤ ||∇ · (q –  + ||∇ · (qh –  ≤ ||∇ · q – πV(∇ ·  + c�h. The theorem is

proved.
Theorems 6 and 7 imply that the error of the scheme is determined by �h. Consider its components.

According to Lemma 3, εW satisfies the estimate

Here, the terms are matched in the order of h. Thus, the estimate fir εW follows from the error estimates
for the local L2�orthoprojector in Wh, which are well known in the theory of FEM. The errors of local L2�ortho�

projectors can also be used to estimate εН. By Corollary 1, εH ≤  + . Note

that the above estimates for εW and εH hold under conditions (H1, 2). The estimate for εV is given in Lemma 6.
If conditions (H1, 2, 3, 4) are satisfied, we have εV = . Otherwise, the error estimate is, gener�

ally speaking, worsened.

8. EXAMPLES OF FINITE ELEMENT SPACES

Note some consequences of conditions (H1, 2, 3, 4). Consider the space . Under condition (H1), it is

nontrivial; i.e.,  ≠ {0}, since, according to Eq. (9), it includes, for example, the component qh of the
solution to scheme (6)–(9). Moreover, it is easy to see that this space also includes the range of ΠW. It was

shown above that, under conditions (H1, 4), we have  ⊂ H(div; Ω). Hence, –qh ∈ H(div; Ω). This means

eu 0 Ω, c ∇he 0 Ω,≤

σh πWσ– 0 Ω, eu 0 Ω, ∇eu 0 �h, h
1/2–

eu[ ]
0 �h,

c�h,≤+ + +

eλ 0 ∂�h, ch
1/2–

eu 0 �h, h
1/2

�h.+≤

c�h ∇he 0 Ω, e 1 h, ∇eu 0 �h, h
1/2–

eλ eu– 0 ∂�h, c eu H
1

�h( )
C eu 0 Ω, ,≥ ≥+∼ ∼≥

eu H
1

�h( )
∇eu 0 �h, h

1/2–
eu[ ]

0 �h,
eu 0 ∂K, ch

1/2–
eu 0 K,

eλ 0 ∂�h, eu 0 ∂�h, eλ eu– 0 ∂�h, ch
1/2–

eu 0 �h,

σ σh– 0 Ω, u uh– 0 Ω, q qh– 0 Ω, c�h, λ λh– 0 ∂�h, ch
1/2–

�h.≤ ≤+ +

H3'( ) V K( ) ∇ W K( )⋅=

∇ q qh–( )⋅ 0 �h, ∇ q πV ∇ q⋅( )–⋅ 0 �h, c�h+≤

σ σh– 0 Ω, u uh– 0 Ω,

q qh– 0 Ω, q πWq– 0 Ω, πW k · u σ, ,( ) k · uh σh, ,( )–( ) 0 Ω,+≤

≤ q πWq– 0 Ω, c u uh– 0 Ω, σ σh– 0 Ω,+( ) c�h.≤+

v)�h

H3' qh)||0 �h,

qh)||0 �h, ΠWq)||0 �h, ΠWq)||0 �h, q)||0 �h,

εW c σ πWσ– 0 �h, q πWq– 0 �h, h q πWq– 1 �h,+ +( ).≤

c u πVu– 0 �h, ch
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that the family of spaces {W(K)} can be used to construct a conformal approximation of H(div; Ω). More
precisely, we can define a set of linear functionals Σ(K) on W(K) (degrees of freedom) and, accordingly,
families of finite elements {(K, W(K), Σ(K)), K ∈ �h} consistent with the continuity condition for the nor�
mal components of the approximations on the interelement boundaries. The degrees of freedom Σ(K) of
the element K can be chosen according to the definition of ΠW in Lemma 4. Furthermore, condition (H1)
guarantees the existence of ΠW, while condition (H2) ensures its stability in H1(�h). As a result, we can
prove the Ladyzhenskaya–Babuska–Brezzi condition (LBB or inf�sup condition; see, for example,
[7, Section II.2.3, p. 57]). More specifically, the following result is true.

Lemma 8. Let conditions (H1, 2) hold. Then

The proof relies on the well�known continuous analogue of this inequality and makes use of Fortin’s tech�
nique and the projector ΠW (see, e.g., [7, p. 58, Proposition 2.8]).

Therefore, conditions (H1, 2, 4) not only guarantee the inclusion  ⊂ H(div; Ω) but also ensure that
the LBB condition is satisfied for the pair of spaces (Vh, Wh). As is known, such a pair of spaces can be used
to construct mixed FEM schemes. Finally, according to what was shown above, conditions (H1, 2, 3, 4)
guarantee the “optimal” error estimates for the scheme under consideration. 

Below are examples of spaces V(K), W(K), and Λ(e) satisfying conditions (H1, 2, 3, 4). All of them are
well known in the theory of mixed FEM; they are polynomial and, as a result, satisfy condition (H2).

Example 1. If K is a d�simplex, we can use the family of Raviart–Thomas spaces RTk defined as

(34)

The properties of this family are well known (see [12] and, for example, [7, pp. 116–130]). Let Rk(∂K) =
{v ∈ L2(∂K) : v|e ∈ Pk(e), e ∈ ∂K}. Then Λ(∂K) = Rk(∂K) and

It follows that conditions (H3, 4) and ( ) are satisfied. It remains to check condition (H1). For this pur�
pose, we use the following characterization of spaces (34): the relations

(35)

imply that w = 0. Relations (35) are equivalent to a homogeneous system of linear algebraic equations
of dimension N × M for the expansion coefficients w over some basis; here, M = dim W(K) and N =
d dim Pk – 1(K) + dimRk(∂K). According to (35), the matrix A of this system has a full column rank. It is
well known (and is easy to verify) that A is a square matrix. Therefore, the relations

(36)

imply that σ = 0 and g = 0. In (36), we set σ = ∇v and g = λ – v, where v ∈ V(K) and λ ∈ Λ(∂K). After
integration by parts, the relations

imply v = λ = const. Therefore, condition (Н1) also holds.
If scheme (6)–(9) is constructed using spaces (34), then error estimates for the scheme depending on

the smoothness of the solution follow from Theorems 6 and 7. A remark has to be made only about the

estimate of εΛ =  in εH. We have

For sufficiently smooth solutions, �h ≤ chk + 1.
Example 2. If K is a d�simplex, we can use the spaces BDMk defined as

(37)

v ∇ w⋅,( )�h
/ w 1 �h,

w Wh∈

sup c v 0 Ω, v∀ Vh.∈≥

Wh

W K( ) Pk K( )[ ]d
xPk K( ), V K( )⊕ Pk K( ), Λ e( ) Pk e( ), k 0.≥= = =

∇ w V K( ), w nK ∂K Λ ∂K( ), w W K( ).∈ ∈⋅∈⋅

H3'

w W K( ) : w σ,( )K∈ 0 σ∀ Pk 1– K( )[ ]d
, w nK g,⋅( )∂K∈ 0 g∀ Rk ∂K( )∈= =

σ Pk 1– K( )[ ]d
, g Rk ∂K( ) : σ w,( )K g w nK⋅,( )∂K+∈ ∈ 0 w∀ W K( )∈=

v ∇ w⋅,( )K– λ w nK⋅,( )∂K+ 0 w∀ W K( )∈=

h
1/2

u πΛu– 0 ∂�h,

εΛ

2
h u πΛu– 0 ∂K,

2

K �h∈

∑ ch h
2k 1+

u k 1/2+ ∂K,

2

K �h∈

∑ ch
2k 2+

u k 1+ K,
2

K �h∈

∑≤ ≤ ch
2k 2+

u k 1+ �h,

2
.= =

W K( ) Pk K( )[ ]d
, V K( ) Pk 1– K( ), Λ e( ) Pk e( ), k 1.≥= = =



COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 54  No. 3  2014

ABSTRACT THEORY OF HYBRIDIZABLE DISCONTINUOUS GALERKIN METHODS 487

The properties of this family of spaces are well known (see [13] and, for example, [7, pp. 116–130]).
Obviously, conditions ( ) and (H3, 4) hold for this family. To verify condition (H1), we use the following
characterization of spaces (37): if v ∈ Pk – 1(K) and q ∈ Rk(∂K) = Λ(∂K), then the relations (∇v, w)K +
(g, w · nK)∂K = 0 ∀w ∈ W(K), imply that v = const and g = 0 (see, e.g., [7, p. 114, Lemma 3.1]; generally
speaking, the proof in [7] is given for d = 2, 3, but it can easily be extended to d > 3). Setting g = λ – v with
λ ∈ Λ(∂K), after integration by parts, as before, we see that condition (H1) holds. If scheme (6)–(9) is con�
structed using spaces (37), then error estimates for the scheme depending on the smoothness of the solu�
tion follow from Theorems 6 and 7. For sufficiently smooth solutions, �h ≤ chk.

Example 3. If K is affinely equivalent to  = [–1, 1]d, d = 2, 3, we can use the spaces BDM[k] defined as

(38)

For the definition of B(k, d) and the properties of this family of spaces, see, for example, [7, pp. 116–130].
The structure of W(K) is such that, for w ∈ W(K), we have ∇ · w ∈ Pk – 1(K) and w · nK|e ∈ Pk(e), which mean

that conditions ( ) and (H3, 4) hold. The satisfaction of condition (H1) is checked in the same manner
as for the family RTk with the use of the following characterization of spaces (38): the relations

imply that w = 0 (see, e.g., [7, p. 121, Proposition 3.5]). By analogy with the case of BDMk, the estimate
�h ≤ chk holds for sufficiently smooth solutions.

Note the families of spaces RT[k] and BDFM[k + 1], which also satisfy conditions (H1, 2, 3, 4) (for more
detail on these spaces, see, e.g., [7, pp. 119–125]).

9. ITERATIVE METHOD

Fix some bases in the spaces V( ), W( ), and Λ( ). No conditions are imposed on the choice of the
bases: they can be of the node type (Lagrangian basis) and of the spectral type. Relying on condition (H2),

we can use affine transformations   K and   e to define suitable bases in V(K), W(K), K ∈ �h

and Λ(e), e ∈  and, hence, in Vh, Wh, and Λh. Assume in what follows that a basis in each of these spaces
is chosen as described above. The vectors of expansion coefficient of vh ∈ Vh, wh ∈ Wh, and μh ∈ Λh in terms
of the corresponding bases are denoted by v, w, and μ, while the spaces of vectors of corresponding dimen�
sions are designated as V, W, and Λ. The notation vK, wK, and μK is used for the vectors of expansion coef�
ficients of vh|K, wh|K and μh|∂K, while the spaces of vectors of corresponding dimension are denoted by VK,
WK, and ΛK. To be definite, assume that v = ( , , …, ), w = ( , , …, ), and �h =

{K1, K2, …, KN(h)}. Using the notation a · b for the inner product in an arbitrary Rm, we define a nonlinear
vector function Аh by the relation

(39)

where v = (v, μ) ∈ V is the vector of expansion coefficients of vh = (vh, μh) ∈ Vh. Let Fh · v = fh(vh) = ( f, 

for any vh ∈ Vh. Then scheme (14) is equivalent to the solution of a system of algebraic, generally speaking,
nonlinear equations of the form

(40)

A preliminarily remark has to be made concerning linear problems. If the original equation (1) is linear
and its operator is symmetric, i.e.,

then it follows directly from (39) that Аh is a symmetric positive definite matrix.

H3'

K̂

W K( ) Pk K( ) B k d,( )⊕[ ]d
, V K( ) Pk 1– K( ), Λ e( ) Pk e( ), k 1.≥= = =

H3'

w W K( ) : w σ,( )K∈ 0 σ∀ Pk 2– K( )[ ]d
, w nK g,⋅( )∂K∈ 0 g∀ Λ ∂K( )∈ Rk ∂K( )= = =

K̂ K̂ ê

K̂ ê

�h

vK1
vK2

vKN h( )
wK1

wK2
wKN h( )

Ah u( ) v⋅ ah uh vh,( ) k · uh ∇huh, ,( ) ∇hvh,( )�h
k0 · uh ∇huh, ,( ) vh,( )�h

,+= =

vh)�h

Ah u( ) Fh, u V.∈=

k x u σ, ,( ) A x( )σ b x( )u, k0 x u σ, ,( )+ c x( ) σ d x( )u,+⋅= =

k x u σ, ,( ) η k0 x u σ, ,( )v+⋅ k x v η, ,( ) σ k0 x v η, ,( )u,+⋅=
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Consider system (40) with Fh = ( f, 0) and k0 = 0. We use the operators with zero kernels introduced

before Lemma 4:  : V(K)  W(K) and ∇∂K : Λ(∂K)  W(K), so that  =  + . We have

Setting v = (v, 0) with v = (0, …, vK, …., 0) and v = (0, μ) yields

(41)

(42)

For fixed λh, it is easy to see that uh|K can be elementwise determined from Eqs. (41) and can then be
used in (42). As a result, we obtain a system of algebraic equations for determining only the unknown λ.
Below, this procedure is described in more detail as applied to the matrix Вh defined by the relation

Let  = . Then the estimates from Lemma 2 become

Consider the following iterative method for solving system (40):

, (43)

where u0 ∈ V is a given vector and τ is an iteration parameter.

Theorem 8. Let conditions (H1, 2) hold. Then, for any u0 ∈ V and τ ∈ (0, 2C0/ ), iterative process (43)

converges to the solution u of system (40); moreover,  ≤ (τ) , where (τ) is indepen�
dent of h and (τ) ∈ (0, 1).

The proof is well known (see, e.g., [14, p. 106] and also [15, Chapter XIII, Section 1]).
Let us describe an algorithm for solving the system of linear algebraic equations Bhu = f, where u = (u, λ)

and f = ( f, g). By analogy with (41) and (42), we derive the equations

or, in matrix notation,

(44)

(45)

where [A] is the matrix of the operator A and [A]T is its transpose. The variable u is elementwise eliminated
from system (44), (45) to obtain a system for determining λ ∈ Λ with a symmetric positive definite matrix Lh:

(46)

where  is the identity matrix of dimension dimWK and dh = g – .

∇K
0 ∇Kvh ∇K

0
vh ∇∂Kμh

Ahu v⋅ A ∇K
0

uh ∇∂Kλh+( ) buh ∇K
0
vh ∇∂Kμh+,+( )K

K �h∈

∑ Fh v.⋅= =

A ∇K
0

uh ∇∂Kλh+( ) buh ∇K
0
vh,+( )K fK vK, K �h,∈⋅=
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0
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K �h∈
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In the matrix assembly algorithm used in FEM, the matrix Lh is calculated prior to the iteration with
the use of the above formulas. Thus, the following algorithm is obtained for solving the system Вhu = f at
every iteration step: (a) compute the vector dh, (b) solve system (46), and (c) determine u elementwise by

applying the formulas uK = fK – .

Note that the matrix Lh has a characteristic sparse structure: the equations for determining λh|e, e ∈ ,
involve the degrees of freedom λh associated with the faces of at most two elements adjacent to e, irrespec�
tive of the triangulation method.

The above�described procedure for the elementwise elimination of unknowns is similar to hybridizable
mixed FEM schemes for linear problems, in which the unknowns qh and uh are locally eliminated
(see, e.g., [4; 7, pp. 178–181]).

Theorem 9. Let conditions (H1, 2) hold. Then the condition number of the matrix Lh satisfies the estimate

Proof. According to the definition of Вh and Lemma 1, we have

The matrix Lh is the corresponding Schur complement of the block matrix Bh. Direct computations show

that Lhλ · λ = . It follows that Lhλ · λ ~  = I(λ). Here, I(λ) is easily cal�

culated if we take into account that (a) the restrictions of uh ∈ Vh to different elements are not interrelated

and (b) both the first and second term in the definition of the norm ,  =  reach

their minimum at uh|K = const = . Thus,

Since

we have

To estimate I(λ) from below, we define a partial extension of λh to Ω. Let 〈λh〉 be a piecewise constant func�

tion on  and  = . It is easy to see that

Consider IK( ) = . Since  is a linear combination of d + 1 numbers ,

e ∈ ∂K, the functional IK( ) can be regarded as a function of these d +1 variables. Let YK be a set of

constant functions on the faces of K with the common element  = . Clearly,

IK defines a seminorm on YK, and its kernel consists of the functions {c(1, …, 1), c ∈ R}. Using an incom�

ΔK
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2
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patible first�order finite element, we define a linear function  on K whose mean value on a face e ∈ ∂K
is equal to . Standard rescaling yields

(47)

Since  = 0 on , it follows from inequality (18) that . According to (47), this

implies the estimate I2(λ) ≥ . Therefore,

since  =  – . Thus,  ≤  ≤ . This implies the

assertion of the theorem, since
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