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1. INTRODUCTION

One of the historically significant examples in the classics of the theory of exterior inverse boundary
value problems (IBVP) for analytic functions is the example of S. N. Kudryashov. This example appeared
in the work [1] as an illustration of sharpness to the now legendary Kudryashov’s theorem on the
uniqueness of the solution of the exterior IBVP in the class of convex functions in the exterior of the
unit disk. The purpose of the example was to show that the exterior IBVP could have several univalent
solutions (as an answer to the question from [2], p. 55). Interest in this aspect was renewed in due
time in connection with studies on the Nuzhin hypothesis (see [3, 4]). The example itself was regularly
mentioned in the IBVP monographs (see, e.g., [5, 6]).

The name “Kudryashov’s example” refers to the family of functions

Fα(z) = αz(z − α)(αz − 1)−1, α > 1, (1)

that are given in the exterior of the unit circle, E− = {|z| > 1}. Each of the functions of the family (1)
is considered as the main solution of the exterior IBVP, i.e., solution with pole at infinity, z = ∞. This
means that the function Fα(z) has the form

Fα(z) =

∫
f ′
α(1/z)dz, (2)

where fα(ζ) denotes the solution of corresponding interior IBVP; function fα(ζ) is defined in the unit
disk, E = {|ζ| < 1}, we will call it the Kudryashov function. It follows from (1) and (2) that

f ′
α(ζ) = α(αζ2 − 2ζ + α)(ζ − α)−2. (3)

Solutions of the exterior IBVP correspond to the roots of the Gakhov equation

f ′′(ζ)/f ′(ζ) = 2ζ̄/(1 − |ζ|2), (4)

which are exactly the critical points of the surface of the conformal radius

Rf (ζ) = |f ′(ζ)|(1− |ζ|2) (5)
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for a holomorphic and locally univalent function f in the disk E (see [7]). The set of such points lying
in E will be denoted by Mf . As found in [8], the elements of the set Mf can be the points of only three
types: maxima, saddles, and semi-saddles of the surface (5).

Returning to the Kudryashov function, we find from (3) that for f = fα equation (4) is

f ′′
α(ζ)/f

′
α(ζ) ≡ 2(1− α2)ζ(αζ2 − 2ζ + α)−1(ζ − α)−1 = 2ζ̄/(1 − |ζ|2). (6)

Interest in Kudryashov’s example was supported by the fact that in [1] the Gakhov equation was solved
only over R—this was enough to prove the existence of more than one solution. Since then, the following
question has not been solved for a long time: whether the set Mfα is exhausted by the real roots of (6),
or not. In the present note this question is answered positively (Section 2). A complete picture of the
solvability of the equation (4) is also constructed for f = fα,r, where

fα,r = fα(rζ)/r, 0 ≤ r ≤ 1, (7)

is a family of the level sets of the Kudryashov function fα, α > 1 (Sections 3–6). Gakhov barrier r̄fα of
the family (7) is defined as the least upper bound of numbers t ∈ [0, 1] such that for every r ∈ [0, t] the
function fα,r belongs to the regular Gakhov class, i.e. the conformal radius Rfα,r(ζ) has a unique critical
point, which is its local maximum [9].

Remark 1. The problem of calculating Gakhov barriers for level lines was posed by the second author
in his 1983 student course work. The stages of further development of this topic—in a wider context of
parametric families of conformal radii – are noted in [10] (see also [9]).

Let α > 1 be an arbitrary fixed number. The following assertions are true. The first is essentially part
of the second; however, we single out the first in view of its historical significance.

Theorem 1. The set Mfα contains exactly three points: two maxima at ζ = 0 and ζ = 1/α, and
the saddle at ζ = α−

√
α2 − 1.

Theorem 2. Gakhov barrier r̄fα of the family (7) is equal to the value

r̄(α) = (9α2 + 2(4α2 − 1)A(α))1/2/(3α
√
3), (8)

where A(α) = 2α2 + 1−
√

(4α2 − 1)(α2 − 1). When r ∈ [0, r̄fα), the only root of the Gakhov
equation is the point ζ = 0—maximum of Rfα,r(ζ), to which, for r = r̄fα , the new root is added at
the point

ζα = A(α)/(3αr̄fα ) (9)

– the semi-saddle of the surface R = Rfα,r(ζ). As r increases between the Gakhov barrier r̄fα and
unity, the root ζα bifurcates into two roots, a saddle and a maximum. The saddle moves towards
the origin, and at r = 1 comes to the point α−

√
α2 − 1, the maximum grows to the unit circle,

and at r = 1 stops at the point 1/α.

2. SOLUTION OF THE GAKHOV EQUATION FOR THE KUDRYASHOV FUNCTION

We represent the equation (6) in the form (1− α2)ζ(1− |ζ|2) = ζ̄(αζ3 − (2 + α2)ζ2 + 3αζ − α2).
The standard change ζ = ρeiθ (0 ≤ ρ ≤ 1, θ varies over a semi-segment of length 2π) allows us to
immediately separate the solution ρ = 0. Multiplying both parts of the resulting relation by e−iθ,
we obtain the equation 1− α2 + (1 + 2α2)ρ2 = αρ3eiθ + 3αρe−iθ − α2e−i2θ. Separating the real and
imaginary parts in it, we will have

1− α2 + (1 + 2α2)ρ2 = αρ3 cos θ + 3αρ cos θ − α2 cos 2θ, (10)

0 = α sin θ(ρ3 − 3ρ+ 2α cos θ). (11)

Obviously, equation (11) splits into two: 1) cos θ = ρ(3− ρ2)/(2α) or 2) sin θ = 0.
Case 1. Let’s substitute the above expression for cos θ into (10); we obtain

ρ6 − 3ρ4 + (2α2 + 1)ρ2 − (2α2 − 1) ≡ (ρ2 − 1)[(ρ2 − 1)2 + 2(α2 − 1)] = 0. (12)
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The only positive solution of equation (12) gives two roots ζ = ζ±(α) ≡ 1/α ± i
√

1− 1/α2 (α > 1) of
the equation (6). These roots lie on the unit circle and are first-order poles of the pre-Schwarzian, f ′′

α/f
′
α,

and are also the zeroes of the derivative, f ′
α, of the function fα. Since Rfα(∂E) = 0, the points ζ = ζ±(α)

do not make any contribution to the geometry of the surface (5) for f = fα (in the sense of [11]) and do
not give new roots to the Gakhov equation in E.

Case 2. The equation sin θ = 0 exactly corresponds to the case of real roots, which was completely
studied in [1]. The three real roots ζ = 0, ζ = 1/α and ζ = α−

√
α2 − 1 obtained in [1] exhaust the

set Mfα . The geometry of these points as critical for the conformal radius Rfα is established using the
classification according to the sign of curvature from [12].

Theorem 1 is proved.

3. GAKHOV EQUATION FOR THE LEVEL LINES OF KUDRYASHOV’S FUNCTION

Gakhov’s equation for the function fα,r has the form

f ′′
α,r(ζ)/f

′
α,r(ζ) ≡ 2(1 − α2)r2ζ(αr2ζ2 − 2rζ + α)−1(rζ − α)−1 = 2ζ̄/(1− |ζ|2). (13)

Recall that α > 1 and that the roots are found in the unit disk E. Acting as in Section 2, we substitute
representation ζ = ρeiθ into (13) to separate the solution ρ = 0 and to obtain the following analogues of
equations (10) and (11)—in order to find the remaining solutions

r2[1− α2 + (1 + 2α2)ρ2] = αrρ(3 + r2ρ2) cos θ − α2 cos 2θ, (14)

0 = α sin θ[r3ρ3 − 3rρ+ 2α cos θ]. (15)

Equation (15) splits into two: 1) cos θ = rρ(3− r2ρ2)/(2α) or 2) sin θ = 0.
Case 1. Substitution of the above expression for cos θ in (14) leads to the equation

r6ρ6 − 3r4ρ4 + (2α2 + 1)r2ρ2 + r2(1− α2)− α2 = 0, (16)

and the replacement r2ρ2 = x2 simplifies (16) to the equation

(x− 1)3 + 2(α2 − 1)(x− 1) + (1− r2)(α2 − 1) = 0. (17)

Let us put our situation in the context of the general theory of a cubic equation (see, e.g., [13]).
Changes y = x− 1, p1 = 2(α2 − 1) and q1 = (1− r2)(α2 − 1) allow us to rewrite equation (17)

in the reduced form y3 + p1y + q1 = 0. In view of the conditions p1 > 0 and q1 ≥ 0 we conclude
that the discriminant of the polynomial on the left hand side of (17) is strictly greater than zero:
Δ1 = (q1/2)

2 + (p1/3)
3 > 0. In this case, according to the “general theory”, equation (17) has one

real and two complex conjugate solutions. By the construction of x, we are only interested in the real
solution of the equation (17). We have a number of the following simple statements:

Lemma 1. The only real root of equation (17) is positive for any r ∈ [0, 1], strictly less than
unity for any r ∈ [0, 1), and equal to unity for r = 1.

The root from Lemma 1 is calculated using the Cardano formula and has the form x = 1 + u+ + u−,
where u± = 3

√
−q1/2±

√
Δ1 (we omit the dependence on r). It is clear that the situation r = 1

corresponds to case 1) from Section 2. Now let’s move on to ρ.
Lemma 2. When r = 0, equation (16) has no roots. For any r ∈ (0, 1] equation (16) has a

unique positive root ρ(r) =
√

1 + u+(r) + u−(r)/r.
The properties of the function ρ = ρ(r) are studied in the following
Lemma 3. Equalities limr→0− ρ(r) = +∞ and ρ(1) = 1 are satisfied. An inequality ρ(r) > 1 is

valid for all r ∈ (0, 1). The function ρ = ρ(r) strictly decreases on [0, 1] from +∞ to r = 1.
Lemma 3 shows that case 1) does not lead to new roots of the Gakhov equation.
Case 2. The substitution of sin θ = 0 and cos θ = −1 in (14) does not lead to new roots. On the

contrary, the situation sin θ = 0, cos θ = +1 (i.e. θ = 0) turns out to be generating for the roots of
equation (13). In this case, equation (14) will have the form

αr3ρ3 − (2α2 + 1)r2ρ2 + 3αrρ− (α2 − r2(α2 − 1)) = 0. (18)
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Now this is our main equation.
We transform equation (18) by the replacement x = rρ and dividing all its coefficients by α:

x3 − (2α + 1/α)x2 + 3x− (α2 − r2(α2 − 1))/α = 0. (19)

This will be our auxiliary equation. For the new coefficients, we introduce the notation R = −(2α2 +
1)/α, S = 3 and T = −(α2 − r2(α2 − 1))/α. Coefficients of the reduced form

y3 + py + q = 0 (20)

of the equation (19), which can be written as x3 +Rx2 + Sx+ T = 0, are obtained by the change of
variable x = y −R/3 = y + (2α2 + 1)/(3α). We have

p = S −R2/3 = −(α2 − 1)(4α2 − 1)/(3α2)(< 0), (21)

q = 2R3/27 −RS/3 + T = −(α2 − 1)[16α4 + 13α2 − 2− 27α2r2]/(27α3)(< 0). (22)

The discriminant is
Δ = Δ(r) = (q/2)2 + (p/3)3 = ((α2 − 1)/(4α2))(r2 − r2+)(r

2 − r2−), (23)

where r− = r̄(α) (see (8)) and r2+ + r2− = 2(16α4 + 13α2 − 2)/(27α2). It is clear that 0 < r− < 1 and
r+ > 1. In what follows, we will often use the notation

P =
√

−p/3. (24)

In the framework of the case 2), we will stay until the end of the article. On the other hand, the stages
of the further solution will be “colored in the tone” of the general theory of the cubic equation, which will
naturally determine the further division of the text into sections.

4. GLOBAL PICTURE OF SOLVABILITY

10 Case 0 < r < r−. In view of (23), we have Δ > 0. Here the equation (20) has three different
roots—two complex conjugate and one real. Since among the roots of equation (18) we are looking for
values for the polar radius, then among the above three roots of equation (20) we keep only the real one.
As in Lemma 1, the only real root of (20) is calculated by the Cardano formula

y = U+ + U−, U± =
3

√
−q/2±

√
Δ, (25)

where U3
+ + U3

− = −q, and y = −q/((U+ − U−)2 − p/3) > 0. Then the corresponding unique real root
of the equation (19) has the form x = 1 + U+ + U− + (α− 1)(2α − 1)/(3α) > 1 (we remember that
α > 1). Recalling that x = rρ, r ≤ 1, from the last inequality we conclude that the only root ρ of our
basic equation (18) satisfies the strict inequality ρ > 1 (more details: ρ ≥ rρ = x > 1). This means that
if 0 < r < r−, then Gakhov’s equation (13) has no nonzero roots.

20 Case r = r−. Here Δ = 0. In this case, the reduced equation (20) has two “geometrically
different” real roots: the root “going from” (25), y = U+ + U− = 2 3

√
−q/2, and the double root, ỹ =

−y/2 = − 3
√

−q/2, resulting the merge of two complex conjugate roots from the case 10.
Using (22) and (8) we set the expression for −q/2, and hence the explicit view of roots y and ỹ; the

corresponding roots of the equation (19) will be as follows: x = [2α2 + 1 + 2
√

(α2 − 1)(4α2 − 1)]/(3α)

and x̃ = [2α2 + 1−
√
(α2 − 1)(4α2 − 1)]/(3α). The root x continues the family from subsection 10

and therefore is excluded (x > 1). A strict inequality ρ̃2 = x̃2r2− < 1 is established by a simple but routine
check. Let’s summarize the preliminary output.

Proposition 1. Gakhov barrier r̄fα of the level set family (7) is equal to r̄fα = r̄(α), where the value
r̄(α) is defined in (8). When r ∈ [0, r̄fα), the only root of the Gakhov equation (13) is the point ζ = 0—
the maximum of the conformal radius (5) for f = fα. If r = r̄fα , the set Mfα consists of exactly two
points—the maximum ζ = 0 and the semi-saddle ζα = x̃/r̄fα .

Maximum of the conformal radius Rfα,r(ζ) at ζ = 0 takes place due to [12], the presence of a semi-
saddle of Rfα,r(ζ) at a point ζα is established using the formula of M.I. Kinder (see, e.g., [11]).
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30 Case r− < r < 1. We are in the situation Δ < 0. In the general theory of the cubic equation,
this is the so-called “casus irreducibilis”. Within the framework of this “casus”, equation (20) has three
different real roots; to represent them, we use a continuous (and even differentiable) parametrization by
r. Thus, we immerse the situation in an analytical context. It follows from (21) and (22) that for Δ < 0 it
will be 0 < −(q/2)/P 3 < 1, where P is defined in (24). Hence, for any r ∈ (r−, 1] there exists a unique
θ0 = θ0(r) ∈ (0, π/2) such that θ0(r) ≡ arccos λ(r), where

λ(r) = −(27α3/2)q[(α2 − 1)(4α2 − 1)]−3/2, (26)

and the roots of equation (20) can be represented as

ym(r) = 2P cos(θm−1(r)/3), θm−1(r) = θ0(r) + 2π(m− 1), m = 1, 2, 3. (27)

Taking into account (26) and formulas for r2±, we conclude that the function λ(r) decreases on the
segment [r−, r+] from value λ(r−) = +1 to value λ(r+) = −1. It is clear that the function θ = θ0(r)
increases on [r−, r+] as a superposition of decreasing functions.

40 Stitching real roots (20) over (0, r−] and [r−, 1] into the “global picture of resolvability”.
When 0 < r < r− (Δ > 0), there is a single real root (25), which takes the form y = 2 3

√
−q/2 when

passing Δ ↓ 0 to the case r = r− (Δ = 0), where a double root ỹ = − 3
√

−q/2 also appears. If (1 >)r >
r− (Δ < 0), then we have three real roots (27).

Let’s see what happens when Δ ↑ 0, i.e. when r ↓ r−. The passage to the limit λ(r) ↑ λ(r−) = +1
when r ↓ r−, established above, entails the passage to the limit θ0(r) = arccos λ(r) ↓ θ0(r−) = 0. Let
us watch for the behavior of the roots (27) when r ↓ r−.

The root y1(r). If r ↓ r−, then y1(r) = 2P cos(θ0(r)/3) → y1(r−) = 2P . Since Δ = 0, we have
P = 3

√
−q/2, whence y1(r−) = y, i.e., for r ↓ r− the root y1(r) (from the case Δ < 0) goes to the root

y = 2 3
√

−q/2 (corresponding to the case Δ = 0). Thus, the last root continuously sews the roots (25)
and y1(r) from (27) into one root.

The roots y2,3(r). Tending r ↓ r− leads to the passages y2(r), y3(r) → ỹ. So, the root ỹ appearing at
r = r− with further growth of r bifurcates into two continuous roots y2,3(r), r ∈ (r−, 1].

5. PASSING TO THE MAIN EQUATION

1. The root ρ1(r). The inequality ρ1(r) > 1, which is valid for r ∈ (0, r−), was proved in Section 4.
Let us prove it for r = r− and for r ∈ (r−, 1]. For the root x1(r−) of equation (19) the relation
x1(r−) = 1 + (α− 1)(2α − 1)/(3α) + 2P > 1 is valid.

Now let’s look at the root x1(r) when r ∈ (r−, 1]. By virtue of (27) with m = 1 we have the
equality x1(r) = 1 + (α− 1)(2α − 1)/(3α) + 2P cos(θ0(r)/3), whence x1(r) > 1 for r ∈ (r−, 1] due
to the estimates 1 > cos(θ0(r)/3) > 0, following from the inequalities 0 < θ0(r) < π/2, which are
established in Section 4 for any r ∈ (r−, 1]. As a result we have x1(r) > 1 for r ∈ [r−, 1]. So, for
the solution ρ1(r) of the main equation (18) the inequalities ρ1(r) = x1(r)/r > 1/r ≥ 1 are valid for
r ∈ [r−, 1]. Thus, ρ1(r) > 1 also for r ∈ (0, 1].

2. The root ρ2(r). We are to prove that ρ2(r) decreases with respect to r. From the second formula
(27) we obtain x′2(r) = −2P sin(θ1(r)/3)θ

′
0(r)/3. First, we remember from Section 4 that the derivative

of theta is positive. Next, for any r ∈ (r−, 1] there will be 2π/3 < θ1(r)/3 < 5π/6. It is clear that in this
case we have sin(θ1(r)/3) > 0. Finally, x′2(r) < 0, r ∈ (r−, 1], which means that the function x2(r), and
hence ρ2(r) = x2(r)/r decreases on (r−, 1].

3. Function rθ′0(r). To study the dynamics of the third root, ρ3(r), of our main equation, we
need a closer look at the behavior of the function θ0. Recall that θ0 = θ0(r) = arccos λ(r), where the
function λ(r) is determined in (26). Further, due to the relation (23) and expressions for r2± we have

θ′0(r) = 2r/
√

(r2+ − r2)(r2 − r2−) and θ′0(r) > 0 for any r ∈ (r−, r+).

Let’s prove that the function rθ′0(r)/2 decreases on the segment (r−, 1]. To do this, we will
work with a function h(t) = t2/((r2+ − t)(t− r2−)) with increasing t from r2− to 1. We have h′(t) =
(r2+ + r2−)t(r

2
+ − t)−2(t− r2−)

−2[t− 2r2+r
2
−/(r

2
+ + r2−)], where 1 < 2r2+r

2
−/(r

2
+ + r2−) < r2+. In fact, the
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right-hand inequality is obvious, the left-hand one follows from the formulas for r2±: 2r2+r
2
−/(r

2
+ + r2−) =

1 + 2(α2 − 1)(8α2 − 1)/(16α4 + 13α2 − 2) > 1. So, when r2− < t ≤ 1, the inequality t− 2r2+r
2
−/(r

2
+ +

r2−) < 0 is satisfied, and hence also h′(t) < 0. Then the function h(t) decreases on (r2−, 1], and the
function rθ′0(r)/2 =

√
h(r2) decreases in r ∈ (r−, 1]. Thus,

rθ′0(r) > θ′0(1), r ∈ (r−, 1). (28)

4. The root ρ3(r). The third root (27) of the reduced equation (20) generates the root of auxiliary
equation (19): x3(r) = (2α2 + 1)/(3α) + y3(r) = (2α2 + 1)/(3α) + 2P cos(θ2(r)/3). We claim that
the corresponding root of the main equation (18) is the increasing function ρ3(r) = x3(r)/r. For
this it is enough to show that the expression N(r) = x′3(r)r − x3(r) is positive. We have N(r) =
−2P sin(θ2(r)/3) · θ′0(r) · r/3− (2α2 + 1)/(3α) − 2P cos(θ2(r)/3).

Recall that 0 < θ0(r) < π/2 for any r ∈ (r−, 1] (Section 4). Then, for every r ∈ (r−, 1], the
inequalities 4π/3 < θ2(r)/3 < 3π/2 are valid. These inequalities determine: for the cosine—the
interval of increase, and for the sine—the interval of decrease. Consequently, − cos(θ2(r)/3) > 0

and − sin(θ2(r)/3) >
√
3/2. Therefore, N(r) > P · (

√
3/3) · rθ′0(r)− (2α2 + 1)/(3α). Due to (21),

(28) and (r2+ − 1)(1 − r2−) = 4(α2 − 1)/(27α2) this estimate continues to N(r) > (32α4 − 13α2 −
1)/{3α[3α(4α2 − 1)1/2 + (2α2 + 1)]} > 0. Hence, ρ′3(r) = N(r)/r2 > 0, r ∈ (r−, 1]. Thus, the root
ρ3(r) of equation (18) increases in r.

6. RETURNING TO THE GAKHOV EQUATION

Let us assemble a picture of the solvability of equation (18) over the field of real numbers.
We have: one function, ρ1(r), continuous on (0, 1], and two functions, ρ2(r) and ρ3(r), continuous

on [r−, 1] and coinciding only for r = r−. These are the functions that describe the set of solutions to
equation (18) over r ∈ (0, 1]. Namely, for each r ∈ (0, r−), equation (18) has a single root ρ1(r) > 1;
for r = r− it has two roots—the root ρ1(r−) > 1 and the multiple root ρ2(r−) = ρ3(r−) < 1; for each
r ∈ (r−, 1] equation (18) has three different roots—the root ρ1(r) > 1 and the roots ρ2(r) and ρ3(r).

The function ρ1(r) is differentiable for r ∈ (0, 1) \ {r−}, the functions ρ2(r) and ρ3(r) – for r ∈
(r−, 1]. Here, if r ∈ (r−, 1], then ρ′2(r) < 0 and ρ′3(r) > 0.

Lemma 4. The roots ρ2(r) and ρ3(r) of the equation (18) do not exceed unity for r ∈ [r−, 1].
Proof. Since ρ′2(r) < 0, we have ρ2(r) < ρ2(r−) < 1 for every r ∈ (r−, 1].
Inequality ρ3(r) < ρ1(r) extends from the point r = r− to the half-segment (r−, 1] in view of the

presence of exactly three different roots of (18) for every r ∈ (r−, 1]. Since ρ2(r−) = ρ3(r−)(= ζα), then
ρ2(r) < ρ3(r) on the half-segment (r−, 1], because ρ2(r) decreases and ρ3(r) increases on it. So, for any
r ∈ (r−, 1] there will be ρ2(r) < ρ3(r) < ρ1(r). In particular, ρ2(1) < ρ3(1) < ρ1(1). But in Section 2
we established that when r = 1, the equation (18) has the roots α−

√
α2 − 1 < 1/α < α+

√
α2 − 1.

Therefore, ρ2(1) = α−
√
α2 − 1, ρ3(1) = 1/α, ρ1(1) = α+

√
α2 − 1.

Since ρ3(r) increases for r ∈ (r−, 1], then the inequality ρ3(r) < ρ3(1) holds for r ∈ (r−, 1), and since
ρ3(1) = 1/α, then, finally, ρ3(r) < 1, r ∈ [r−, 1]. �

Corollary. The inequalities ρ2(1) = α−
√
α2 − 1 < ρ2(r) < ζα and ζα < ρ3(r) < ρ3(1) = 1/α are

valid for every r ∈ (r−, 1).
Since the points ρ2(r) and ρ3(r)—the real roots of the equation (18)—lie in the unit disk E, then

they satisfy the Gakhov equation. Its solvability in E (without the zero root) reduced to the solvability of
equation (18) on the interval (0, 1).

According to [11], the roots of the Gakhov equation with decreasing moduli are saddles, and the ones
with increasing moduli are maxima of the surface of conformal radius. Hence, for any r ∈ (r−, 1] the
point ρ2(r) is the saddle, and the point ρ3(r) is the maximum of the surface Rfα(ζ).

The following addition to Proposition 1 completes our study.
Proposition 2. If r ∈ (0, r̄fα), then Mfα = {0}; when r = r̄fα , there will be Mfα = {0, ζα}; in the

case r ∈ (r̄fα , 1] we have Mfα = {0, ρ2(r), ρ3(r)}. Here, ζ = ζα is the semi-saddle, ζ = ρ2(r) is the
saddle, and the points ζ = 0 and ζ = ρ3(r) are maxima of the surface of the conformal radius Rfα(ζ).
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Theorem 2 is proved.
Remark 2. According to [9], the value r̄fα is the parameter of the

⋃
-exit out of the regular Gakhov

class along the level lines of the Kudryashov function fα.
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