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Abstract— The paper deals with modeling of human-like
reaching movements in dynamic environments. A simple but
not trivial example of reaching in a dynamic environment is
the rest-to-rest manipulation of a multi-mass flexible object
with the elimination of residual vibrations. In this movement
task, the hand velocity profiles may have a form that is quite
different from the classical bell shape. Two approaches to the
prediction of reaching movements are formulated in position
and force actuation settings. In the first approach, either the
position of the hand or the hand force is specified by the
lowest order polynomial satisfying the boundary conditions
of the reaching task. The second approach is based on the
minimization of either the hand jerk or the hand force-change,
with taking into account the dynamics of the flexible object. To
verify the resulting four mathematical models, an experiment
on the manipulation of a ten-masses flexible object of low
stiffness is conducted. The experimental results show that the
second approach gives a significantly better prediction of human
movements, with the minimum hand force-change model having
an edge over the minimum hand jerk one.

Index Terms— Human-like reaching movements, dynamic
environment, flexible objects, optimality.

I. INTRODUCTION

Modeling of human-like reaching movements is an im-
portant research problem in biological motor control and
cybernetics [1]–[3]. From the viewpoint of control theory
the problem can be approached from two directions: one
focuses on the feedforward control [4], and another is based
on the feedback control [5]. In this paper we will deal
with the feedforward control of reaching movements. In this
approach, the trajectory of the human hand is often predicted
by minimizing an integral criterion subject to boundary con-
ditions imposed on start and end points. It is well established
that for the unconstrained reaching movements the trajectory
of human hand can be predicted with reasonable accuracy by
the minimum hand jerk (MHJ) [6] and the minimum joint
torque change [7] criteria.

While the optimization models are not fully accurate, they
can capture the invariant features of unconstrained reaching
movements, in particular the bell-shaped velocity profile
[8], [9], reasonably well. However, this can be done by a
variety of functional relations [10] not necessarily based on
the optimization models. In this connection, the design of
critical tests for reaching tasks, featuring not only a single-
peaked bell shape but more complex shapes of the hand
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velocity profiles, is a very important research problem [11].
To approach this problem, one can “place” the human hand
in an artificially created dynamic environment.

An example of reaching in a dynamic environment is the
rest-to-rest manipulation of a linear chain of flexible objects
with the suppression of structural vibrations at the end of
movement. Despite the seeming simplicity, this task requires
a lot of skill that must be acquired through practicing. The
difficulty stems from the fact that the system under control is
under-actuated. It has multiple degrees of freedom controlled
by a single input. An interesting feature of this task, first
observed in experiments with one-mass flexible object [12],
is that under certain conditions the human controls the object
in a non-trivial way, keeping two distinct phases in the hand
velocity profile.

Considering this manipulation task from the control engi-
neering point of view, one can employ different strategies
to generate rest-to-rest motion commands that eliminate
residual vibrations [13], [14]. Perhaps the simplest open-loop
control strategy is to specify the motion of the most distal
link of the flexible object by the lowest order polynomial
(LOP) satisfying the boundary conditions [15], [16]. This
control strategy has been successfully applied to modeling
of reaching movements in the manipulation of one flexible
object [12]. However, it does not capture well the velocity
profiles of reaching movements in the case of multi-mass
flexible objects, and is less consistent in comparison with
the MHJ model [17].

Another possible strategy to plan the reaching movement
with the flexible object is to specify by the LOP the motion
of not the most distal link but the foremost link that is the
hand. It is known that the MHJ model of reaching movement
in the free space is mathematically equivalent to matching
by the LOP the boundary conditions imposed on the hand
position, velocity and acceleration [6]. However, as will be
shown in this paper, the LOP strategy and the strategy based
on the minimization of the control effort (the hand jerk) are
not mathematically equivalent for reaching movements in
dynamic environments. It is, therefore, of interest to compare
these strategies of the hand trajectory formation and examine
how well they capture the patterns of human movements.

It should be noted that the above specified two movement
strategies can be formulated in kinematic (as discussed
above) or dynamic (when the inertia of the human hand is not
ignored) settings, resulting into four computational models.
The dynamic counterpart of the MHJ model is the minimum
hand force-change (MHFC) model. Likewise, the dynamic
equivalent of the kinematic LOP model is the LOP specifica-
tion of the hand driving force. It is interesting to note that the
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latter model can be linked to the definition of natural motion
in analytical mechanics [18] and to the Gauss principle of
least constraint for the control of mechanical systems [19].
In this connection, it is worthwhile to investigate how this
formal way of the construction of natural motion works in
the context of natural human movements. This constitutes
the goal of this paper.

The paper is organized as follows. In Section II, we for-
malize a mathematical description of the flexible object and
the boundary conditions for the reaching task. In Section III
we establish the mathematical structure of four theoretical
models. Analytical solutions provided by these models are
tested against experimental data in Section IV which also de-
scribes the experimental setup and the protocol of collecting
the data. Conclusions are summarized in Section V.

II. MODEL OF THE DYNAMIC ENVIRONMENT

In this section we formalize reaching movements in a
dynamic environment that is modeled as a multi-mass flex-
ible object. For the sake of simplicity, we deal with a one-
dimensional model of human movements. In this model the
configuration dependance of the human arm is ignored and
the motion is considered at the hand level.

A. System dynamics

Assume that the object to be manipulated is composed
of n beads of mass m connected by n springs of stiffness
coefficient k as shown in Figure 1. For the uniform mass
and and stiffness distribution, the dynamic equations can be
written down as follows

m0ẍ0 + k(x0 − x1) = f, (1)

mẍs + k(xs − xs−1) + k(xs − xs+1) = 0, (2)

mẍn + k(xn − xn−1) = 0, (3)

where xs, s = 1, . . . , n, are the positions of the beads, x0

stands for the position of the hand, m0 is the hand mass,
and f is the driving force.

x1

k
 

k kk
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f

Fig. 1. Multi-mass flexible object driven by the hand.

For establishing trajectory formation models it is con-
venient to represent the system’s dynamics in terms of
the object end position xn and its derivatives. By solving
equations (2,3) recurrently for s = n − 1, n − 2, . . . , 1, one
obtains [17]:

s∑
l=0

Cs−l
s+l

ω2l
x(2l)
n (t) = xn−s(t), (4)

where Cq
p = p!/(q!(p − q)!) denotes the binomial coeffi-

cients, x(2l)
n stands for the 2l-th time derivative of the n-th

coordinate, and ω =
√
k/m.

By setting s = n in (4), one converts the system of n
differential equations of the 2nd order (2,3) to one differential
equation of the 2n-th order

n∑
l=0

Cn−l
n+l

ω2l
x(2l)
n (t) = x0(t), (5)

which describes the dynamics of flexible object under kine-
matic actuation by the hand position x0.

By combining (5), (1), and (4) taken for s = n − 1, one
converts the system of n+1 differential equations of the 2nd
order (1,2,3) to one differential equation of the 2(n + 1)-th
order

n∑
l=0

Cn−l
n+l

ω2l

{
m0x

(2l+2)
n (t) +

2lk

n+ l
x(2l)
n (t)

}
= f(t), (6)

which describes the dynamics of the combined system,
composed of the hand and the flexible object, driven by the
hand force f .

B. Reaching task and the boundary conditions

Assume that a human subject makes a reaching movement
of length L and time T and stops at the target point the
hand and all the beads of the object without excitation of
oscillations. Without loss of generality we assume that the
subject transports all the beads from the initial state

xs(0) = 0, ẋs(0) = 0, s = 1, . . . , n, (7)

to the final state

xs(T ) = L, ẋs(T ) = 0, s = 1, . . . , n. (8)

Assuming that the hand is at rest in the beginning and in the
end of the reaching movement, one has

x0(0) = 0, ẋ0(0) = 0, ẍ0(0) = 0, (9)

x0(T ) = L, ẋ0(T ) = 0, ẍ0(T ) = 0. (10)

In what follows, we will derive trajectory formation mod-
els in terms of the object end position and for this purpose we
need to formulate the boundary conditions for xn(t) and its
higher derivatives. They can be obtained from the boundary
conditions (7,8) and (9,10). Differentiating equations (2,3)
sequentially, s-th equation 2s times, and considering them
at t = 0 and t = T , one obtains

x(2)
s (0) = x(3)

s (0) = . . . = x
(2s+2)
s (0) = 0, (11)

x(2)
s (T ) = x(3)

s (T ) = . . . = x
(2s+2)
s (T ) = 0. (12)

Combining (7,8) and (11,12) for i = n, one establishes the
boundary conditions for the object end position:

xn(0) = 0, ẋn(0) = . . . = x
(2n+2)
n (0) = 0, (13)

xn(T ) = L, ẋn(T ) = . . . = x
(2n+2)
n (T ) = 0. (14)

In total, we have 2(2n+ 3) boundary conditions.
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III. MOTION PLANNING STRATEGIES

In this section, we outline two motion planning strategies
for the reaching task under consideration. One is based on
the LOP representation of the control input, and another one
is based on the minimization of the squared control effort
integrated over the movement duration.

For each of the strategies we will consider two types of
actuation, position-based and force-based. For the position-
based actuation, the actuator dynamics (i.e., the hand dy-
namics (1)) do not play an independent role in establishing
motion trajectories, and are not included in model (5). It is
thus assumed that the human arm, controlled by the CNS, is
an ideal actuator driving the hand in the task space. Under
such an assumption inertial properties of the arm are not
taken into consideration [6].

For the force-based actuation the hand dynamics (1) and
the hand mass are included in model (6). It is thus assumed
that the CNS does take into account inertial properties of
the arm [7]. The hand driving force is directly involved in
establishing motion trajectories while in the position-based
actuation it is estimated after the motion trajectories have
been established.

A. LOP strategy: position-based actuation

The dynamics of the last bead in (5) are actuated by the
hand position x0. One way to plan reaching movements for
the task defined in Section II-B is to specify the motion
of the hand, x0(t), in the form of the LOP satisfying the
boundary conditions (13,14). For x0(t) = 0 equation (5) has
2n integration constants. The total number of the boundary
conditions (13,14) is 2(2n + 3). Therefore, the differential
equation for the lowest order polynomial control input x0(t)
must have the order 2(2n+3)−2n = 2n+6. Thus, one has
x
(2n+6)
0 (t) = 0 and therefore

x0(t) =

2n+5∑
i=0

ai t
i, (15)

where ai are unknown constant coefficients.
By differentiating (5) 2n + 6 times, one obtains the

following linear differential equation

n∑
s=0

Cn−s
n+s

ω2s
x(2(n+s)+6)
n (t) = 0. (16)

Its characteristic equation has 2n+6 zero roots and n pairs
of imaginary roots ± ı ps, where ps, s = 1, 2, . . . , n, are the
natural frequencies of the flexible object The trajectory of
the last bead is therefore defined as

xn(t) =
2n+5∑
i=0

αit
i +

n∑
i=1

βi sin(pit+γi), (17)

where the 4n + 6 coefficients αi, βi, γi are calculated from
the 4n+ 6 boundary conditions (13,14). The substitution of
(17) into (5) results in a pure polynomial form, from which
one can find the coefficients ai in (15).

B. LOP strategy: force-based actuation

This strategy is closely related to the approach for gen-
eration of human-like reaching movements based on the
modified Hamilton principle and on the definition of natural
systems adopted in analytical mechanics [18].

The dynamics of the last bead in (6) are actuated by the
hand force f . For f(t) = 0 equation (6) has 2(n + 1)
integration constants. The total number of the boundary
conditions (13,14) is 2(2n + 3). Therefore, the differential
equation for the lowest order polynomial control input x0(t)
must have the order 2(2n+ 3)− 2(n+ 1) = 2n+ 4. Thus,
one has f (2n+4)(t) = 0 and therefore

f(t) =
2n+3∑
i=0

fi t
i, (18)

where fi are unknown constant coefficients.
By differentiating (6) 2n + 4 times, one obtains the

following linear differential equation:
n∑

l=0

Cn−l
n+l

ω2l

{
x(2(n+l)+6)
n (t)+

2lμω2

n+l
x(2(n+l)+4)
n (t)

}
=0,

(19)
where the mass ratio μ = m/m0. The characteristic equation
corresponding to (19) has 2n + 6 zero roots and n pairs of
imaginary roots ± ı p̃s, where p̃s, s = 1, 2, . . . , n, are the
natural frequencies of the combined (hand & flexible object)
system. The trajectory of the last bead is therefore defined
as

xn(t) =

2n+5∑
i=0

αit
i +

n∑
i=1

βi sin(p̃it+ γi), (20)

where the 4n + 6 coefficients αi, βi, γi are defined from
the 4n + 6 boundary conditions (13,14). Since the natural
frequencies p̃i differ from pi, the structure of the hand
trajectory x0 mimics that of xn:

x0(t) =
2n+5∑
i=0

ait
i +

n∑
i=1

bi sin(p̃it+ ci), (21)

where coefficients ai, bi, ci are obtained by plugging (20)
into (5).

C. Minimum control effort strategy: the MHJ model

Consider now the MHJ model in which the system trajec-
tories are defined by minimizing the criterion

J =
1

2

∫ T

0

(
d3x0

dt3

)2

dt. (22)

Differentiating the hand position (5) three times and substi-
tuting the result into (22), one obtains

J =
1

2

∫ T

0

(
n∑

l=0

Cn−l
n+l

ω2l
x(2l+3)
n

)2

dt. (23)

Denote by L the integrand of criterion (23). The trajectory
xn(t) minimizing J under the boundary conditions (13,14)
must satisfy the Euler-Lagrange equation

2n+3∑
k=0

(−1)k d(k)

dt(k)

{
∂L
∂x

(k)
n

}
= 0. (24)
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For the given structure of L, (24) reduces to the following
linear differential equation:

n∑
s=0

n∑
l=0

Cn−s
n+s C

n−l
n+l

ω2s ω2l
x(2{l+s+3})
n = 0. (25)

It can be shown that the characteristic equation correspond-
ing to (25)

λ6

(
n∑

s=0

Cn−s
n+s

ω2s
λ2s

)2

= 0. (26)

has 6 zero roots and 2n pairs of imaginary roots ± ı ps, where
ps, s = 1, 2, . . . , n, are the natural frequencies of the flexible
object.The optimal trajectory of the last bead is therefore
defined as

xn(t) =

5∑
i=0

αi t
i+

n∑
i=1

βi sin(pit+γi)+t δi sin(pit+εi), (27)

where constant coefficients αi, βi, γi, δi, εi are found from
the boundary conditions (13,14).

To find the hand trajectory x0(t), one takes the even
derivatives of (27) and substitute them into (5). The secular
terms featured in the second sum of (27) then disappear, and
the structure of the hand trajectory is defined as

x0(t) =

5∑
i=0

ai t
i+

n∑
i=1

bi sin(pit+ci), (28)

where ai, bi, ci are constant coefficients. Thus, the optimal
hand trajectory is composed of a 5-th order polynomial (as
in the classical MHJ model of reaching movements in free
space [6]) and additional trigonometric terms.

D. Minimum control effort strategy: the MHFC model

In the MHFC model the system trajectories are defined by
minimizing the criterion

J =
1

2

∫ T

0

(
df
dt

)2

dt. (29)

Differentiating the hand force (6) and substituting the result
into (29), one obtains

J =
m2

0

2

∫ T

0

(
n∑

l=0

Cn−l
n+l

ω2l

{
x(2l+3)
n +

2lμω2

n+ l
x(2l+1)
n

})2

dt.

(30)
Denote by L the integrand of criterion (30). The trajectory
xn(t) minimizing criterion (30) under the boundary condi-
tions (13,14) must satisfy the Euler-Lagrange equation (24)
which, for the given structure of L, reduces to the following
linear differential equation:

n∑
s=0

n∑
l=0

Cn−s
n+s C

n−l
n+l

ω2s ω2l
×

×
{
x(2{l+s+3})
n +

2(l + s)μω2

n+ l + s
x(2{l+s+1})
n

}
= 0. (31)

The characteristic equation corresponding to (31) has 6 zero
roots and 2n pairs of imaginary roots ± ı p∗s , where p∗s, s =
1, 2, . . . , n, are the natural frequencies of the combined (hand

& flexible object) system. The optimal trajectory of the last
bead is therefore defined as

xn(t) =

5∑
i=0

αi t
i+

n∑
i=1

βi sin(p
∗
i t+γi)+t δi sin(p

∗
i t+εi), (32)

where the constant coefficients αi, βi, γi, δi, εi are found
from the boundary conditions (13,14). The optimal hand
trajectory is then obtained upon substitution of (32) into (5),
which results in

x0(t) =
5∑

i=0

ai t
i+

n∑
i=1

bi sin(p
∗
i t+ci)+tdi sin(p

∗
i t+ei), (33)

where ai, bi, ci are constant coefficients. Note that the ob-
tained expression for the hand trajectory differs structurally
from the one developed for the MHJ model.

IV. EXPERIMENT

A. Experimental Setup

To analyze velocity profiles of reaching movements with
multi-mass objects, an experiment was conducted. In the
experimental setup (see Figure 2), an impedance-type hap-
tic device (PHANToM Premium 151A/3DOF by SensAble
Technologies) was used to generate real-time forces (maxi-
mum exertable force 8.5N). The haptic device was connected
to a computer (dual core CPU (Intel Pentium 4, 3.0 GHz))
through a PCI interface.

Visual & Haptic Interface

Parallel PortPC

Monitor

Virtual Object

Fig. 2. Experimental setup.

Five naı̈ve right-handed subjects (males, aged between
25 and 35 years old) participated in the experiments. The
subjects were instructed to move a multi-mass virtual flexible
object, with the first mass (shown black in Figure 2) “con-
nected” to the human hand by the haptic feedback generated
by the PHANToM motors. The hand & object system was
at rest at the start point. Before starting movements, the
subject positioned the PHANToM pointer to the first bead
and “connected” it to the hand (proxy point) by pressing
a button on the computer keyboard. When recording the
motion data, the subject pressed another button by the left
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hand and, at the same time, initiated the movement by the
right hand.

The subjects were requested to move the flexible object
and stop the hand and all the beads at a target point. The
subjects made these rest-to-rest movements along a line (in
the direction from left to right) in the horizontal plane us-
ing the PHANToM stylus. The one-dimensional movements
were implemented in software by setting a higher constraint
force in the directions orthogonal to the movement line. This
force was realized by introducing a virtual spring (stiffness
coefficient 600N/m), acting in the lateral directions. The
haptic force acting along the movement line was computed
as k(x1−x0), where x0 is the position of the proxy (human
hand) on the movement line, and x1 is the position of the
first bead of the object.

The positions of the hand and the beads were displayed
on the computer monitor, providing the subject with real-
time visual feedback. The object dynamics were simulated
by using the conventional 4th-order Runge-Kutta method
with constant step h = 0.001s, and the real-time haptic
feedback was supplied to the subject through the PHANToM
stylus. The hand position and velocity were measured by the
PHANToM hardware.

B. Experimental Protocol

As the reaching movements under consideration are quite
different from what one experiences in daily life, the experi-
ment was conducted in three days. On the preliminary day we
conducted a general evaluation of the subject performance.
The subjects familiarized themselves with the experimental
setup, comprehended the reaching task, performed movement
trials, and learned the unusual dynamic environment. The
subjects were asked to produce reaching movements in a
natural way, on their own pace, trading off the speed (as fast
as possible) and the comfort (as comfortable as possible).

A movement trial was considered successful if the task was
completed within certain position and velocity tolerances.
The subject was given an audio feedback, generated by
the computer, when a trial was successful. No data were
recorded during the preliminary evaluation as the main
purpose was to select such parameters of the movement task
that would guarantee an acceptable success rate and facilitate
the learning process.

In the course of the preliminary experiments, we selected
a flexible object of the total mass 3kg and the total stiffness
10N/m. The number of beads was set as n = 10, which
resulted in m = 0.3kg and k = 100N/m. For the subsequent
analysis we selected the reaching task with the traveling dis-
tance L = 0.2m and the movement time T = 2.35s. For the
selected parameters, it was observed that in successful trials
the subjects produced a somewhat unified movement strategy
(see Figure 3) that can be qualitatively described as follows.
In the beginning, the positions of all the beads coincide at
the start point. During the first half of the movement, the
first (driving) bead is ahead of the last (most distal) bead,
with the distance between them being about 5cm. During the
second half of the movement the configuration is reversed
symmetrically—the driving bead becomes placed behind the
last one and, finally, all the beads reach the target point.

 
 

Initial configuration

1st traveling phase

2nd traveling phase

Final configuration

Fig. 3. A typical movement strategy observed in the preliminary trials.

To verify the observed movement strategy with a quan-
titative analysis, the parameters of the reaching task were
subjected to tolerances. The reaching time tolerance was
set as ΔT = ±0.45s. The position and velocity tolerances
to be satisfied at the start and end points we selected as
Δx = ±0.012m and Δv = ±0.024m/s (for each of the
beads), and Δx = ±0.012m and Δv = ±0.05m/s (for the
hand). A movement trial now was considered successful if
the subject was able to complete the reaching task within the
tolerances specified above.

Having selected the parameters of the reaching task, we
conducted further experiments in two days. On the first day,
the subjects performed the reaching task and completed 600
trials. The subjects were provided with an audio feedback
generated by the computer when a trial was successful. In
addition, to facilitate the perception of the task timing, a time
bar was displayed on the computer monitor.

The experiment was divided into two blocks. Upon com-
pleting the first 300 trials (1st block) the subjects rested for
about 30 minutes and then produced another 300 trials (2nd
block). The overall success rate achieved on the first day of
the experiment is shown in Table I. On the second day (the
recording phase) the experiment was repeated in the same
order and the subjects produced another set of 600 trials. The
position and velocity of the hand and those of the simulated
beads were collected for analysis. These data were recorded
at the sampling frequency of 100 Hz.

Having completed the main set of trials in reaching move-
ments, the subjects rested for about one hour and then were
engaged in a completely different experiment where they
simply followed a periodic force produced by the PHANToM
device along the same line of constraint as in the reaching
movements. The purpose of this additional experiment was to
identify the effective hand mass m0 for the use in the MHFC
and the dynamic LOP models. Details of this experiment are
described in Appendix, and results are reported in Table II.

C. Experimental Results: Learning History

The numbers of successful trials achieved by each subject
and the corresponding success rates are listed in Table I. The
resulting success rates are still far from perfect after two days
of practicing, that can be attributed to the complexity of the
reaching task requiring a high-level of coordination skills.
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However, the dynamics of the success rate shown in Figure 4
indicate that after certain numbers of trials the success rate
appears to reach a plateau. The correlation between practice
and performance on the learning curves is certainly not linear
but rather exponential. This pattern holds for all the subjects
and is, in a reasonable approximation, compatible with the
classic power low of practice [20].

TABLE I

NUMBER OF SUCCESSFUL TRIALS AND THE SUCCESS RATE [%].

Subject S1 S2 S3 S4 S5

Successful trials 122 162 173 176 219
Success rate [%] 10.17 13.50 14.41 14.67 18.25

The apparent stabilization of the success rates at relatively
low values may highlight the limits of the motor skills that
can be developed within the adopted experimental protocol.
It should be noted that the protocol is based on the unsu-
pervised learning paradigm where the subject is supposed
to increase his motor skill based on his own experience,
reinforcing it upon producing successful trials. To increase
the success rates, one might need to employ supervised
learning. However, this consideration remains speculative as
no trainer was available for teaching the subjects.

D. Experimental Results: Velocity Profiles

Despite the relatively low success rates, the total number
of successful trials is not small and is, in our opinion,
acceptable for conducting a comparative analysis of the
experimental and theoretical motion profiles. To compare
motions of different durations, the velocity profiles of the
hand and the last bead of the object were time scaled using
the average time of all the successful trials, T = 2.259s. The
data of the last ten successful trials of each subject were
taken for the comparison with the theoretical predictions.
Experimental velocity profiles of the hand and the last bead
are presented in Figure 5. The mean values are plotted
with dark green and contoured by the plus/minus standard
deviation tubes shown with the light green color.

The average values of the effective hand mass m0 (refer
to Table II of Appendix D) were used in computing the cor-
responding theoretical profiles. The predictions by the MHJ
and MHFC models are shown in Figure 5 with, respectively,
the blue and red lines. The predictions by the kinematic
and dynamic LOP models are shown with, respectively,
the solid gray and dashed black lines. It is observed that,
despite fundamental differences in the definitions, the two
LOP models result in almost identical predictions for the
estimated hand masses and the selected parameters of the
flexible object and the reaching task.

As can be seen from Figure 5, all the theoretical models
under consideration qualitatively capture the basic tendencies
of human movements in the manipulation of the flexible
object. In particular, the models predict the bell-shaped
profiles for the velocity of the last bead of the object and
the two-phased profiles for the hand velocity. Quantitatively,
however, the collected experimental data are in favor of
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Fig. 4. Learning histories (left): black vertical lines correspond to
successful trials. Evolution of the success rate (in percentages) as a function
of the number of trials (right).

the optimization-based models, as the LOP models produce
clearly visible overshoot in the range of 35-45%. As such,
these models can be ruled out of consideration.

To determine which of the remaining models, MHJ or
MHFC, produces a better match, we compared the models
by the variance accounted for (VAF). This quantity shows
how much of the signal variation is accounted for by a
model, disregarding possible bias of the estimates [21]. The
velocity VAF’s for the hand and last bead predicted by the
MHJ and MHFC models are drawn in the form of error bars
(mean value plus/minus SD) in Figure 6. One can see that
the MHFC model has an edge over the MHJ model.

It should be noted that overall the average VAFs for the
hand are considerably lower than those for the last bead
of the flexible object. There are several reasons that may
explain it. First, the experimental hand velocities are noisier
and have higher variances as they measured directly by the
haptic device, while the bead velocities are obtained through
the real-time simulation of the object dynamics. Second,
the linear springs connected in cascade act as a mechanical
filter attenuating higher frequencies of the input signal and
sequentially (from the first to the last) smoothing the bead
velocities. The third reason may be linked to the visual
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Fig. 5. Hand (left) and the last bead (right) velocity profiles, predicted
by the MHJ (blue), the MHFC (red), the kinematic LOP (gray), and the
dynamic LOP (dashed black) models in comparison with experimental data:
mean values (dark green) are contoured by ± SD band (light green).

feedback. The hand position was displayed as a proxy point,
not as a bead, and, comparing with the beads, it was more
difficult for the subjects to trace it in performing the reaching
movements.

V. CONCLUSIONS

An analysis of reaching movements in the manipulation
of multi-mass flexible objects has been undertaken in this
paper. Two theoretical approaches to modeling of reaching
movements have been formulated for the cases of position
and force-based actuation, resulting into four computational
models. Theoretical predictions by the resulting four models
have been tested against experimental data obtained with
the use of a virtual reality-based setup. The experimental
results show that, qualitatively, all the four models cap-
ture the non-trivial motion pattern featuring a double bell-
shaped profile of the hand velocity. Quantitatively, however,
the optimization-based models, the MHJ and MHFC ones,
provide a significantly better prediction of the human move-
ments, with the MHFC model outperforming the MHJ one
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Fig. 6. VAFs for the hand (left) and the last bead (right) trajectory profiles,
predicted by the MHJ (blue), the MHFC (red) models: mean values, shown
with solid points, are contoured by min-max bars.

by a small margin.
To discriminate between the MHJ and MHFC models

more convincingly, one can modify the dynamic environ-
ment, changing the parameters of the flexible object, its
mass and stiffness. Note that the analytical structure of the
solutions provided by these models, represented by combi-
nation of ordinary and trigonometric polynomials, admits,
in principle, the existence of not only two-phased profiles
but also those with three and more peaks. In principle, one
can try to find a set of parameters producing two essentially
different theoretical predictions, thus designing a critical test.
However, one cannot ensure that the reaching movements
in such a dynamic environment would be learnable in a
reasonably affordable amount of time. In our opinion, this is
one of the most difficult problems in designing critical tests
and the corresponding experimental setups and protocols.

Our results demonstrate that the (currently available) gen-
eralizations of the concept of natural motion in analytical
mechanics do not work well in the context of natural human
movements. On the other hand, the optimization models of
reaching movements do a better job in predicting experimen-
tal motion patterns.

APPENDIX

Typically, the human hand is modeled as a mass-damper-
spring system, and this model holds for small movements
and a short period of time. Based on this model, the hand
impedance can be evaluated by perturbing the hand during
maintenance of a given posture and measuring the hand
displacement [22]–[24]. However, the use of this technique
for a light weight haptic device without additional hardware,
such as the one proposed in [25], is problematic.

A simple method, based on the accommodation to forced
vibrations, can be constructed as follows. Assume that a
human subject can follow the motion of a virtual object of
mass m1, connected to the hand by a spring of stiffness
k and a damper of viscosity b, without developing his or
her own driving force. Assume also that a periodic force of
amplitude F and frequency Ω is applied to the hand, and the
total haptic force is defined as

fhaptic = b(ẋ1 − ẋ0) + k(x1 − x0) + F cosΩt. (34)

For a sufficiently high stiffness and low resistance the steady
state solution to the system dynamics is developed as

x0(t) ≈ x1(t) ≈ F

(m0 +m1)Ω2
(1− cosΩt) . (35)
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By measuring the differences of the peak amplitudes for the
hand and/or the object, Δx0,Δx1, one can estimate the hand
mass from one of the following nonlinear (with respect to
m0) relationships:

Δx0 ≈ Δx1 ≈ 2F

(m0 +m1)Ω2
. (36)

Either of Δx0 or Δx1 can be used for the estimation of the
hand mass m0. Practically, however, it is more preferable to
deal with Δx1 as its measurement is less noisy.

In our experiments, the parameters of the haptic simu-
lator were set as follows: m1 = 1kg, F = 1.8N,Ω =
π rad/s, k = 600N/m, b = 0.05Ns/m. The haptic force
along the movement line was computed by (34), while that
in the lateral directions was modeled by a virtual spring
of stiffness 600N/m. The object dynamics were simulated
in the computer (the 4th-order Runge-Kutta method with
constant step 0.001s). The subjects were requested to hold
the PHANToM stylus at the configuration similar to the one
they had used in the production of reaching movements in
the previously completed experiments. The subjects were
instructed not to resist the motion of the virtual object and
follow it in the most comfortable mode, without exerting his
own driving force or minimizing it as much as possible.

The positions of the hand (proxy point) and the object
were displayed on the computer monitor. In addition to this
standard visual feedback, a digital oscillograph was imple-
mented in a pop-up window. Two signals were displayed on
the digital oscillograph, the simulated object position and the
reference signal (35), computed initially with m0 = 1kg, and
the simulated object position. The subjects were instructed to
synchronize frequencies of these two signals. They could also
incrementally adjust the amplitude of the reference signal
(the reference value of m0) by pressing up and down arrow
buttons on the computer keyboard.

TABLE II

EFFECTIVE HAND MASSES m0 [KG].

Subject S1 S2 S3 S4 S5

Average 0.362 0.397 0.461 0.412 0.503
Minimum 0.108 0.162 0.242 0.127 0.201
Maximum 0.805 0.693 0.730 0.911 0.882

SD 0.156 0.131 0.108 0.174 0.149

Each subject underwent 20 trials, and each trial lasted, on
average, 3 minutes. The samples of the differences of the
peak amplitudes Δx1 at the synchronized fragments of the
reference and simulated signals were collected for analysis.
The number of samples in each trial exceeds 50. The average,
minimum, and maximum estimates of the hand mass are
listed in Table II.
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