КАЗАНСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ

Институт вычислительной математики и информационных технологий

 $Ka\phi e\partial pa$ системного анализа и информационных технологий

Р.Х. Латыпов Е.Л. Столов

Тесты по курсу "Алгебра и геометрия" Комплексные числа, матрицы и определители УДК 512.6 ББК 22.143

Принято на заседании учебно-методической комиссии ИВМИИТ Протокол № 5 от 26 января 2023 года

Рецензенты:

доктор физико-математических наук, профессор кафедры системного анализа и информационных технологий КФУ Ш.Т. Ишмухаметов; кандидат физико-математических наук, доцент кафедры алгебры и математической логики КФУ М.М. Ямалеев

Латыпов Р.Х., Столов Е.Л.
Тесты по курсу "Алгебра и геометрия"
Комплексные числа, матрицы и определители /
Р.Х. Латыпов, Е.Л.Столов. – Казань: Казанский федеральный университет, 2023. – 40 с.

Данная книга основана на опыте применения тестирования для проверки знаний по предмету «Алгебра и геометрия», изучаемому на первом курсе университетов и технических вузов. Тестирование ориентировано на текущий контроль и может проводиться в автоматическом режиме. Тесты можно внедрить в платформы, созданные для сопровождения учебного процесса. Задачи предназначены для проверки теоретических знаний.

В данной книге представлены тесты по двум разделам: «Комплексные числа» и «Матрицы и определители». В начале каждой темы помещены обозначения.

© Латыпов Р.Х, Столов Е.Л., 2023 © Казанский федеральный университет, 2023

Предисловие

Объявленная правительством программа цифровизации должна затронуть и систему образования. Цель всей программы — автоматизация рутинных процедур с целью освободить человека для более плодотворной деятельности, в частности, предоставить время преподавателю для творческой работы. Данная книга основана на опыте применения тестирования для проверки знаний по предмету «Алгебра и геометрия», изучаемому на первом курсе университетов и технических вузов. Сразу же заметим, что тестирование не может заменить общение с преподавателем. Нам представляется, что экзамен должен принимать человек, а не машина. Тестирование не может определить лучшего в группе, однако оно отсеивает неподготовленных студентов. Прежде всего, тестирование ориентировано на текущий контроль и может проводиться в автоматическом режиме. Тесты можно легко внедрить в платформы, созданные для сопровождения учебного процесса. Только успешно прошедшего тест студента следует допускать к экзамену. Книга предназначена, прежде всего, для преподавателя. Авторы полагают, что она станет доступной для студентов, поэтому в ней отсутствуют ответы на большинство тестовых вопросов, за исключением вопросов, помеченных *, для которых в конце книги приведены подробные решения. Для преподавателя найти правильные ответы на тесты не составит труда. В то же время книга полезна и для студентов, поскольку может подготовить его к форме вопросов. Тесты построены так, что для правильного ответа не нужно делать сложных вычислений. Эти задачи предназначены для проверки теоретических знаний. Для правильного ответа часто нужно придумать контрпример к утверждению.

Многие существующие тесты требуют поиска единственного правильного ответа. В предлагаемом наборе используется более сложная схема. Количество правильных ответов варьируется от теста к тесту. Более того, правильный ответ может отсутствовать, поэтому во всех тестах присутствует ответ с номером 5. Он заменяет фразу «правильный ответ отсутствует».

Тесты разбиты на темы. В данной книге представлены тесты по

двум разделам: «Комплексные числа» и «Матрицы и определители». В начале каждой темы помещены обозначения.

1 Комплексные числа

Обозначения

Малые латинские буквы обозначают числа из множеств R,C (вещественных и комплексных чисел соответственно). Комплексное число z=a+ib где $a,b\in R$, а $i^2=-1$. Это алгебраическая форма записи комплексного числа, a=Re(z), b=Im(z) — вещественная и мнимая части числа, $|z|=\sqrt{a^2+b^2}$ — модуль комплексного числа. Другое представление $z=r(\cos(t)+i\sin(t))$ — тригонометрическая форма. Здесь r>=0 — модуль числа , r=|z|, а t — аргумент. На аргумент ограничений не накладывается. Сопряженное число задается формулой $\bar{z}=a-ib$. Комплексное число z=a+i0 и вещественное число a обозначаются одним и тем же символом a. На комплексной плоскости число z=a+ib задаётся точкой с координатами (a,b) в прямоугольной системе координат и вектором, исходящим из начала координат в эту точку.

1.1 Тест

Известно, что $z \in R, z \neq 0$. Тогда:

- 1. $z = \bar{z}$;
- 2. $z = -\bar{z}$;
- 3. z = |z|;
- 4. $z^2 = |z|^2$;
- 5. .

1.2 Tect

Известно, что $z=\bar{z}.$ Тогда:

- 1. z = 0;
- 2. z = |z|;
- 3. $z^2 = \bar{z}^2$;
- 4. Re(z) = 0;
- 5. .

1.3 Tect

Известно, что $z^{-1}=\bar{z}$. Тогда:

- 1. $z = \pm 1$;
- 2. |z| = 1;
- $3. -z = \bar{z};$
- 4. $|z + z^{-1}| \le 1.5$;
- 5. .

1.4 Tect

Дано, что $z^2=\bar{z}$. Тогда:

- 1. $z = \pm 1;$
- 2. z = 0;
- 3. Если $z \neq 0$, то $z^{-1} = \bar{z}$;
- 4. Если $z \neq 0$, то $|z^2 + z| < 2$;
- 5. .

1.5 Tect

Дано, что z = -|z|. Тогда:

- 1. Re(z) > 0;
- 2. Im(z) > 0;
- 3. Если $z \neq 0$, то $z^{-1} = z$;
- 4. Если $z \neq 0$, то $z^{-2} = |z|^{-2}$;
- 5. .

1.6 Tect

Дано, что $z = z^{-1}$. Тогда:

- 1. |z| = 1;
- 2. Im(z) = 0;
- 3. $z^{-1} = \bar{z}$;
- 4. $z^{-1} = |z|^{-1}$;
- 5. .

1.7 Tect

Дано, что z=1+i. Тогда:

- 1. z^2 —мнимое число;
- 2. $z^{-1} = \bar{z}$;
- 3. $|z^2| < 2$;
- 4. Существует натуральное n, для которого $z^n \in R$;
- 5. .

1.8 Tect

Дано, что Re(z)=0. Тогда:

- 1. $z^2 \in R$
- 2. Если $z \neq 0$, то $Re(z^2) > 0$;
- 3. Если $z \neq 0$, то $z^{-1} = \bar{z}$;
- 4. Если $z \neq 0$, то $Im(z^2) > 0$;
- 5. .

1.9 Tect

Дано, что z = -1 + i. Тогда:

- 1. z^2 —мнимое число;
- 2. $z^{-1} = \bar{z}/2$;
- 3. $|z^{-1}| = 1/\sqrt{2}$;
- 4. Существует натуральное n, для которого $z^n \in R$ и $z^n < 0$;
- 5. .

1.10 Tect

Дано, что z=-1-i. Тогда:

- 1. $z^4 \in R$;
- 2. $z^{-1} = \bar{z}/\sqrt{2}$;
- 3. $z(1+i) \in R;$
- 4. Существует натуральное n, для которого $Re(z^n) = 0$;
- 5. .

1.11 Tect

Дано, что $z = r(\cos(t) + i\sin(t)), r > 0$. Тогда:

- 1. z однозначно определяет r и t;
- $2. \ r$ и t однозначно определяют z;
- 3. $z^{-1} = r(\cos(-t) + i\sin(-t));$
- 4. $z^{-1} = r^{-1}(\cos(-t) i\sin(-t));$
- 5. .

1.12 Tect

Дано, что $z=r(\cos(t)+i\sin(t)), r>0, z^2=u(\cos(w)+i\sin(w)), u>0.$ Тогда:

- 1. u = 2r;
- 2. w = 2t;
- 3. w-2t кратно 2π ;
- 4. 2w t кратно π ;
- 5. .

1.13 Tect

Дано, что $z=r(\cos(t)+i\sin(t)), r<0, z=u(\cos(w)+i\sin(w)), u>0.$ Тогда:

- 1. $z^2 = r^2(\cos(2t) + i\sin(2t));$
- 2. w + t кратно π ;
- 3. w-t кратно 2π ;

4.
$$z^2 = ru(\cos(t+w) + i\sin(t+w));$$

5. .

1.14 Tect *

Дано, что $z=-|z|(\cos(t)-i\sin(t))$. Тогда:

- 1. Аргумент z равен t;
- 2. Аргумент z равен -t;
- 3. Аргумент z равен $t+\pi;$
- 4. Аргумент z равен $\pi-t;$
- 5. .

1.15 Tect

Дано, что $z=(-1+i\sqrt{3})/2$. Тогда:

- 1. $z^{-1} = \bar{z};$
- 2. $Re(z^2) > 0$;
- 3. $z^2 = \bar{z}$;
- 4. $Im(z^2) > 0;$
- 5. .

1.16 Tect

Дано, что $z=(1+i\sqrt{3})/2$. Тогда:

- 1. $z^{-1} = \bar{z}$;
- 2. $Re(z^2) > 0$;

- 3. $z^2 = \bar{z}$;
- 4. $Im(z^2) > 0$;
- 5. .

1.17 Tect

Дано, что z_1, z_2 разные корни уравнения $z^3 = 1$. Тогда:

- 1. $z_1 + z_2$ также корень этого уравнения;
- $2. -z_1 z_2$ также корень этого уравнения;
- 3. $z_1 z_2$ также корень этого уравнения;
- 4. $z_1 + \bar{z}_2$ также корень этого уравнения;
- 5. .

1.18 Тест *

Дано, что z_1, z_2 разные корни уравнения $z^3 = -1$. Тогда:

- 1. $z_1 + z_2$ также корень этого уравнения;
- 2. $-z_1 z_2$ также корень этого уравнения;
- 3. $z_1 z_2$ также корень этого уравнения;
- 4. $z_1 + \bar{z}_2$ также корень этого уравнения;
- 5. .

1.19 Tect

Дано, что z есть корень уравнения $z^4 = 1$. Тогда:

- 1. $z = \pm 1$;
- 2. |z| = 1;
- 3. z^3 также корень этого уравнения;
- 4. Сумма двух разных корней не может быть корнем этого уравения;
- 5. .

1.20 Tect

Дано, что z есть корень уравнения $z^4 = -1$. Тогда:

- 1. $z = \pm i$;
- 2. |z| = 1;
- 3. Заменив каждый корень сопяженным числом, получим то же самое множество чисел;
- 4. Сумма двух разных корней не может быть вещественным числом;
- 5. .

1.21 Tect

Дано, что z_1, z_2 есть разные корни уравнения $z^4 = -1$. Тогда:

- 1. z_1z_2 корень того же уравнения;
- 2. $z_1 + z_2$ корень того же уравнения;

- 3. $Im(z_1)Im(z_2) \neq 0$;
- 4. $Re(z_1)Re((z_2) \neq 0;$
- 5. .

1.22 Tect

Дано уравнение $z^5 = 1$. Тогда:

- 1. Существуют пять разных корней этого уравнения;
- 2. Сумма всех корней равна 0;
- 3. Произведение всех корней равно -1;
- 4. Произведение всех корней равно 1;
- 5. .

1.23 Tect

Дано уравнение $z^5 = -1$. Тогда:

- 1. Произведение всех корней равно -1;
- 2. Сумма всех корней равна -1;
- 3. Сумма всех корней равна 1;
- 4. Произведение всех корней равно 1;
- 5. .

1.24 Tect

Пусть z удовлетворяет неравенству |z-i| < 1. Тогда:

- 1. \bar{z} удовлетворяет этому неравенству;
- 2. z^{-1} удовлетворяет этому неравенству;
- 3. -z удовлетворяет этому неравенству;
- 4. Существуют вещественные числа, удовлетворяющие этому неравенству;
- 5. .

1.25 Tect

Пусть z удовлетворяет равенству |z+1|=1 Тогда:

- 1. \bar{z} удовлетворяет этому равенству;
- 2. z^2 удовлетворяет этому равенству;
- 3. -z удовлетворяет этому равенству;
- 4. Если Im(z) = 0, то z = 0.
- 5. .

1.26 Tect *

Пусть z_1, z_2 два числа, а угол между векторами, отвечающими этим точкам, равен $\pi/2$. Тогда:

- 1. $Re(z_1)Re(z_2) + Im(z_1)Im(z_2) = 0;$
- 2. $Re(z_1)Re(z_2) Im(z_1)Im(z_2) = 0$;
- 3. $Re(z_1)Im(z_2) + Im(z_1)Re(z_2) = 0;$

4. $Re(z_1)Im(z_2) - Im(z_1)Re(z_2) = 0;$

5. .

1.27 Tect

Пусть z_1, z_2 два ненулевых числа, $|z_1| = |z_2|$, а угол между векторами, отвечающими этим точкам, равен π . Тогда:

1. $z_1 = z_2$;

2. $z_1 = -z_2;;$

3. $Re(z_1)Im(z_2) + Im(z_1)Re(z_2) = 0;$

4. $Re(z_1)Im(z_2) - Im(z_1)Re(z_2) = 0$;

5. .

1.28 Tect

Пусть z_1,z_2 два ненулевых числа и $z_1/z_2 \in R$. Тогда:

1. $z_1, z_2 \in R$;

2. Разность аргументов чисел кратна $\pi;$

3. Разность аргументов чисел кратна 2π ;

4. $\bar{z}_1 z_2 \in R$;

5. .

1.29 Tect

Пусть z_1,z_2 два ненулевых числа и $z_1z_2 \in R$. Тогда:

1. $Re(z_1)Re(z_2) \leq 0$;

- 2. Сумма аргументов чисел кратна π ;
- 3. Сумма аргументов чисел кратна 2π ;
- 4. $\bar{z}_1/z_2 \in R$;
- 5. .

1.30 Тест

Пусть $z_1=1+i$ и $z_1/z_2\in R$. Тогда:

- 1. $\bar{z}_1 z_2 \in R$;
- 2. Разность аргументов чисел кратна π ;
- 3. Величина $t=5\pi/4$ является допустимым значением для аргумента z_2 ;
- 4. $Im(z_1\bar{z}_2) = 0;$
- 5. .

1.31 Tect

Пусть $z_1=1-i$ и $z_1z_2\in R$. Тогда:

- 1. $\bar{z}_1/z_2 \in R$;
- 2. Разность аргументов чисел кратна 2π ;
- 3. Величина $t=-3\pi/4$ является допустимым значением для аргумента $z_2;$
- 4. $Re(z_1\bar{z}_2) = 0;$
- 5. .

1.32 Тест

Пусть z_1, z_2 два ненулевых числа, лежащих на одном луче, выходящем из начала координат. Тогда:

- 1. $Re(z_1)Re(z_2) \ge 0$;
- 2. $z_1/z_2 \in R$;
- 3. $Im(z_1)Im(z_2) \ge 0$;
- 4. Равенство \bar{z}_1/z_2 невозможно;
- 5. .

1.33 Tect

Пусть z_1, z_2 два ненулевых числа, лежащих на одной прямой, проходящей через начало координат. Тогда:

- 1. Если $Re(z_1) = Re(z_2) \neq 0$, то $z_1 = z_2$;
- 2. Если $Im(z_1) = Im(z_2)$, то $z_1 = z_2$;
- 3. Если $Im(z_1) = -Im(z_2)$, то $z_1z_2 \in R$;
- 4. Если $z_1z_2 \in R$, то $Im(z_1) = -Im(z_2)$;
- 5. .

2 Матрицы и определители

Обозначения

Матрицы обозначаются большими латинскими буквами. Для множеств вещественных и комплексных чисел резервируются символы R, C. Символ $A_{m,n}$ обозначает матрицу из m строк и n столбцов.

Если эти параметры не указаны в явной форме, то они подразумеваются по умолчанию. В квадратной матрице числа строк и столбцов совпадают, и это общее число называют порядком матрицы. Символом A[i,j] обозначаем элемент матрицы стоящий на пересечении строки с номером i и столбца с номером j; A[i,*] — строку с номером i, A[*, j] — столбец с номером j. Символ A(i, j) обозначает матрицу, полученную из исходной вычеркиванием строки с номером i и столбца с номером ј. В диагональной матрице все ненулевые элементы могут находиться только на главной диагонали; ее обозначение $D = diag(d_1, d_2, ..., d_n)$. Единичная матрица это квадратная матрица вида I = diag(1, 1, ..., 1). Матрица, все элементы которой равны 0, называется нулевой и обозначается символом θ . A^{T} — транспонированная к A матрица. A — комплексная матрица, все элементы которой заменены сопряженными числами. A^{-1} обратная к A матрица, |A| или det(A) — определитель матрицы. Если $|A| \neq 0$, то матрица называется невырожденной. Матрица A верхнетреугольная , если A[i, j] = 0, i > j.

2.1 Tect

Даны две матрицы A, B. Тогда:

- 1. Если существуют произведения AB, BA, то обе матрицы квадратные;
- 2. Если существуют произведения AB, BA, и AB = BA, то обе матрицы квадратные;
- 3. Если A квадратная матрица и AB существует, то и BA существует;
- 4. Произведение двух квадратных матриц одного порядка существует всегда;

5. .

2.2 Tect

Даны две матрицы A, B. Тогда:

- 1. Если существуют произведения AB , то и произведение A^TB^T существует;
- 2. Если существуют произведения $AB, A^TB^T,$ то обе матрицы квадратные;
- 3. Если существуют произведения $AB, A^TB^T,$ то $(A+B)^2$ существует;
- 4. Если существует $(A+B)^2$, то обе матрицы квадратные;
- 5. .

2.3 Tect

Известно, что $AB = \theta$. Тогда:

- 1. $A = \theta$ или $B = \theta$;
- 2. Обе матрицы нулевые;
- 3. Хотя бы одна матрица содержит нулевую строку или нулевой столбец;
- 4. Хотя бы одна матрица содержит нулевой элемент;
- 5. .

2.4 Tect

Даны две матрицы A, B. Тогда:

- 1. Если $(A+B)^2 = A^2 + B^2$, то $AB + BA = \theta$;
- 2. Если $AB + BA = \theta$, , то это квадратные матрицы;

- 3. Если матрицы квадратные, одного порядка и $AB = \theta$, то и $BA = \theta$;
- 4. Если $AB = BA = \theta$, хотя бы одна из матриц нулевая ;
- 5. .

2.5 Tect *

Дана $A_{2,2}$ матрица. Известно, что $A^2 = \theta$. Тогда:

- 1. $A = \theta$:
- 2. $A = A^T$;
- 3. А содержит нулевую строку или нулевой столбец;
- 4. А содержит нулевой элемент;
- 5. .

2.6 Tect

Для матрицы A определены две операции: $O_1(A)$ — к первой строке прибавляется вторая, а остальные строки не меняются; $O_2(A)$ — из последнего столбца вычитается предпоследний, а остальные не меняются. Тогда:

- 1. Равенство $O_1(O_2(A)) = O_2(O_1(A))$ выполнено всегда;
- 2. Это равенство справедливо всегда только для нулевой матрицы;
- 3. Это равенство справедливо всегда только для единичной матрицы;
- 4. Это равенство справедливо всегда только для диагональной матрицы;
- 5. .

2.7 Tect *

Для матрицы A определены две операции: $O_1(A)$ — к последней строке прибавляется все остальные, а другие строки не меняются; $O_2(A)$ — к последнему столбцу прибавляются все остальные, а другие столбцы не меняются. Тогда: :

- 1. Равенство $O_1(O_2(A)) = O_2(O_1(A))$ выполнено всегда;
- 2. Это равенство справедливо всегда только для нулевой матрицы;
- 3. Это равенство справедливо всегда только для единичной матрицы;
- 4. Это равенство справедливо всегда только для диагональной матрицы;
- 5. .

2.8 Tect

Определитель матрицы порядка n задается как сумма:

- 1. n слагаемых;
- $2. n^2$ слагаемых;
- 3. 2n слагаемых;
- $4. n^n$ слагаемых;
- 5. .

2.9 Tect

При умножении матрицы порядка n на число a ее определитель:

1. Не меняется;

- 2. Умножается на a;
- 3. Умножается на a^2 ;
- 4. Умножается на a^K , K = n(n-1)/2;
- 5. .

2.10 Tect

При умножении матрицы A порядка n>1 на число $c\in C$ ее определитель не изменился. Тогда:

- 1. c = 1;
- 2. |c| = 1;
- 3. det(A) = 0;
- 4. $c^n = 1$;
- 5. .

2.11 Tect

При умножении невырожденной матрицы A порядка n>1 на число $c\in C$ ее определитель не изменился. Тогда:

- 1. $c = \pm 1$;
- 2. |c| = 1;
- 3. $c^K = 1, K = n!;$
- 4. $c^n = 1$;
- 5. .

2.12 Тест

Пусть матрица A порядка n умножается на число c. Тогда справедливы соотношения:

- 1. |cA| = c|A|;
- 2. |cA| = |c||A|;
- 3. $|cA| = |c|^n |A|$;
- $4. |cA| = c^n |A^T|;$
- 5. .

2.13 Tect

Имеются две квадратные матрицы A,B одного порядка. Тогда справедливы соотношения:

- 1. |AB| = |B||A|;
- $2. |\bar{A}\bar{B}| = \overline{|A||B|};$
- 3. $\overline{|AB|} = |\bar{A}||\bar{B}|;$
- 4. $|A\bar{B}| = |\bar{A}||B|$;
- 5. .

2.14 Tect

При транспонировании квадратной матрицы порядка n определитель:

- 1. Меняет знак;
- 2. Не меняется;

- 3. Умножается на $(-1)^n$;
- 4. Умножается на $(-1)^K$, K = n(n-1)/2;
- 5. .

2.15 Tect

Имеются две квадратные матрицы A,B одного порядка n>1 . Тогда справедливы соотношения:

- 1. $|AB^T| = |B||A^T|$;
- 2. Если |A| = |B|, то A = B;
- 3. Равенство |A+B| = |A| + |B| возможно для ненулевых матриц;
- 4. Если |A + I| = |I|, то $A = \theta$;
- 5. .

2.16 Tect

Имеются две вещественные квадратные матрицы A, B одного порядка n>1 . Тогда справедливы соотношения:

- 1. $|AA^T| \ge 0$;
- 2. Если матрицы не вырождены, то $|A + B| \neq 0$;
- 3. Если $|A| \neq 0$, то $|A + I| \neq 0$;
- 4. $|(A+B)^2| = |A|^2 + |B|^2 + 2|AB|$;
- 5. .

2.17 Tect

Пусть матрица B порядка n получается из матрицы A путем записи строк в обратном порядке. Тогда:

- 1. |B| = |A|;
- 2. |B| = -|A|, если n нечетное;
- 3. $|B| = (-1)^K |A|, K = n(n-1)/2;$
- 4. $|B| = (-1)^K |A|, K = n(n+1)/2;$
- 5. .

2.18 Tect

Пусть матрица B порядка n получается из матрицы A путем записи столбцов в обратном порядке. Тогда:

- 1. |B| = |det(A)|;
- 2. |B| = -|A|, если n четное;
- 3. $|B| = (-1)^K |A|, K = n(n-1)/2;$
- 4. |B| = 0, если |A| = 0;
- 5. .

2.19 Tect

Пусть в матрице A порядка n первая строка A[1,*] состоит из единиц. Положим $b_k=(-1)^k|A(1,k)|$. Тогда:

- 1. $|A| = \sum_{k} b_k$;
- 2. $-|A| = \sum_{k} b_k$;

3.
$$|A| = \sum_{k} b_k (-1)^k$$
;

4.
$$-|A| = n \sum_{k} b_k;$$

5. .

2.20 Tect

Пусть в матрице A порядка n последний столбец A[*,n] состоит из единиц. Положим $b_k=(-1)^k|A(k,n)|$. Тогда:

1.
$$|A| = \sum_{k} b_{k}$$
;

2.
$$|A| = \sum_{k} b_{k}$$
, если n четное;

3.
$$|A| = \sum_{k} b_{k}$$
, если n нечетное;

4.
$$-|A| = n \sum_{k} b_k;$$

5. .

2.21 Tect

Пусть в матрице A порядка n A[1,*], A[2,*] состоят из единиц. Положим $b_k=(-1)^k|A(k,n)|$. Тогда:

1.
$$|A| = \sum_{k} b_k$$
;

2.
$$|A| = \sum_{k} b_{k}$$
, если n четное;

3.
$$|A| = \sum_{k} b_k (-1)^k$$
;

4.
$$-|A| = n \sum_{k} b_k;$$

5. .

2.22 Тест

Пусть в матрице A порядка n>A[1,1]=1, а все остальные элементы в первой строке нулевые. Тогда:

- 1. $|A| \neq = 0$;
- 2. Если заменить элемент A[n,1] на A[n,1]+1 , то определитель не изменится;
- 3. Если заменить элемент A[n,1] на A[n,1]+1 , то определитель увеличится на 1;
- 4. Если заменить элемент A[1,1] на A[1,1]+1 , то определитель увеличится вдвое;
- 5. .

2.23 Tect

Пусть в матрице A порядка n > 1 A[n, n] = 2, а все остальные элементы в последнем столбце нулевые. Тогда:

- 1. $|A| \neq = 0$;
- 2. Если заменить элемент A[n,1] на A[n,1]+1 , то определитель не изменится;
- 3. Если заменить элемент A[n,1] на A[n,1]+1 , то определитель увеличится на 1;
- 4. Если заменить элемент A[n,n] на A[n,n]+1 , то определитель увеличится вдвое;
- 5. .

2.24 Тест

Пусть в матрице A порядка n>1 строка A[1,*] состоит из двоек. Положим $b_k=(-1)^k|A(1,k)|$. Тогда:

- 1. $|A| = \sum_{k} b_k$;
- 2. $|A| = -2 \sum_{k} b_k;$
- 3. $-|A| = 2^n \sum_k b_k;$
- 4. $|A| = (-1)^n 2 \sum_k b_k$;
- 5. .

2.25 Tect

Пусть в матрице A порядка n>1 строка A[n,*] состоит из двоек. Положим $b_k=(-1)^k|A(n,k)|$. Тогда:

- 1. $|A| = \sum_{k} b_k$;
- 2. $|A| = -2 \sum_{k} b_k$;
- 3. $-|A| = 2^n \sum_k b_k;$
- 4. $|A| = (-1)^{n+1} 2 \sum_{k} b_k;$
- 5. .

2.26 Тест

Пусть в матрице A порядка n>1 после циклической перестановки строк (первая строка стала последней) определитель не изменился. Тогда:

- 1. |A| = 0;
- 2. n четное число;

- 3. n —нечетное число;
- 4. n(n-1)/2 четное число;
- 5. .

2.27 Tect

Пусть в матрице A порядка n>1 $A[i,j]=1,\ j>1,$ а остальные элементы i-ой строки нулевые. Положим $b_k=(-1)^k|A(i,k)|$. Тогда:

- 1. $|A| = \sum_{k} b_{k}$;
- 2. $|A| = (-1)^i \sum_k b_k;$
- 3. Если заменить элемент A[i,j] на A[i,j+|A| то определитель увеличится (уменьшится) на $|A|^2$;
- 4. Если заменить элемент A[i,j] на A[i,j+1] то определитель увеличится (уменьшится) на |A|;
- 5. .

2.28 Tect

Пусть в матрице A порядка n>1 только n элементов отличны от 0. Тогда:

- 1. Равенство |A| = 0 возможно;
- 2. Неравенство $|A| \neq 0$ возможно;
- 3. Если к первой строке прибавить все остальные строки и строка станет ненулевой, то $|A| \neq 0$;
- 4. Если к первой строке прибавить все остальные строки и получившаяся строка не содержит нулей, то $|A| \neq 0$;
- 5. .

2.29 Tect

Пусть в матрице A порядка n>1 только n элементов отличны от 0, и $|A|\neq 0$. Тогда:

- 1. Все ненулевые элементы стоят на главной либо побочной диагоналях;
- 2. Переставляя строки и столбцы, можно поместить все ненулевые элементы на главную диагональ;
- 3. Переставляя только строки, можно поместить все ненулевые элементы на главную диагональ
- 4. Если все ненулевые элементы положительны и расположены на побочной диагонали, то |A| < 0;

5. .

2.30 Tect

Пусть в матрице A порядка n>1 только n+1 элемент отличен от 0, и $|A|\neq 0.$ Тогда:

- 1. Все элементы на главной либо побочной диагонаях ненулевые;
- 2. Переставляя строки и столбцы, можно поместить любые n ненулевых элементов на главную диагональ;
- 3. Переставляя только строки, можно поместить любые n ненулевых элементов на главную диагональ;
- 4. Всегда существует ненулевой элемент, меняя который нельзя изменить определитель;

5. .

2.31 Тест

Известно, что в матрице A порядка n>1 только n+2 элемента отличны от 0, и все они равны 1. Тогда:

- 1. Если главная диагональ матрицы заполнена единицами, то $|A| \neq 0$;
- 2. Пусть главная диагональ матрицы заполнена единицами. Прибавим к последней строке все остальные. Если новая строка содержит две двойки, то |A| = 0;
- 3. Прибавим к последней строке все остальные. Если новая строка содержит тройку, то |A|=0;
- 4. Прибавим к последней строке все остальные. Если новая строка содержит три двойки, то |A|=0;
- 5. .

2.32 Tect *

Известно, что в матрице A порядка n>1 только n+2 элемента отличны от 0, и все они равны 1. Тогда для определителя возможны значения:

- 1. 0;
- $2. \pm 1;$
- $3. \pm 2;$
- $4. \pm 3;$
- 5. .

2.33 Тест

Известно, что в матрице A порядка n>1 только n+2 элемента отличны от 0, и все они равны ± 1 . Тогда для определителя возможны значения:

- 1. 0;
- $2. \pm 1;$
- $3. \pm 2;$
- $4. \pm 3;$
- 5. .

2.34 Тест

Даны две квадратные матрицы A,B одного порядка, причем AB=I. Тогда:

- 1. Это единичные матрицы;
- 2. Если одна из них единичная матрица, то и вторая тоже;
- 3. |A| = |B| = 1;
- 4. |A||B| = 1;
- 5. .

2.35 Тест

Даны две квадратные матрицы A,B одного порядка, причем AB=I. Тогда:

- 1. BA = I;
- 2. $B^{-1}A^{-1} = I;$

- 3. $B^T A^T = I$;
- 4. $B^{T^{-1}}A^{-1T} = I;$
- 5. .

2.36 Тест

Даны две квадратные матрицы A,B одного порядка, причем AB=I. Тогда:

- 1. BA = AB;
- 2. $|A| \neq 0$;
- 3. |B| = 1/|A|;
- 4. $A^2B^2 = I$;
- 5. .

2.37 Тест

Известно, что квадратная матрица A удовлетворяет уравнению $AA^T=I.$ Тогда:

- 1. $A = A^T$;
- 2. $|A| = \pm 1$;
- 3. $A^2 = I$;
- $4. \ AA^TA = A;$
- 5. .

2.38 Tect *

Известно, что квадратная матрица второго порядка удовлетворяет уравнению $A=A^{-1}$. Тогда:

- 1. A = I;
- $2. \ A$ диагональная матрица;
- 3. $A = A^T$;
- 4. $|A| = \pm 1$;
- 5. .

2.39 Тест

Известно, что квадратная матрица второго порядка удовлетворяет уравнению $A=A^{-1}$. Тогда:

- 1. Если |A|=1, то это диагональная матрица;
- 2. Если |A| = -1, то это диагональная матрица;
- 3. $A = A^T$;
- 4. Матрица содержит нулевые элементы;
- 5. .

2.40 Тест

Известно, что квадратная матрица порядка n>1 удовлетворяет уравнению $A^2=A.$ Тогда:

- 1. $A = \theta$;
- 2. Если |A| = 0, то $A = \theta$;

- 3. Если $|A| \neq 0$, то A = I;
- 4. A диагональная матрица;
- 5. .

2.41 Tect

Известно, что квадратная матрица A второго порядка удовлетворяет уравнению $A^3=A$. Тогда:

- 1. Если |A| = 1, то $A = A^{-1}$;
- 2. Если |A| = 0, то $A = \theta$;
- 3. Если |A| = -1, то $A = A^T$;
- 4. Матрица содержит нулевые элементы;
- 5. .

2.42 Tect

Дана квадратная матрица A порядка n>1 . Пусть $B=A^{-1}$. Известно, что столбец B[*,1] состотит из единиц. Тогда :

- 1. Все элементы строки A[1,*] равны между собой;
- 2. Если элементы строки A[1,*] равны между собой, то A[1,1] = 1/n;
- 3. $\sum_{k} A[i,k] = 0$, если i > 1;
- 4. Строка A[i,*], i > 1 не может состоять из одинаковых элементов;
- 5. .

2.43 Tect

Дана квадратная матрица A порядка n>1 . Пусть $B=A^{-1}$. Известно, что строка A[1,*] состотит из единиц. Тогда :

- 1. Все элементы столбца B[*,1] равны между собой;
- 2. $\sum_{k} B[k, 1 = 1;$
- 3. $\sum_{k} B[k,2] = 0;$
- 4. Столбец B[*,i], i>1 не может состоять из одинаковых элементов;
- 5. .

2.44 Tect

Пусть A, B — две верхнетреугольные матрицы одного порядка. Тогда:

- 1. AB также верхнетреугольная матрица;
- 2. Если $|A| \neq 0$, то A^{-1} тоже верхнетреугольная матрица;
- 3. Если $|A| \neq 0$, то $(A^T)^{-1}$ тоже верхнетреугольная матрица
- 4. A + B тоже верхнетреугольная матрица;
- 5. .

2.45 Tect

Пусть A, B — две верхнетреугольные матрицы одного порядка n>1. Тогда:

- 1. |A + B| = |A| + |B|;
- 2. |A + I| = |A| + 1;

- 3. Ситуация |A| = 0, |B| = 0, $|A + B| \neq 0$ невозможна;
- 4. Ситуация $|A| \neq 0$, $|B| \neq 0$, |A + B| = 0 невозможна;
- 5. .

2.46 Tect

Пусть A, B — две верхнетреугольные матрицы одного порядка n>1. Тогда:

- 1. |A + B| = |A| + |B|;
- 2. |A + I| = |A| + 1;
- 3. Ситуация $|A|=0,\,|B|=0,\,|A+B|\neq 0$ невозможна;
- 4. Ситуация $|A| \neq 0, \, |B| \neq 0, \, |A+B| = 0$ невозможна;
- 5. .

2.47 Tect

Пусть A верхнетреугольная невырожденная матрица порядка n>1, в которой только n+1 ненулевой элемент. Тогда:

- 1. A^{-1} содержит только n+1 ненулевой элемент;
- 2. $|A + A^{-1}| \neq 0$;
- 3. $|A^2 + A^{-2}| \neq 0$;
- 4. $|A^3 + A^{-2}| \neq 0$;
- 5. .

2.48 Tect

Пусть A верхнетреугольная матрица порядка n>1, в которой все ненулевые элементы равны ± 1 . Тогда:

- 1. $|A| \neq 0$;
- 2. $|A + A^{-1}| \neq 0$;
- 3. $|A^2 + A^{-2}| \neq 0$;
- 4. $|A^3 + A^{-2}| \neq 0$;
- 5. .

3 Ответы

Тест 1.14

Решение. Приведем заданное число к стандартной тригонометрической форме: сначала внесем минус в скобки, получим $z=|z|(-\cos(t)+i\sin(t))$, а затем применим формулы приведения: $-\cos(t)=\cos(\pi-t)$, $\sin(t)=\sin(\pi-t)$. Получаем исходное число в стандартной тригонометрической форме $z=|z|(\cos(\pi-t)+i\sin(\pi-t))$.

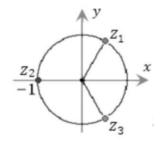
Правильный ответ: 4.

Тест 1.18

Решение. Корни исходного уравнения располагаются на окружности радиуса 1 в вершинах правильного треугольника:

Таким образом, сумма трех различных корней равна нулю: $z_1+z_2+z_3=0$. Поэтому любой из кубических корней из -1 можно выразить через пару оставшихся: $z_3=-z_1-z_2$. Отрицательные ответы на другие возможности вытекают из приведенного рисунка.

Правильный ответ: 2.



Тест 1.26

Решение. Пусть t – аргумент первого числа в тригонометрической форме, а $\pi/2+t$ – аргумент второго числа. Тогда, применяя формулы приведения, представим первое число как $z_1 = r_1(\cos(t) + i\sin(t))$, а второе - как $z_2 = r_2(-\sin(t) + i\cos(t))$. Для проверки подставляем в приведенные в пунктах 1-4 выражения действительные и мнимые части этих чисел.

Правильный ответ: 1.

Тест 2.5

Решение. Нулевая матрица удовлетворяет условию задачи. Попробуем найти ненулевые решения.

Пусть $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ искомая ненулевая матрица. Возводим в квадрат, получаем нулевую матрицу $\begin{bmatrix} a^2 + bc & (a+d)b \\ (a+d)c & d^2 + bc \end{bmatrix}$, тогда b и c не могут одновременно равняться нулю. Отсюда, a=-d.

Если $b=0, c\neq 0$, то получаем, например, матрицы вида $\begin{bmatrix} 0 & 0 \\ c & 0 \end{bmatrix}$. Если $b\neq 0, c\neq 0$, то $a\neq 0, d\neq 0$ и получаем, например, матрицы $\begin{bmatrix} a & a^2/c \end{bmatrix}$

вида $\begin{bmatrix} a & a^2/c \\ -c & -a \end{bmatrix}$. Последняя матрица не удовлетворяет ни одному из пунктов.

Правильный ответ: 5.

Тест 2.7

Любую линейную комбинацию строк матрицы A можно получить умножением ее на подходящую матрицу L слева, а линейную комбинацию столбцов — умножением на подходящую матрицу R справа. Умножение матриц аасоцитивно: (LA)R = L(AR).

Правильный ответ: 1.

Тест 2.32

Решение.

Если n=2, то определитель равен 0, то есть пункт 1 возможен.

Пусть n > 2. Если имеются нулевые столбцы, то определитель равен 0 (пункт 1). В противном случае существует столбец с единственной 1. Вычеркивая строку и столбец с этой единицей получаем определитель меньшего порядка и с меньшим числом единиц. Повторяем процедуру и таким образом дело сводится к определитею второго порядка, в котором 1,2,3 или 4 единицы.

Правильные ответ: 1 и 2.

Тест 2.38

Решение. Из условия задачи получаем $A^2=I$ или, переходя к определителям, $|A|^2=1.$ Отсюда следует истинность пункта 4.

Матрица $\begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$ удовлетворяет условию задачи, но не удовлетворяет пунктам 1,2 и 3.

Правильный ответ: 4.

Учебное издание

Латыпов Рустам Хафизович, **Столов** Евгений Львович Тесты по курсу "Алгебра и геометрия"

Комплексные числа, матрицы и определители

Учебное пособие