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Let 𝜔0, 𝜔1, . . . , 𝜔𝑛 be a full set of outcomes (symbols) and let positive 𝑝𝑖, 𝑖 = 0, . . . , 𝑛, be their probabilities (∑𝑛
𝑖=0 𝑝𝑖 = 1). Let us treat𝜔0 as a stop symbol; it can occur in sequences of symbols (we call them words) only once, at the very end.The probability of a word

is defined as the product of probabilities of its symbols. We consider the list of all possible words sorted in the nonincreasing order
of their probabilities. Let 𝑝(𝑟) be the probability of the 𝑟th word in this list. We prove that if at least one of the ratios log𝑝𝑖/ log𝑝𝑗,𝑖, 𝑗 ∈ {1, . . . , 𝑛}, is irrational, then the limit lim𝑟→∞𝑝(𝑟)/𝑟−1/𝛾 exists and differs from zero; here 𝛾 is the root of the equation∑𝑛

𝑖=1 𝑝𝛾𝑖 =1. The limit constant can be expressed (rather easily) in terms of the entropy of the distribution (𝑝𝛾1 , . . . , 𝑝𝛾𝑛).

1. Introduction: The Statement of
the Main Theorem

1.1. Brief Literature Overview. The wide presence of power
laws in real networks, biology, economics, and linguistics
can be explained in the framework of various mathematical
models (see, e.g., [1, 2]). According to Zipf ’s law [3], in a list of
word forms ordered by the frequency of occurrence, the fre-
quency of the 𝑟th word form obeys a power function of 𝑟 (the
value 𝑟 is called the rank of the word form). One can easily
explain this law with the help of the so-called monkeymodel.

Recall that the word forms “the”; “of”; and “and” are used
most frequently in English texts. According to Zipf ’s law, the
word “the” is used in the texts twice as much as “of” and
three times as much as “and”; in other words the word form
occurrence frequency obeys the power function of rank 𝑟 (the
position number of the word form in an ordered frequency
list) whose exponent is approximately −1. It should be noted
that further surveys showed that Zipf ’s law is roughly realised
only for the most frequent words. At present, the researches
try to describe the main part of the lexicon using the power
law with an exponent −𝛼, where 𝛼 > 1. Zipf explained his law
on the basis of the principle of least effort. In accordance with

this principle, the authors aim to minimise the length of the
text, which is required to convey their thoughts, even if this
introduces ambiguities. On the other hand, readers want to
minimize the effort required to understand the text [4].

Another explanation of Zipf ’s law was suggested byMan-
delbrot who slightly modified the law by introducing trans-
lation constant [5] into the argument of the power function.
The important thing for our case is that later he hypothesized
the existence of more simple explanation of the Zipf law
associated with a simple probability model when all symbols
in the text (including white-space) appear independently of
each otherwith certain probability.Moreover, he analysed the
Markovian dependence between these symbols andwrote out
the correct (in a typical case) formula on the basis of special
cases to determine the parameter 𝛼 by the transition proba-
bilities matrix in the Markov model [6].

First, we will consider themodel thoroughly described by
Miller [7] and Li [8] for a special case of Mandelbrot’s exper-
iment in which the monkey types the keys with uniform pro-
bability. To learn some other important references on the
monkey model, we recommend to read the recent article by
Richard Perline andRon Perline [9] (see also references in the
next subsection).
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1.2. Statement of the Main Theorem and Its Connection with
Other Results. Assume that a monkey types any of 26 Latin
letters or the space on a keyboardwith the same probability of1/27. We understand a word as a sequence of symbols typed
by themonkey before the space. Let us sort the list of possible
words with respect to probabilities of their occurrence (the
empty word, whose probability equals 1/27, will go first in
this list followed by 26 one-letter words whose probabilities
equal 1/272 and then by 262 possible two-letters words and
so on). We can prove (see [7, 8]) that the probability 𝑝(𝑟) of a
word with the rank of 𝑟 satisfies the inequality

𝑐1𝑟−𝛼 < 𝑝 (𝑟) < 𝑐2𝑟−𝛼, (1)

where𝛼 = log 27/ log 26 and 𝑐1, 𝑐2 > 0 (here and belowwe use
the symbol log if the base of the logarithm is not significant;
but for the natural logarithm we use the symbol ln).

Relatively recently inequality (1) was generalized to the
case of nonequiprobable letters. Let 𝑝0 be the probability
that the monkey types the space, let 𝑝𝑖, 𝑖 = 1, . . . , 𝑛, denote
probabilities of choosing the 𝑖th letter from the set of 𝑛 letters
(𝑝𝑖 > 0,∑𝑛

𝑖=0 𝑝𝑖 = 1), and let 𝑝(𝑟) be, as above, the probability
of a wordwith a rank of 𝑟.Then, as is proved in [10, 11], the fol-
lowing inequality analogous to (1) takes place; namely,∃𝑐1, 𝑐2 :0 < 𝑐1 < 𝑐2, such that

𝑐1𝑟−𝛼 < 𝑝 (𝑟) < 𝑐2𝑟−𝛼, where 𝛼 = 1𝛾 (2)

and 𝛾 is the root of the equation ∑𝑛
𝑖=1 𝑝𝛾𝑖 = 1 (evidently,0 < 𝛾 < 1). Note that inequality (2) is equivalent to the

boundedness of the difference − log𝑝(𝑟) − 𝛼 log 𝑟.
In the case when the probability of each letter is not fixed

but depends on the previous one, words represent trajectories
of a Markov chain with the absorbing state 𝜔0 and transient
states 𝜔1, . . . , 𝜔𝑛. Then the value 𝑝(𝑟) is the probability of
the 𝑟th trajectory in the list of possible trajectories sorted
in the nonincreasing order of probabilities. In this case, the
asymptotic behavior of𝑝(𝑟) does not necessarily have a power
order. Namely, in this case one of the two alternatives takes
place [12, 13]. The first variant is that there exists the limit

lim
𝑟→∞

− log𝑝 (𝑟)𝑟1/𝑚 = 𝑐, 𝑐 > 0, (3)

where𝑚 is some positive integer constant value that depends
on the structure of the transition probability matrix and
the structure of states, where the initial distribution of the
Markov chain is concentrated. The second variant is that
independently of the initial distribution there exists the
following nonzero limit (the so-called weak power law):

lim
𝑟→∞

− log𝑝 (𝑟)
log 𝑟 . (4)

This limit equals 1/𝛾, where 𝛾 is now defined with the help of
the substochastic matrix 𝑃 of transition probabilities where
the row and the column that correspond to the absorbing
state 𝜔0 are deleted. Namely, raising all elements of the
mentioned matrix to the power of 𝛾 would equate its spectral
radius to 1.

These results were obtained independently in [12, 14] and
later refined in [13]. Namely, as appeared, the first alternative
means the subexponential order of the asymptotics; that is, in
this case ∃𝑐1, 𝑐2 : 0 < 𝑐1 < 𝑐2, such that

𝑐1 exp (−𝑐𝑟−1/𝑚) < 𝑝 (𝑟) < 𝑐2 exp (−𝑐𝑟−1/𝑚) . (5)

The case of the second alternative is much more difficult.
If the matrix 𝑃 does not have the block-diagonal structure
with coinciding powers such that raising elements of blocks
to these powers makes the spectral radius equal 1, then one
can replace the weak power law with a strong one. Namely, in
this case the asymptotic behavior of 𝑝(𝑟) has the power order;
that is, inequality (2) is valid (with “matrix” 𝛾 defined above).
Therefore, inequality (2) takes place in a “typical” case of letter
probabilities.

However, onemore natural question still remains without
an answer.

Inequality (2) means that the asymptotic form has a
power order but does not imply the exact power asymptotics.
In a general case, as follows from the first example given in
this section, useful properties can be established neitherwhen
letters in words are Markov-dependent nor when they are
independent. However, as we prove later in this paper, in a
“typical” case, for words composed of independent letters, the
asymptotic behavior of the function 𝑝(𝑟) is exact power. The
following theorem is valid.

Theorem 1 (main). Let at least one of the ratios log𝑝𝑖/ log𝑝𝑗,𝑖, 𝑗 ∈ {1, . . . , 𝑛}, be irrational and let 𝛾 be the root of the
equation ∑𝑛

𝑖=1 𝑝𝛾𝑖 = 1. Then the limit

lim
𝑟→∞

𝑝 (𝑟)−𝛾 /𝑝−𝛾0𝑟 (6)

exists and equals 𝐻(p𝛾), where 𝐻(p𝛾) is the entropy of p𝛾 =(𝑝𝛾1 , . . . , 𝑝𝛾𝑛); that is,𝐻(p𝛾) = −𝛾∑𝑛
𝑖=1 𝑝𝛾𝑖 ln𝑝𝑖.

Here and below we always write the function under
consideration in the numerator and do the norming (defined
analytically) function in the denominator of the fraction,
whose limit is to be calculated. In intermediate calculations
it may be more convenient to do the opposite, but since this
results only in the trivial raising of the limit constant to the
power of −1, we sacrifice the convenience of calculations
for the clarity of statements of results. Evidently, the theo-
rem asserts that under certain assumptions there exists the
nonzero limit 𝑝(𝑟)/𝑟−𝛼 (where 𝛼 = 1/𝛾) as 𝑟 → ∞. It is equal
to 𝑝0𝐻(p𝛾)−1/𝛾.

Let us describe the structure of the remaining part of the
paper. In Section 2 we state the main theorem in terms of
multinomial coefficients (of the Pascal pyramid). The proof
of the theorem is reduced to the estimation of the limit
behavior of the sum of these coefficients over some simplex.
In Section 3 we prove an analog of this theorem with an
integral in place of the sum. In this section we essentially use
the Stirling formula which allows us to reduce calculations
to the evaluation of a multivariate Gaussian integral. We
establish an explicit formula for the determinant of thematrix
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of the quadratic form that defines the integrand. Finally, in
Section 4 we prove that the ratio of the integral to the sum
tends to 1. Here we use the general properties of the Riemann
integral and uniformly distributed sequences. In conclusion
we discuss possible generalizations and unsolved problems.

2. Equivalent Statements of the Main Theorem
and the Pascal Pyramid

Let us first note that if 𝑝0 → 0, then 𝛾 → 1. Reducing
the nominator of fraction (6) by 𝑝−𝛾0 , we write the following
statement in this case:

Theorem 2 (the case of 𝛾 = 1). Let 𝑝𝑖 > 0 be the probability of
the symbol 𝜔𝑖, 𝑖 = 1, . . . , 𝑛, while ∑𝑛

𝑖=1 𝑝𝑖 = 1 (there is no stop
symbol). Assume that at least one of the ratios log𝑝𝑖/ log𝑝𝑗,𝑖, 𝑗 ∈ {1, . . . , 𝑛}, is irrational. Let us consider all possible
finite words (including the empty one) and sort them in the
nonincreasing order of probabilities (we equate the probability
of the empty word to 1 and calculate the probability of any other
word as the product of probabilities of its letters). Let𝑝(𝑟) be the
probability of the 𝑟th word in the list (the word with the rank
of 𝑟).Then the limit lim𝑟→∞𝑝(𝑟)/𝑟−1 exists and equals𝐻−1(p),
where𝐻(p) is the entropy of the vector p = (𝑝1, . . . , 𝑝𝑛); that is,𝐻(p) = −∑𝑛

𝑖=1 𝑝𝑖 ln𝑝𝑖.
In the statement of Theorem 2, as well as in Theorem 1,

we use the bold font for the vector whose components are
denoted by the same letter with the index ranging from 1
to 𝑛. In what follows we use the bold font for analogous
denotations without mentioning this fact.

One can easily see that Theorem 2 is not just a particular
case ofTheorem 1, but these theorems are equivalent. Namely,
the replacement of probabilities 𝑝𝛾𝑖 with new ones 𝑝𝑖 turns
the general case into the particular one. Therefore, in what
follows we neglect 𝑝0, assuming (without loss of generality)
that ∑𝑛

𝑖=1 𝑝𝑖 = 1.
Fix some probability 𝑞 ∈ (0, 1] and denote by 𝑄(𝑞) the

rank of the last word whose probability is not less than 𝑞 in
the list of all words sorted in the nonincreasing order of their
probabilities. Let us redefine the function 𝑝(𝑟) for noninteger𝑟 as 𝑝(𝑟) = 𝑝(⌊𝑟⌋) (here ⌊⋅⌋ is the integer part of a number).
Evidently, functions 𝑞 = 𝑝(𝑟) and 𝑟 = 𝑄(𝑞) (𝑞 ∈ (0, 1], 𝑟 ≥ 1)
are inverse (more exactly, quasi-inverse); namely, the graph of
one of the hyperbola-shaped, decreasing stepwise functions
turns into another one when axes 𝑟 and 𝑞 switch roles (in the
first case, 𝑞 is the argument and 𝑟 is the value and vice versa
in the second case).

It can be clearly seen that lim𝑟→∞𝑐𝑝(𝑟)/𝑟−1 = 1 is
equivalent to

lim𝑞→0𝑐−1𝑄 (𝑞)
𝑞−1 = 1. (7)

Therefore the equality in the assertion of Theorem 2 is
equivalent to that

lim𝑞→0𝑄 (𝑞)
𝑞−1 = 𝐻−1 (p) . (8)

Denote the logarithm of the denominator in the last frac-
tion by 𝑧 = − ln 𝑞 (i.e., 𝑞 = 𝑒−𝑧) and let𝑄(𝑧) = 𝑄(𝑒−𝑧). In view
of considerations in the above paragraph the equality in the
assertion of Theorem 2 is equivalent to that

lim
𝑧→∞

(ln𝑄 (𝑧) − 𝑧) = − ln𝐻(p) . (9)

Recall the proof of inequality (2) in [11]. It is reduced to
the proof of the boundedness of the difference ln𝑄(𝑧) − 𝑧 for
the introduced function𝑄(𝑧)with 𝑧 ≥ 0. Nonnegative values
of 𝑧 form the definition domain of the function𝑄(𝑧) because𝑞 ≤ 1 ⇔ 𝑧 ≥ 0. For convenience we redefine the function𝑄(𝑧) by putting 𝑄(𝑧) = 0 for 𝑧 < 0.

Let 𝑎𝑖 = − ln𝑝𝑖. Considering all possible variants of the
last letters in words, whose quantity equals the value of the
function 𝑄, we obtain the functional equation 𝑄(𝑧) = 𝑄(𝑧 −𝑎1) + ⋅ ⋅ ⋅ + 𝑄(𝑧 − 𝑎𝑛) + 𝜒(𝑧), where 𝜒 is the Heaviside step
(i.e., the function that vanishes with negative values of the
argument and equals 1 with nonnegative values). For 𝑧 ≥ 𝑀 =
max{𝑎1, . . . , 𝑎𝑛} we get the following recurrent correlation:

𝑄𝑛 (𝑧) = 𝑄𝑛 (𝑧 − 𝑎1) + ⋅ ⋅ ⋅ + 𝑄𝑛 (𝑧 − 𝑎𝑛) , (10)

where 𝑄𝑛(𝑧) = 𝑄(𝑧) + 1/(𝑛 − 1).
The equality ∑𝑛

𝑖=1 𝑝𝑖 = 1 implies that the function
const exp 𝑧 satisfies (10). Since the function 𝑄𝑛(𝑧) takes a
finite number of positive values within [0,𝑀] interval, there
exist positive 𝑐1 and 𝑐2 such that

𝑐1 exp 𝑧 < 𝑄𝑛 (𝑧) < 𝑐2 exp 𝑧 (11)

for all 0 ≤ 𝑧 ≤ 𝑀.
Replacing terms in the right-hand side of the recurrent

correlation (10) with their lower (upper) bounds, we extend
the solution set of inequality (11) to the domain 0 ≤ 𝑧 ≤𝑀+𝑚, where𝑚 = min{𝑎1, . . . , 𝑎𝑛}. Repeating this procedure
several times, in a finite number of steps we prove that the
inequality is valid for any arbitrarily large 𝑧. Performing the
logarithmic transformation of the inequality, we conclude
that ln𝑄𝑛(𝑧) − 𝑧 is bounded, and then so is the difference
ln𝑄(𝑧) − 𝑧.

Let us return to Theorem 2. As was mentioned above,
Theorem 2 asserts (under certain assumptions) not only the
boundedness of ln𝑄(𝑧) − 𝑧 but also the validity of equality
(9). Let us recall the combinatory sense of the function 𝑄;
it is mentioned in [11]. Evidently, all words that contain 𝑘1
letters of the 1st kind, 𝑘2 letters of the 2nd kind, . . ., and 𝑘𝑛
letters of the 𝑛th kind have one and the same probability of
Pr(k) = 𝑝𝑘11 ⋅ ⋅ ⋅ 𝑝𝑘𝑛𝑛 (i.e., − ln Pr(k) = ∑𝑛

𝑖=1 𝑘𝑖𝑎𝑖); ranks of these
words are consecutive. The quantity of such words is defined
by the multinomial coefficient

𝑀(k) = (𝑘1 + ⋅ ⋅ ⋅ + 𝑘𝑛)!𝑘1! ⋅ ⋅ ⋅ 𝑘𝑛! . (12)

Considering the nonnegative part of the 𝑛-dimensional
integer grid and associating the point (𝑘1, . . . , 𝑘𝑛) with the
number𝑀(𝑘1, . . . , 𝑘𝑛), we get one of the variants of the Pascal
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pyramid. By the definition of the function 𝑄 the value 𝑄(𝑧)
equals the sum of multinomial coefficients 𝑀(k) over all
integer vectors k that lie inside the 𝑛-dimensional simplex𝑆(𝑧) = {x : x ≥ 0, ∑𝑛

𝑖=1 𝑎𝑖𝑥𝑖 ≤ 𝑧}:
𝑄 (𝑧) = ∑

k∈𝑆(𝑧)
𝑀(k) . (13)

As a result, we obtain one more equivalent statement of
the main theorem, which we are going to prove.

Theorem 3 (the multinomial statement). Let 𝑎𝑖, 𝑖 = 1, . . . , 𝑛,
be arbitrary positive numbers such that at least one of the ratios𝑎𝑖/𝑎𝑗, 𝑖, 𝑗 ∈ {1, . . . , 𝑛}, be irrational and ∑𝑛

𝑖=1 𝑝𝑖 = 1, where𝑝𝑖 = exp(−𝑎𝑖). Let a function 𝑄 obey formula (13). Then

lim
𝑧→∞

𝑄 (𝑧)
exp (𝑧) = 𝐻−1 (p) , (14)

where𝐻(p) = ∑𝑛
𝑖=1 𝑎𝑖𝑝𝑖.

3. The Proof of an Analog of Theorem 3 with
Integration instead of Summation

3.1. Reduction of the Integration to the Calculation of a Gaus-
sian Integral. The function𝑀(𝑘1, . . . , 𝑘𝑛) is defined for inte-
ger nonnegative vectors k. Let us redefine it for noninteger
vectors by replacing (in this case) 𝑥! in Definition (12) withΓ(𝑥+1). In what follows we use the denotation𝑀(𝑥1, . . . , 𝑥𝑛)
(or 𝑀(x)) for the corresponding function which is con-
tinuous for nonnegative 𝑥𝑖. Further we consider this
function and study its properties only for such (nonnegative)𝑥𝑖.

In this section we prove the following theorem.

Theorem 4 (on the integral). Let 𝑎𝑖, 𝑖 = 1, . . . , 𝑛, be arbitrary
positive numbers such that ∑𝑛

𝑖=1 𝑝𝑖 = 1, where 𝑝𝑖 = exp(−𝑎𝑖).
Let a function 𝑓(𝑧) obey the formula 𝑓(𝑧) = ∫x∈𝑆(𝑧)𝑀(x)𝑑x,
where 𝑑x = ∏𝑛

𝑖=1𝑑𝑥𝑖. Then

lim
𝑧→∞

𝑓 (𝑧)
exp (𝑧) = 𝐻−1 (p) . (15)

Proof. Let us first recall some evident properties of the
integrand. Note that the existence of the (Riemann) integral
of 𝑓(𝑧) over the compact set 𝑆(𝑧) evidently follows from the
continuity of𝑀(x) in the domain under consideration.

If all components of the vector (𝑥1, . . . , 𝑥𝑛), possibly,
except one component 𝑥𝑖, equal zero, then by definition we
have 𝑀(𝑥1, . . . , 𝑥𝑛) ≡ 1. Let us prove that otherwise the
function 𝑀(𝑥1, . . . , 𝑥𝑛) is strictly increasing in 𝑥𝑖. Since the
gamma function is positive definite, it suffices to prove that
in this case the partial derivative of ln𝑀(𝑥1, . . . , 𝑥𝑛) with
respect to 𝑥𝑖 is positive. It equals

(ln Γ) (𝑥1 + ⋅ ⋅ ⋅ + 𝑥𝑛 + 1) − (ln Γ) (𝑥𝑖 + 1) . (16)

The positiveness of this difference follows from the fact that
the function (ln Γ) is increasing; this property, in turn, fol-
lows from the logarithmic convexity of the gamma function

(it is well known [15] that (ln Γ)(𝑥) = ∑∞
𝑖=0 1/(𝑖 + 𝑥)2 > 0

with 𝑥 > 0).
The proved assertion implies that the function 𝑀(x)

attains its maximum in the domain 𝑆(𝑧) at the boundary⟨a, x⟩ = 𝑧, where ⟨a, x⟩ = ∑𝑛
𝑖=1 𝑎𝑖𝑥𝑖. Let us calculate the exact

asymptotics of the maximal value of the function𝑀(x) in the
domain 𝑆(𝑧)with 𝑧 → ∞. For the vector xwe denote by 𝑥 the
sum of its components and parameterize x by the value 𝑥 and
ratios 𝑞𝑖 = 𝑥𝑖/𝑥:

𝑥𝑖 = 𝑞𝑖𝑥, 𝑞𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑛,
𝑛∑
𝑖=1

𝑞𝑖 = 1. (17)

Let us use one simplest corollary of the Stirling formula [15],
namely, the fact that with a nonnegative argument the value
of the difference ln Γ(𝑥 + 1) − (𝑥 ln(𝑥) − 𝑥 + ln(𝑥 + 1)/2) is
bounded. We obtain that, with any 𝑥 > 0,

ln𝑀(𝑥1, . . . , 𝑥𝑛) = 𝑥𝐻 (q) + 𝑂 (ln (𝑥 + 1)) , (18)

where 𝐻(q) = −∑𝑛
𝑖=1 𝑞𝑖 ln 𝑞𝑖 (this correlation is closely con-

nected with the so-called entropy inequality for multinomial
coefficients).

We seek for the maximum of this function with 𝑧 → ∞
under one additional condition (namely, the requirement that
the maximum is attained at the boundary) ⟨a, x⟩ = 𝑧, where𝑎𝑖 = − ln𝑝𝑖, 0 < 𝑝𝑖 < 1, and ∑𝑛

𝑖=1 𝑝𝑖 = 1. Since 𝑎𝑖 > 0, we get𝑂(ln(𝑥 + 1)) = 𝑂(ln 𝑧). Moreover, the condition ⟨a, x⟩ = 𝑧
with mentioned 𝑥𝑖 gives the correlation

𝑥 = 𝑧𝐻 (q; p)−1 , (19)

where 𝐻(q; p) = ∑𝑛
𝑖=1 𝑎𝑖𝑞𝑖 = −∑𝑛

𝑖=1 𝑞𝑖 ln𝑝𝑖. Substituting this
expression in (18), we conclude that the maximum of ln𝑀
(accurate to 𝑂(ln 𝑧)) is attained at a vector q such that the
fraction 𝐻(q)/𝐻(q; p) takes on the maximal value. Recall
that the difference𝐻(q; p) − 𝐻(q) takes on only nonnegative
values and is called the Kullback–Leibler distance (diver-
gence) 𝐷(q | p) between distributions q and p (see [16]).
The minimum of this difference is attained at only one value
of q = p; evidently, an analogous assertion is also true for𝐻(q; p)/𝐻(q): if q ̸= p

𝐻(q)𝐻 (q; p) < 1. (20)

Consequently, the maximum of the function ln𝑀(x) in
the domain 𝑆(𝑧) is attained (accurate to 𝑂(ln 𝑧)) at the
intersection of the hyperplane ⟨a, x⟩ = 𝑧 with the straight
line 𝑥𝑖 = 𝑝𝑖𝑥, 𝑖 = 1, . . . , 𝑛, where it equals 𝑧 + 𝑂(ln 𝑧).

Let us now immediately prove Theorem 4. Note first that
by using the L’Hopital rule we can reduce the proof to that of
the formula obtained by differentiating 𝑓(𝑧)/ exp(𝑧) numer-
ator and denominator with respect to 𝑧 and to the proof
of the equality

lim
𝑧→∞

𝑓 (𝑧)
exp (𝑧) = 𝐻−1 (p) , (21)
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where 𝑓(𝑧) = ∫x≥0𝑀(x)𝛿(𝑧 − ⟨a, x⟩)𝑑x and 𝛿(⋅) is the delta
function.

Let 𝜀 be a real arbitrarily small positive value. Denote byΛ 𝜀 the sector consisting of points x, 𝑥𝑖 = 𝑞𝑖𝑥, and ∑𝑖 𝑞𝑖 = 1,
such that

𝑝𝑖 − 𝜀 < 𝑞𝑖 < 𝑝𝑖 + 𝜀, 𝑖 = 1, . . . , 𝑛. (22)

With fixed 𝑧 on the hyperplane ⟨a, x⟩ = 𝑧 correlations (18)
and (19) take the form

ln𝑀(x) = 𝑧𝐻 (q)𝐻 (q; p) + 𝑂 (ln (𝑧)) . (23)

Let us now strengthen inequality (20); namely, let us prove
that if for q correlations (22) are violated, then

𝐻(q)𝐻 (q; p) < 1 − 𝐶1 (p) 𝜀2, (24)

where 𝐶1(p) is a positive constant independent of q.
Since 𝐻(q; p) is a convex combination of − ln𝑝𝑖, it

evidently is bounded:

0 < min
𝑖
(− ln𝑝𝑖) ≤ 𝐻 (q; p) ≤ max

𝑖
(− ln𝑝𝑖) . (25)

Consequently, formula (24) is equivalent to the inequality

𝐻(q; p) − 𝐻 (q) = 𝐷 (q | p) > 𝐶2 (p) 𝜀2. (26)

The latter correlation follows from the well-known property
of the Kullback-Leibler divergence

𝐷 (q | p) ≥ 14 (
𝑛∑
𝑖=1

𝑝𝑖 − 𝑞𝑖)
2

(27)

(see, e.g., lemma 3.6.10 in [16]).
The proved inequality (24) (in view of formula (23))

implies that outside the domain Λ 𝜀 the function 𝑀(x) is
exponentially small in comparison to the maximal value
inside the domain which equals exp(𝑧). More precisely, with𝑥 ∉ Λ 𝜀 and ⟨a, x⟩ = 𝑧, we get

𝑀(x) < exp {(1 − 𝐶𝜀2) 𝑧} for some 𝐶 > 0. (28)

Note that the condition of the exponential smallness in
comparison to exp 𝑧 remains valid, even if 𝜀 depends on 𝑧 and
tends to 0 as 𝑧 increases, though not too fast. In what follows
we assume that

𝜀 = 𝜀 (𝑧) = 𝑧−1/2+𝛿,
where 𝛿 > 0 is sufficiently small. (29)

One can easily see that the same exponential upper bound
as in (28) also takes place not only for𝑀 function but also for
its integral over the domain whose volume grows according
to a power law:

∫
x∉Λ 𝜀(𝑧) ,x≥0

𝑀(x) 𝛿 (𝑧 − ⟨a, x⟩) 𝑑x
< exp {(1 − 𝐶𝜀2) 𝑧}

(30)

with 𝑧 → ∞. Therefore in limit (21) we can treat 𝑓(𝑧) as the
integral

∫
x∈Λ 𝜀(𝑧)

𝑀(x) 𝛿 (𝑧 − ⟨a, x⟩) 𝑑x. (31)

Let us define the asymptotics (18) of the function 𝑀(x)
in the domain Λ 𝜀(𝑧) more precisely. Let us use the standard
Stirling formula, namely, the fact that with 𝑥 → ∞ it holds
that ln Γ(𝑥+1) = 𝑥 ln(𝑥)−𝑥+ln(𝑥)/2+ln(2𝜋)/2+𝑅(𝑥), where0 < 𝑅(𝑥) < 1/(12𝑥). We obtain that, in the domain Λ 𝜀(𝑧),

𝑀(x) = 1
√(2𝜋)𝑛−1

⋅ exp{𝑥𝐻 (q) + ln (𝑥)2 − ∑𝑛
𝑖=1 ln (𝑥𝑖)2 + 𝑂(1𝑧)} .

(32)

Here, as usual, 𝑥 = ∑𝑛
𝑖=1 𝑥𝑖; 𝑞𝑖 = 𝑥𝑖/𝑥. Therefore, we conclude

that when considering the asymptotics of function (31)we can
treat𝑀(x) as follows:
�̃� (x)
= 1
√(2𝜋)𝑛−1 exp{𝑥𝐻 (q) + ln (𝑥)2 − ∑𝑛

𝑖=1 ln (𝑥𝑖)2 } . (33)

In the latter formula we can write the exponent as

{} = 𝑥 ln𝑥 + ln (𝑥)2 − 𝑛∑
𝑖=1

(𝑥𝑖 ln𝑥𝑖 + ln (𝑥𝑖)2 ) . (34)

Let us write the Taylor expansion up to second-order terms
near the maximum point in the plane ⟨a, x⟩ = 𝑧, that is, near
the point x = p𝑧/𝐻(p) (in what follows we denote by 𝑥𝑖
coordinates of the point x and do by 𝑥 the sum of these
coordinates which evidently equals 𝑧𝐻(p)−1).

First of all, note that

�̃� (x) = 1
√(2𝜋𝑥)𝑛−1∏𝑛

𝑖=1𝑝𝑖 exp (𝑧) . (35)

One can easily calculate second derivatives of expression (34):

𝜕2𝜕𝑥𝑖𝜕𝑥𝑗 {}

= {{{
𝑥−1 − (2𝑥2)−1 , if 𝑖 ̸= 𝑗,
𝑥−1 − (2𝑥2)−1 − 𝑥−1𝑖 + (2𝑥2𝑖 )−1 , else.

(36)

(note that we do not use first derivatives in the Taylor
expansion near the maximum point).

If 𝑥 ∈ Λ 𝜀, then by formula (19) we have 𝑥 − 𝑥 =𝑧(𝐻(q; p)−1 − 𝐻(p)−1) = 𝑧𝑂(𝜀) (in the latter inequality we
use the continuity of the function𝐻(q; p)−1). Consequently,
𝑥𝑖 − 𝑥𝑖 = 𝑥𝑞𝑖 − 𝑥𝑝𝑖

= (𝑥 + 𝑧𝑂 (𝜀)) (𝑝𝑖 + 𝑂 (𝜀)) − 𝑥𝑝𝑖 = 𝑧𝑂 (𝜀) . (37)
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In particular, with chosen 𝜀 = 𝜀(𝑧) we have |𝑥𝑖 − 𝑥𝑖 | =𝑂(𝑧1/2+𝛿). We obtain that, in the domain Λ 𝜀(𝑧),

�̃� (x) = 1
√(2𝜋𝑥)𝑛−1∏𝑛

𝑖=1𝑝𝑖 exp (𝑧)

× exp
{{{
∑𝑛
𝑖,𝑗=1 (𝑥𝑖 − 𝑥𝑖) (𝑥𝑗 − 𝑥𝑗)2𝑥

− ∑𝑛
𝑖=1 (𝑥𝑖 − 𝑥𝑖)22𝑝𝑖𝑥 + 𝑂 (𝑧−1/2+3𝛿)}}} .

(38)

Here the term 𝑂(𝑧−1/2+3𝛿) contains both the remainder of
terms of the series whose order exceeds 2 and the value of𝑂(𝑧−1+2𝛿) added by some omitted second-order terms. With𝑧 → ∞ we can neglect the term of 𝑂(𝑧−1/2+3𝛿). Therefore,
in integral (31) in place of 𝑀(x) we should substitute the
function �̂�(x) which differs from �̃�(x) in the fact that its
exponent does not contain the term of 𝑂(𝑧−1/2+3𝛿).

Let us change variables in the integral as follows: 𝑦𝑖 =(𝑥𝑖 − 𝑥𝑖 )/√𝑥. Since the degree of homogeneity of the delta-
function equals −1, we obtain that limit (21) coincides with

1
√(2𝜋)𝑛−1∏𝑛

𝑖=1𝑝𝑖 ∫R𝑛 𝛿 (⟨a, y⟩) exp{−
⟨By, y⟩2 }𝑑y, (39)

whereB is 𝑛 × 𝑛matrix, whose all elements equal −1, except
diagonal components which are greater by 1/𝑝𝑖.
3.2. Calculation of the Determinant

Lemma 5. Let 𝑛 ≥ 2. Consider 𝑛 × 𝑛 matrix 𝐵, where all
nondiagonal elements equal 1, while 𝑏𝑖𝑖 = 1 + 𝑘𝑖. Then

(1) the determinant of this matrix equals

𝑛∏
𝑖=1

𝑘𝑖(1 + 𝑛∑
𝑗=1

1𝑘𝑗) ; (40)

(2) the algebraic complement of the element with indices(𝑖, 𝑗), 𝑖 ̸= 𝑗, equals
− ∏
ℓ∈[𝑛]\{𝑖,𝑗}

𝑘ℓ, where [𝑛] = {1, . . . , 𝑛} . (41)

Corollary 6. The matrixB in formula (39) is degenerate.

Proof of Lemma 5. Note that the first item of Lemma 5 defines
the value of the algebraic complement of the diagonal element
of such a matrix. Let us prove the theorem by induction.

With 𝑛 = 2 in the formula in item (2) we get the product
over the empty set; it is accepted that this product equals 1.
The formula in item (1) remains valid with 𝑛 = 1. In the
induction step we assume that the formula in item (1) is
proved for all dimensions less than 𝑛 and has to be proved

for the case when the dimension equals 𝑛, while the formula
in item (2) is proved for all dimensions not greater than 𝑛 and
has to be proved for (𝑛 + 1) × (𝑛 + 1)matrix.

For proving item (1) we can use the expansion by the last
row. Multiplying the algebraic complement by the diagonal
element 𝑘𝑛 + 1, we get the sum

𝑛∏
𝑖=1

𝑘𝑖(1 + 𝑛−1∑
𝑗=1

1𝑘𝑗) + 𝑛−1∏
𝑖=1

𝑘𝑖(1 + 𝑛−1∑
𝑗=1

1𝑘𝑗)

= 𝑛∏
𝑖=1

𝑘𝑖(1 + 𝑛−1∑
𝑗=1

1𝑘𝑗) + 𝑛−1∏
𝑖=1

𝑘𝑖 + 𝑛−1∑
𝑗=1

∏
ℓ∈[𝑛]\{𝑛,𝑗}

𝑘ℓ.
(42)

The expansion by the entire last row, taking into account the
induction hypothesis for item (2), make the third part in row
(42) vanish. First two terms in formula (42) together give the
desired sum.

In order to prove item (2), let us expand the determinant
considered in this item (algebraic complement of the element
with (𝑖, 𝑗) indices of the matrix 𝐵 with (𝑛 + 1) × (𝑛 + 1)
dimension) by the row whose number in the initial matrix
of 𝐵was equal to 𝑗. Generally speaking, for clarity, we use the
same indices as in the numeration of the initial matrix. Since
the algebraic complement considered in this item and the
occurring algebraic complement for the element with indices(𝑗, 𝑖) (obtained by the expansion by a row of the determinant
under consideration) have opposite signs, the value added by
the element with indices (𝑗, 𝑖) equals

− ∏
𝑟∈[𝑛+1]\{𝑖,𝑗}

𝑘𝑟(1 + ∑
ℓ∈[𝑛+1]\{𝑖,𝑗}

1𝑘ℓ) (43)

(herewe have used the induction hypothesis for item (1)).The
difference from the desired formula consists in the last term
which equals (taking into account the first multiplier)

− ∑
ℓ∈[𝑛+1]\{𝑖,𝑗}

∏
𝑟∈[𝑛+1]\{𝑖,𝑗,ℓ}

𝑘𝑟. (44)

It vanishes, when taking into account the contribution of the
remaining 𝑛 − 1 elements in the 𝑗th row of the considered
matrix.

Lemma 7. Let 𝐵1 be the matrix mentioned in Lemma 5 (its
dimension is 𝑛 × 𝑛, 𝑛 ≥ 2). Assume that 𝑏𝑖𝑖 = 1 − 1/𝑝𝑖,𝑖 = 1, . . . , 𝑛, where 𝑝𝑖 are arbitrary nonzero numbers. Denote
by 𝐵2 a matrix of the same dimension in the form 𝑎𝑇𝑎, where𝑎 = (𝑎1, . . . , 𝑎𝑛) is an arbitrary numeric row and 𝑇 is the trans-
position sign. Let 𝑠 be an arbitrary real number. Then

det (𝑠𝐵2 − 𝐵1)
= det (−𝐵1)
+ 𝑠 ((∑𝑛

𝑖=1 𝑎𝑖𝑝𝑖)2 − (∑𝑛
𝑗=1 𝑝𝑗 − 1)∑𝑛

𝑖=1 𝑎2𝑖 𝑝𝑖)∏𝑛
ℓ=1𝑝ℓ .

(45)
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Corollary 8. Let a vector p = (𝑝1, . . . , 𝑝𝑛) satisfy additional
constraints 𝑝𝑖 > 0, ∑𝑛

𝑖=1 𝑝𝑖 = 1 (i.e., −𝐵1 = B), while 𝑎𝑖 =− ln𝑝𝑖. Then

√𝑠 det (𝑠−1𝐵2 − 𝐵1) = 𝐻 (p)
√∏𝑛

ℓ=1𝑝ℓ . (46)

Proof of Lemma 7. By the differentiation rule for determi-
nants, the derivative of the determinant of 𝑛×𝑛matrix equals
the sum of determinants of 𝑛matrices such that in the 𝑖th one
all elements of the 𝑖th row are replaced with their derivatives.
We obtain that 𝜕2 det(𝑠𝐵2−𝐵1)/𝜕𝑠2 is the sumof determinants
of matrices each one of which contains either the zero row or
two various rows of the matrix 𝐵2. Since rank 𝐵2 = 1, we get𝜕2 det(𝑠𝐵2 − 𝐵1)/𝜕𝑠2 = 0.

Thus, det(𝑠𝐵2 − 𝐵1) is a linear function of 𝑠, whose free
term evidently equals det(−𝐵1). It is clear that for calculating
the coefficient det(𝑠𝐵2 − 𝐵1) at 𝑠 it suffices to summate
products of each element of the matrix 𝐵2 by the algebraic
complement of the corresponding element of the matrix −𝐵1.
If an element has indices (𝑖, 𝑗), 𝑖 ̸= 𝑗, then by item (2) of
Lemma 5 this product equals 𝑎𝑖𝑎𝑗𝑝𝑖𝑝𝑗/∏𝑛

ℓ=1𝑝ℓ.
Let us explain the positive sign in the last formula. We

calculate an algebraic complement of the−𝐵1matrix element.
The matrix has 𝑛 × 𝑛 dimension, and therefore the found
algebraic complement differs from the algebraic complement
of the corresponding 𝐵1 matrix element for (−1)𝑛−1 times.
According to item (2) of Lemma 5, the algebraic complement
of the corresponding 𝐵1 matrix element is a “minus” product
of 𝑛 − 2 multipliers 𝑘𝑖. In the given case each of 𝑘𝑖 factors is
negative (equals −1/𝑝𝑖) which results in positive sign of the
last formula in the above paragraph.

Assume that this formula is valid for all (𝑖, 𝑗). Then we get
the sum

∑𝑛
𝑖,𝑗=1 𝑎𝑖𝑎𝑗𝑝𝑖𝑝𝑗∏𝑛

ℓ=1𝑝ℓ = (∑𝑛
𝑖=1 𝑎𝑖𝑝𝑖)2∏𝑛
ℓ=1𝑝ℓ . (47)

However by item (1) of Lemma 5 the algebraic complement
of the diagonal element 𝑏𝑖𝑖 of the matrix −𝐵1 equals

(−1)𝑛−1(∏
𝑗:𝑗 ̸=𝑖

(−1𝑝𝑗 ) + ∑
𝑗:𝑗 ̸=𝑖

∏
ℓ∉{𝑖,𝑗}

(−1𝑝ℓ )) (48)

(here and below we omit the evident requirement that values
of all indices belong to the set [𝑛]).

Multiplying the first term in parentheses, that is,∏𝑗:𝑗 ̸=𝑖(−1/𝑝𝑗), by (−1)𝑛−1𝑎2𝑖 and summing over all 𝑖, we
get ∑𝑛

𝑖=1 𝑎2𝑖 𝑝𝑖/∏𝑛
ℓ=1𝑝ℓ. Let us multiply the resting term in

parentheses (48) by (−1)𝑛−1𝑎2𝑖 , sum over all 𝑖, and subtract
the value

∑𝑛
𝑖=1 𝑎2𝑖 𝑝2𝑖∏𝑛
ℓ=1𝑝ℓ (49)

from the obtained result (note that the subtrahend was
“illegally” included in formula (47)). It gives the overall con-
tribution of the second term in formula (48), which equals

−∑𝑛
𝑗=1 𝑝𝑗∑𝑛

𝑖=1 𝑎2𝑖 𝑝𝑖∏𝑛
ℓ=1𝑝ℓ . (50)

Taking into account all the calculation elements of the
determinant det(𝑠𝐵2 − 𝐵1) allows completing the proof of
Lemma 7.

For completing the proof of Theorem 4 let us use
Corollary 8. Let us replace the 𝛿-function in integral (39) (as
was proved earlier, this integral equals the limit considered in
Theorem 4): 𝛿(𝑡) = lim𝜎→0(1/√2𝜋𝜎)exp{−𝑡2/2𝜎2}. Treating
the limit multiplied by the coefficient at the exponent as a
multiplier in the integral, we come to the limit of theGaussian
integral

lim
𝜎→0

∫
R𝑛

exp {− ⟨(𝜎−2𝐵2 +B) y, y⟩ /2} 𝑑y
𝜎√(2𝜋)𝑛∏𝑛

𝑖=1𝑝𝑖 , (51)

that is,

lim
𝜎→0

1
𝜎√∏𝑛

𝑖=1𝑝𝑖 det (𝜎−2𝐵2 +B) ; (52)

Immediately applying Corollary 8, we get desired 𝐻−1(p).
This completes the proof.

4. The Ratio between the Sum and the Integral

What remains is to prove that, under assumptions of Theo-
rem 3, the ratio of the integral of the function 𝑀 calculated
over the domain 𝑆(𝑧) to the sum of values of this function
at integer points of this domain tends to 1 as 𝑧 → ∞.
For comparing the integral of the function and the sum
of its values in the same domain one usually applies the
Koksma-Hlawka inequality (see [17]). Note that usually one
considers the integral over a fixed domain (as a rule, the cube[0, 1]𝑛), whereas the domain in the case under consideration
is varying. However, we intend only to prove the convergence
of the fraction to 1 and do not need to estimate the asymptotic
difference between the integral and the sum, which simplifies
the task.

Evidently, it suffices to calculate the limit of the ratio for
an arbitrary infinite increasing sequence 𝑧1, 𝑧2, . . ., such that𝑧𝑖 →∞.

Theorem 9. Let Ω1, Ω2, . . . be a sequence of Jordan measur-
able sets such that Ω𝑖 ⊂ Ω𝑖+1 for all 𝑖 = 1, 2, . . .. Assume that𝑓(𝑥), 𝑥 ∈ Ω, where Ω = ⋃𝑖Ω𝑖, is an integrable and bounded
on each of the domains Ω𝑖 function such that 𝑓(𝑥) ≥ 0 and∫𝑓(𝑥)𝑑Ω𝑖 →∞ as 𝑖 → ∞. Assume also that𝐾 is a countable
set of points from Ω such that each of the sets 𝐾𝑖 = 𝐾 ∩ Ω𝑖

is finite. Then if for any sufficiently small 𝛼 > 0 there exists a
partition of Ω onto a countable number of Jordan measurable
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sets𝑋𝑗 = 𝑋𝑗(𝛼), 𝑗 = 1, 2, . . ., such thatΩ𝑖 = ⋃𝑛𝑖
𝑗=1𝑋𝑗 for some𝑛𝑖 = 𝑛𝑖(𝛼), while

sup𝑥∈𝑋𝑗𝑓 (𝑥)
inf𝑥∈𝑋𝑗𝑓 (𝑥) < 1 + 𝛼 starting with some 𝑗, (53)

𝐾 ∩ 𝑋𝑗

𝜇𝑋𝑗

→ 1 as 𝑗 → ∞, (54)

then in this case there exists the limit

lim
𝑖→∞

∫𝑓 (𝑥) 𝑑Ω𝑖∑𝑥∈𝐾𝑖
𝑓 (𝑥) = 1. (55)

Proof. Evidently,

𝜇𝑋𝑗 inf
𝑥∈𝑋𝑗

𝑓 (𝑥) ≤ ∫𝑓 (𝑥) 𝑑𝑋𝑗 ≤ 𝜇𝑋𝑗 sup
𝑥∈𝑋𝑗

𝑓 (𝑥) . (56)

Therefore, in view of (53) we conclude that starting with some𝑗 it holds that
∫𝑓 (𝑥) 𝑑𝑋𝑗/𝜇𝑋𝑗∑𝑥∈𝐾∩𝑋𝑗

𝑓 (𝑥) / 𝐾 ∩ 𝑋𝑗

 ∈ (1 − 𝛼, 1 + 𝛼) (57)

with 𝛼 < 1. In accordance with (54) we conclude that𝜇𝑋𝑗/|𝐾 ∩𝑋𝑗| ∈ (1 − 𝛼, 1 + 𝛼) for all 𝑗, except a finite number
of values of the index.Therefore, there exists ℓ such that, with
all 𝑗 > 𝑛ℓ,

∫𝑓 (𝑥) 𝑑𝑋𝑗∑𝑥∈𝐾∩𝑋𝑗
𝑓 (𝑥) ∈ ((1 − 𝛼)2 , (1 + 𝛼)2) . (58)

Representing this correlation as a double inequality and
summing it over all 𝑗 from 𝑛ℓ + 1 to 𝑛𝑖, we obtain

∫𝑓 (𝑥) 𝑑 (Ω𝑖 \ Ωℓ)∑𝑥∈𝐾𝑖\𝐾ℓ
𝑓 (𝑥) ∈ ((1 − 𝛼)2 , (1 + 𝛼)2) (59)

with 𝑖 > ℓ.
Note that by condition the numerator in the latter fraction

(different from the integral ∫𝑓(𝑥)𝑑Ω𝑖 by a constant value)
tends to infinity. Then the same is true for the denominator.
Note that the denominator differs from ∑𝑥∈𝐾𝑖

𝑓(𝑥) by a
constant value.

Thereforewe conclude that all limit points of the sequence∫𝑓(𝑥)𝑑Ω𝑖/∑𝑥∈𝐾𝑖
𝑓(𝑥) lie inside the interval ((1 − 𝛼)2, (1 +𝛼)2). Due to the arbitrariness of the choice of positive 𝛼

Theorem 9 is proved.

Corollary 10 (completion of the proof of Theorem 1). Let𝑓(𝑧) be the function mentioned in assumptions of Theorem 4
and let𝑄(𝑧) obey formula (13).Then if at least one of the ratios𝑎𝑖/𝑎𝑘, 𝑖, 𝑘 ∈ {1, . . . , 𝑛}, 𝑖 ̸= 𝑘, is irrational, then

lim
𝑧→∞

𝑓 (𝑧)𝑄 (𝑧) = 1. (60)

Proof. For clarity we denote by 𝑧 the parameter that defines
the boundary of the considered domain, and do by 𝜁 the
corresponding parameter of the hyperplane that contains a
certain interior point x of this domain; that is, 𝜁(x) = ⟨a, x⟩.

First of all, note that considerations in Section 3.1 imply
that both in the sum and in the integral we can replace 𝑆(𝑧)
with the domain

Λ̂ (𝑧) = 𝑆 (𝑧) ∩ Λ 𝜀(𝜁), where 𝜀 (𝜁) = 𝜁−1/2+𝛿, (61)

and replace the function𝑀(x)with �̃�(x) defined by formula
(34). Therefore, we need to prove that

∫x∈Λ̂(𝑧) �̃� (x) 𝑑x
∑k∈Λ̂(𝑧) �̃� (k) → 1 (62)

(or that the difference of logarithms of the numerator and
denominator tends to zero).

In view of Theorem 4 the logarithm of the numerator
in the latter fraction is a uniformly continuous function of𝑧, while the logarithm of the denominator evidently is a
nondecreasing function. Therefore for proving the existence
of the limitwith 𝑧 → ∞ it suffices to prove the existence of the
limit for a sequence in the form 𝑧𝑛 = 𝜅𝑛, 𝑛 = 1, 2, . . ., where 𝜅
is an arbitrarily small positive value (as the difference between
the numerator and denominator of the logarithms in an arbi-
trary point slightly differs from the value of difference in the
nearest points 𝑧𝑛 in this sequence). Namely, just for this fixed
sequence we consider the ratio from the right-hand side of
(62).

In order to apply Theorem 9, for an arbitrary sufficiently
small positive 𝛼 we construct a partition of Λ 𝜀(𝜁) onto
domains 𝑋𝑗 satisfying assumptions of the theorem. Namely,
we construct this partition by dividing of an infinite quantity
of “flapjacks” located between neighboring hyperplanes in
the forms 𝜁(x) = 𝑐𝑟 and 𝜁(x) = 𝑐𝑟+1, 𝑟 = 1, 2, . . ., where𝑐𝑟+1 = 𝑐𝑟 + Const, onto a finite number of domains𝑋𝑗.

Evidently, for any 𝛼 ≤ 2𝜅 we can choose a sequence 𝑐𝑟
such that

𝑐𝑟+1 − 𝑐𝑟 = Const < 𝛼2 ; for any 𝑛 ∃𝑟 : 𝑧𝑛 = 𝑐𝑟. (63)

To this end, it suffices to put 𝑐𝑟 = Const 𝑟, where Const =𝜅/⌈2𝜅/𝛼⌉ (here ⌈⋅⌉ is an upward rounding to the nearest
integer).

Let 𝐶𝑟 = {x : 𝑐𝑟 ≤ 𝜁(x) < 𝑐𝑟+1}. Denote by 𝐹𝑟 the𝑟th “flapjack” 𝐶𝑟 ∩ Λ 𝜀(𝜁). We are going to “cut” 𝐹𝑟 onto a
finite number of domains 𝑋𝑗. We numerate the countable
number of domains𝑋𝑗, 𝑗 = 1, 2, . . ., so as tomake domains𝑋𝑗

obtained by “cutting” 𝐹𝑟 with the least 𝑟 have lesser numbers,
while the order of numbering inside the partition of 𝐹𝑟 plays
no role.

Since 𝜀(𝜁) = 𝑜(𝜁), with x, y ∈ 𝐹𝑟, it holds that 𝑦𝑖 = 𝑥𝑖 +𝑜(𝑥𝑖) (cf. with (37)). Consequently, with 𝑟 → ∞we get ln𝑦𝑖−
ln𝑥𝑖 → 0 and ln𝑦 − ln𝑥 → 0.

By formula (33),

ln �̃� (x) = const + 𝑔 (x) + ln (𝑥)2 − ∑𝑛
𝑖=1 ln (𝑥𝑖)2 , (64)
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where

𝑔 (x) = 𝑥𝐻 (q) = 𝑛∑
𝑖=1

𝑥𝑖 ln𝑥𝑖 − ( 𝑛∑
𝑖=1

𝑥𝑖) ln( 𝑛∑
𝑗=1

𝑥𝑖) . (65)

We get grad𝑔 = ln q = (ln 𝑞1, . . . , ln 𝑞𝑛) and
𝜕2𝑔𝜕𝑥𝑖𝜕𝑥𝑗 = 𝑂(1𝑥) , 𝑖, 𝑗 ∈ {1, . . . , 𝑛} . (66)

Using expansion in a series ln �̃� with evaluation of the
second-order terms and considerations of the previous para-
graphwe obtain the following important observation. If x, y ∈𝐹𝑟 and 𝑥𝑖 − 𝑦𝑖 = 𝑜 (√𝑥) = 𝑜 (√𝑐𝑟) , 𝑖 = 1, . . . , 𝑛, (67)

then with sufficiently large 𝑟 it holds that
ln �̃� (x) − ln �̃� (y) < ⟨ln q, x − y⟩ + 𝛼10 . (68)

Since q → p as 𝑟 → ∞, with sufficiently large 𝑟 it holds
that

⟨ln q, x − y⟩ < ⟨a, x − y⟩ + 𝛼20 < (𝑐𝑟+1 − 𝑐𝑟) + 𝛼20 . (69)

As a result, we obtain that with sufficiently small 𝛼, starting
with some 𝑟, it holds that

�̃� (x)�̃� (y) < 1 + 𝛼. (70)

Therefore, dividing𝐹𝑟 onto domains𝑋𝑗 so as to fulfill cor-
relation (67) for all points x, y that belong to one domain, we
guarantee the validity of assumption (53) inTheorem 9. Note
that it suffices to fulfill condition (67) for all indices 𝑖 except
one, because the validity of this condition for the remaining
index follows from the fact that x, y ∈ 𝐶𝑟.

Finally, let us use the irrationality of 𝑎𝑖∗/𝑎𝑘∗ for some 𝑖∗ ̸=𝑘∗. Let us denote by 𝐼𝑘∗ the set {1, . . . , 𝑛} \ {𝑘∗} and do by 𝐼𝑖∗𝑘∗
the set {1, . . . , 𝑛}\{𝑖∗, 𝑘∗}.We are going to prove that, defining
domains𝑋𝑗 by inequalities

𝑙𝑗𝑖 ≤ 𝑥𝑖 < 𝐿𝑗𝑖,
𝑖 ∈ 𝐼𝑘∗ , where 𝐿𝑗𝑖 − 𝑙𝑗𝑖 > const 𝑐1/2−𝛿𝑟 , (71)

we fulfill condition (54) (with 𝐾 = Z𝑛). Here, as usual, 𝛿 is
a sufficiently small real positive value, though in this case we
can choose 𝛿 as any number in the interval (0, 1/2) (roughly
speaking, it is sufficient that the radius of the pieces 𝑋𝑗 used
to divide “flapjacks” 𝐹𝑟 tends to infinity at 𝑟 → ∞).

Evidently, we can divide “almost all” 𝐹𝑟 onto domains𝑋𝑗

so as to simultaneously fulfill inequalities (67) and conditions
(71) on 𝑙 and 𝐿 (the remaining “cuttings” on the edges of the
domain 𝐹𝑟 which occur due to the inconsistency between the
inequality 𝑙𝑗𝑖 ≤ 𝑥𝑖 < 𝐿𝑗𝑖, 𝑖 ∈ 𝐼𝑘∗ and the definition of the
boundary of the domain Λ 𝜀(𝑧) are asymptotically small).

Evidently, 𝜇𝑋𝑗 = ∏𝑖∈𝐼𝑘∗
(𝐿𝑗𝑖 − 𝑙𝑗𝑖) × (𝑐𝑟+1 − 𝑐𝑟)/𝑎𝑘∗ . Since

the difference (𝐿𝑗𝑖 − 𝑙𝑗𝑖) grows as 𝑗 → ∞, the asymptotics of
the number of ways for choosing integer 𝑥𝑖 such that 𝑙𝑗𝑖 ≤𝑥𝑖 < 𝐿𝑗𝑖 for 𝑖 ∈ 𝐼𝑖∗𝑘∗ coincide with∏𝑖∈𝐼𝑖∗𝑘∗

(𝐿𝑗𝑖 −𝑙𝑗𝑖). Here and
below we understand the asymptotics as a function of 𝑗 such
that the ratio of the considered quantity to this function tends
to 1 as 𝑗 → ∞. In order to complete the proof of Corollary 10,
what remains is to prove the following lemma.

Lemma 11. Let the ratio 𝑎𝑖∗/𝑎𝑘∗ be irrational and (𝐿𝑗𝑖∗ −𝑙𝑗𝑖∗) → ∞. Assume also that the ratio (𝑐𝑟+1 − 𝑐𝑟)/𝑎𝑘∗ equals
a constant value lesser than 1 which is independent of 𝑟. Then
for fixed 𝑥𝑖, 𝑖 ∈ 𝐼𝑖∗𝑘∗ , the asymptotics of the number of ways to
choose integer 𝑥𝑖, 𝑖 ∈ {𝑖∗, 𝑘∗}, such that 𝑙𝑗𝑖∗ ≤ 𝑥𝑖∗ < 𝐿𝑗𝑖∗ and𝑐𝑟 ≤ 𝜁(x) < 𝑐𝑟+1 simultaneously, equal (𝐿𝑗𝑖−𝑙𝑗𝑖)×(𝑐𝑟+1−𝑐𝑟)/𝑎𝑘∗ .
Proof of Lemma 11. In what follows we need standard deno-
tations for the fractional part {⋅}, floor ⌊⋅⌋, and ceil ⌈⋅⌉ of a
number.

Let 𝑐 = ∑𝑖∈𝐼𝑖∗𝑘∗
𝑎𝑖𝑥𝑖,𝑑𝑟 = (𝑐𝑟−𝑐)/𝑎𝑘∗ ,𝐷𝑟 = (𝑐𝑟+1−𝑐)/𝑎𝑘∗ ,

and 𝜃 = 𝑎𝑖∗/𝑎𝑘∗ . The condition 𝑐𝑟 ≤ 𝜁(x) < 𝑐𝑟+1 is equivalent
to the condition

𝜃𝑥𝑖∗ + 𝑥𝑘∗ ∈ [𝑑𝑟, 𝐷𝑟) . (72)

If the difference𝐷𝑟−𝑑𝑟 (it equals (𝑐𝑟+1−𝑐𝑟)/𝑎𝑘∗) is less than
1 (this inequality obviously holds for sufficiently small 𝛼) then
with fixed 𝑥𝑖∗ the integer value 𝑥𝑘∗ satisfying condition (72) is
defined uniquely, provided that it exists. Therefore, we need
to estimate the quantity of values 𝑥𝑖∗ in the interval [𝑙𝑗𝑖∗ , 𝐿𝑗𝑖∗)
such that {𝜃𝑥𝑖∗} ∈ [{𝑑𝑟}, {𝐷𝑟}); here the latter correlation is
understood in the sense of an interval on the unit circle, and
the length of the considered interval is independent of 𝑟.

Recall the definition of a well-distributed sequence [17,
section 1.5].

Let (𝑦𝑛) 𝑛 = 1, 2, . . ., be a sequence of real
numbers. For integers 𝑁 ≥ 1 and 𝑘 ≥ 0 and a
subset𝐸 of [0, 1), let𝐴(𝐸,𝑁, 𝑘) be the number of
terms among {𝑦𝑘+1}, {𝑦𝑘+2}, . . . , {𝑦𝑘+𝑁} that are
lying in 𝐸.
The sequence (𝑦𝑛) 𝑛 = 1, 2, . . ., is said to be
well-distributed mod 1 if for all pairs 𝑎, 𝑏 of real
numbers with 0 ≤ 𝑎 < 𝑏 ≤ 1 we have

lim
𝑁→∞

𝐴 ([𝑎, 𝑏) ;𝑁, 𝑘)𝑁 = 𝑏 − 𝑎
uniformly in 𝑘 = 0, 1, 2, . . . . (73)

Example. The sequence (𝑛𝜃) 𝑛 = 1, 2, . . ., with 𝜃
irrational is well-distributed mod 1.

The latter fact would have proved Lemma 11, if the interval
of the unit circle [{𝑑𝑟}, {𝐷𝑟}) was independent of 𝑟. Let us
clarify this property in the case of the inequality {𝐷𝑟} >{𝑑𝑟}. In what follows we always assume that this inequality
is valid (evidently, as in the definition of the well-distribution
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property, this leads to no loss of generality). Really, if 𝑘 equals⌈𝑙𝑗𝑖∗⌉ − 1 and𝑁 does the difference ⌊𝐿𝑗𝑖∗⌋ − ⌈𝑙𝑗𝑖∗⌉ + 1, then we
obtain the uniform (in 𝑗) convergence

lim
𝑁→∞

𝐴([{𝑑} , {𝐷}) ;𝑁, ⌈𝑙𝑗𝑖∗⌉ − 1)𝑁 = 𝐷 − 𝑑, (74)

which is equivalent to the assertion of the lemma with the
fixed value of {𝑑𝑟}, {𝐷𝑟}.

Note that if with fixed 𝑗 equality (74) is valid for any
subinterval in [0, 1), then we say that the corresponding
sequence is uniformly distributed modulo 1. This property
follows from the property of the well-distribution modulo 1.
It is well known that (see [17, section 2.1]) for any sequence
uniformly distributed modulo 1 the convergence is uniform
with respect to all subintervals in [0, 1). Consequently, we get
the uniform (in 𝑗) convergence

lim
𝑁→∞

𝐴([{𝑑𝑟} , {𝐷𝑟}) ;𝑁, ⌈𝑙𝑗𝑖∗⌉ − 1)𝑁 = Δ, (75)

where the constant Δ equals𝐷𝑟 − 𝑑𝑟. Therefore,

lim
𝑗→∞

𝐴([{𝑑𝑟} , {𝐷𝑟}) ; ⌊𝐿𝑗𝑖∗⌋ − ⌈𝑙𝑗𝑖∗⌉ + 1, ⌈𝑙𝑗𝑖∗⌉ − 1)(𝐿𝑗𝑖∗ − 𝑙𝑗𝑖∗) Δ
= 1,

(76)

which coincides with the lemma assertion in a general case.
This completes the proof.

5. Conclusion

We have proved that in the monkey model the probability
of words in the sorted list has the exact power asymptotics,
provided that the ratio of logarithms of probabilities of
certain letters is irrational.

Note that this condition is not only sufficient but also
necessary. Really, otherwise logarithms of probabilities 𝑎𝑖 =− ln𝑝𝑖, 𝑖 = 1, . . . , 𝑛, allow the representation 𝑎𝑖 = 𝑚𝑖V, where𝑚𝑖 are natural numbers and V is independent of 𝑖. In this case
formula (10) defines a linear recurrent correlation on a grid
with the step of V. This does not affect the initial constancy
of the function𝑄 in cells of the grid with the mentioned step
with any value of the argument. Such constancy piecewise of
the function 𝑄 contradicts the existence of a finite limit for
the ratio of 𝑝(𝑟)/𝑟−𝛾.

It should be noted that using the expression for terms of
linear recurring sequences via the corresponding powers of
roots of the characteristic equation allows clear analysis of
rate of convergence to the power law of the function𝑄 (with a
step of V on the grid) in this degenerate case. It would bemore
interesting to conduct such studies for more general case to
which the main theorem of this paper is devoted.

A generalization of results obtained in this paper to the
case of the Markov dependence is of even more interest.
In this case an analog of the vector p𝛾 is a substochastic
matrix of transition probabilities where the row and column

that correspond to the absorbing state are deleted, and all
elements of this matrix are raised to a power of 𝛾 such that
its spectral radius equals 1. Denote this matrix by P𝛾. In the
case considered above all rows of the matrix P𝛾 coincide with
p𝛾. In a typical case, when the strong power law takes place
(see Introduction), the matrix P is irreducible and the matrix
transposed with respect to P𝛾 has a positive eigenvector that
corresponds to the unit eigenvalue. Let us norm this vector
so as to make the sum of its components equal 1 and denote
the result by w. In the case of the Markov chain with the
transition probabilitymatrixP𝛾 this vector defines an ergodic
distribution.

If all rows of the consideredmatrix coincide with p𝛾, then
one can easily see that w coincides with p𝛾. It is possible that,
in the case of the Markov dependence with the irreducible
matrix P, an analog of Theorem 1 takes place. The role of
the entropy of the vector p𝛾 in this case plays the conditional
entropy of the matrix P𝛾 rows with the weights equal to the
corresponding components of the vector w. We will discuss
this fact in another publication.

It should be noted that mean values defined by other
type recurrent relations occur in the process of analyzing the
digital trees (cf. formula (10) and the recurrent relation for𝐴𝑁, where𝑁 is a natural number, in [18, p. 404]). Neverthe-
less, the results for these values almost wholly coincide with
Theorem 2 (see [19]). These results were obtained using the
Mellin transform. The Mellin transform may also be useful
for our case but it is a discussible problem.
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