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Abstract
Let τ be a faithful semifinite normal trace on a von Neumann algebraM, let S(M, τ )

be the ∗-algebra of all τ -measurable operators. Letμ(t; X) be the generalized singular
value function of the operator X ∈ S(M, τ ). If E is a normed ideal space (NIS) on
(M, τ ), then

‖A‖E ≤ ‖A + iB‖E (*)

for all self-adjoint operators A, B ∈ E . In particular, if A, B ∈ (L1 + L∞)(M, τ )

are self-adjoint, then we have the (Hardy–Littlewood–Pólya) weak submajorization,
A �w A + iB. Inequality (∗) cannot be extended to the Shatten–von Neumann ideals
Sp, 0 < p < 1. Hence, the well-known inequalityμ(t; A) ≤ μ(t; A+ iB) for all t >

0, positive A ∈ S(M, τ ) and self-adjoint B ∈ S(M, τ ) cannot be extended to all self-
adjoint operators A, B ∈ S(M, τ ). Consider self-adjoint operators X , Y ∈ S(M, τ ),
let K (X) be the Cayley transform of X . Then, μ(t; K (X) − K (Y )) ≤ 2μ(t; X − Y )

for all t > 0. If E is an F-NIS on (M, τ ) and X − Y ∈ E , then K (X) − K (Y ) ∈ E
and ‖K (X) − K (Y )‖E ≤ 2‖X − Y‖E .
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1 Introduction

The section of functional analysis, called noncommutative integration theory, is an
important part of the theory of operator algebras. This article is devoted to noncom-
mutative analogs of the classical function spaces. Development of the corresponding
aspect of noncommutative integration theory started with the works of Segal and
Dixmier, who in the early 1950s created a theory of integration with respect to a trace
on a semifinite von Neumann algebra, see [23]. The results of these investigations
found spectacular applications in the duality theory for unimodular groups and stimu-
lated the progress of “noncommutative probability theory”. The theory of algebras of
measurable and locally measurable operators is rapidly developing and has interesting
applications in various areas of functional analysis, mathematical physics, statistical
mechanics, and quantum field theory. In [31–33],Muratov introduced and investigated
ideal spaces of measurable operators on a finite von Neumann algebra. They were also
studied by Chilin in [19]. In the above-mentioned works, the ideal spaces serve pri-
marily as the object of investigation. Recently, there have appeared publications in
which they act as a tool see, for instance, [6]. In [7, 15] new methods were proposed
for constructing ideal spaces on semifinite von Neumann algebras and the geometric
and topological properties of the obtained spaces were studied.

Our article continues the research ofworks [11] and [12] of the first author. Let a von
Neumann algebraM of operators act on a Hilbert spaceH, τ be a faithful semifinite
normal trace on M. Let S(M, τ ) be the ∗-algebra of all τ -measurable operators, let
μ(t; X) be the generalized singular value function of the operator X ∈ S(M, τ ). Our
main results are obtained in the context of semifinite von Neumann algebras; some
results are new even in the case of the algebra M = B(H), equipped with τ = tr. If
E is a normed ideal space (NIS) on (M, τ ), then ‖A‖E ≤ ‖A + iB‖E for all self-
adjoint operators A, B ∈ E (Theorem 3.3). In particular, if A, B ∈ (L1 + L∞)(M, τ )

are self-adjoint, then we have the (Hardy–Littlewood–Pólya) weak submajorization,
A �w A + iB (Corollary 3.4). Theorem 3.3 cannot be extended to the Shatten–von
Neumann ideals Sp, 0 < p < 1 (Theorem 3.5). Hence, the well known inequality
μ(t; A) ≤ μ(t; A + iB) for all t > 0, A ∈ S(M, τ )+ and self-adjoint B ∈ S(M, τ )

cannot be extended to all self-adjoint operators A, B ∈ S(M, τ ). If 〈E, ‖ · ‖E 〉 is a
NIS on (M, τ ), then ‖A − B‖E ≤ ‖A + B‖E for all A, B ∈ E+ (Theorem 3.7).

Consider self-adjoint operators X , Y ∈ S(M, τ ), let K (X) be the Cayley transform
of X . Let E be an F-NIS on (M, τ ). We have μ(t; K (X) − K (Y )) ≤ 2μ(t; X − Y )

for all t > 0 (Theorem 3.10). If X − Y ∈ E , then K (X) − K (Y ) ∈ E and ‖K (X) −
K (Y )‖E ≤ 2‖X − Y‖E (Theorem 3.11).

2 Definitions and notation

Let a von Neumann operator algebraM act on a Hilbert spaceH, I be the unit ofM,
M1 = {X ∈ M : ‖X‖ ≤ 1}. Let Mpr be the lattice of projections (P = P2 = P∗)
inM and P⊥ = I − P for P ∈ Mpr, letM+ be the cone of all positive operators in
M. An operator U ∈ M is called a partial isometry, if U∗U is a projection; unitary,
if U∗U = UU∗ = I . Two projections P, Q ∈ Mpr are said to be Murray–von
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Neumann equivalent if there exists a partial isometry U ∈ M such that U∗U = P
and UU∗ = Q. In this case, we write P ∼ Q. If P ≤ Q, then we say that P is a
subprojection of Q. If P is equivalent to a subprojection of Q, we write P ≺ Q. We
say that P ∈ Mpr is a finite projection if P ∼ Q ≤ P implies P = Q.

A mapping ϕ : M+ → [0,+∞] is called a trace, if ϕ(X + Y ) = ϕ(X) + ϕ(Y ),
ϕ(λX) = λϕ(X) for all X , Y ∈ M+, λ ≥ 0 (moreover, 0 · (+∞) ≡ 0); ϕ(Z∗Z) =
ϕ(Z Z∗) for all Z ∈ M. A trace ϕ is called (see [37, Chap. V, §2])

• faithful, if ϕ(X) > 0 for all X ∈ M+, X �= 0;
• normal, if Xi ↑ X (Xi , X ∈ M+) ⇒ ϕ(X) = supϕ(Xi );
• semifinite, if ϕ(X) = sup{ϕ(Y ) : Y ∈ M+, Y ≤ X , ϕ(Y ) < +∞} for every

X ∈ M+.

An operator onH (not necessarily bounded or densely defined) is said to be affiliated
to the von Neumann algebra M if it commutes with any unitary operator from the
commutantM′ of the algebraM. Let τ be a faithful normal semifinite trace onM. A
closed operator X , affiliated toM and possessing a domainD(X) everywhere dense in
H is said to be τ -measurable if, for any ε > 0, there exists a projection P ∈ Mpr such
that PH ⊂ D(X) and τ(P⊥) < ε. The set S(M, τ ) of all τ -measurable operators
is a ∗-algebra under passage to the adjoint operator, multiplication by a scalar, and
operations of strong addition and multiplication resulting from the closure of the
ordinary operations [38, Chap. IX].

Let L+ and Lh denote the positive and Hermitian parts of a family L ⊂ S(M, τ ),
respectively. We denote by ≤ the partial order in S(M, τ )h generated by its proper
cone S(M, τ )+. If X ∈ S(M, τ ) and X = U |X | is the polar decomposition of X ,
then U ∈ M and |X | = √

X∗ X ∈ S(M, τ )+.
An operator A ∈ S(M, τ ) is called hyponormal, if A∗ A ≥ AA∗; cohyponormal,

if the operator A∗ is hyponormal. Denote by [A, B] = AB − B A the commutator of
operators A, B ∈ S(M, τ ). The generalized singular value function μ(·; X) : t →
μ(t; X) of the operator X is defined by setting

μ(t; X) = inf{‖X P‖ : P ∈ Mpr and τ(P⊥) ≤ t}, t > 0.

It is a non-increasing right-continuous function.

Lemma 2.1 ([27]) Let X , Y ∈ S(M, τ ), A, B ∈ M and U , V ∈ M be unitary. Then

(i) μ(t; X) = μ(t; |X |) = μ(t; X∗) = μ(t; U X V ) for all t > 0;
(ii) If |X | ≤ |Y |, then μ(t; X) ≤ μ(t; Y ) for all t > 0;
(iii) μ(t; AX B) ≤ ‖A‖ ‖B‖μ(t; X) for all t > 0;
(iv) μ(s + t; X + Y ) ≤ μ(s; X) + μ(t; Y ) for all s, t > 0;
(v) μ(t; f (|X |)) = f (μ(t; X)) for all continuous functions f : R

+ → R
+ with

f (0) = 0 and t > 0.

Let m be the linear Lebesgue measure on R. Noncommutative Lebesgue L p-space
(0 < p < ∞), associated with (M, τ ), may be defined as

L p(M, τ ) = {X ∈ S(M, τ ) : μ(·; X) ∈ L p(R
+, m)}
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with the F-norm (norm for 1 ≤ p < ∞) ‖X‖p = ‖μ(·; X)||p, X ∈ L p(M, τ ).
The extension of τ to the unique linear functional on the whole space L1(M, τ ) we
denote by the same letter τ . A linear subspace E ⊂ S(M, τ ) is called an ideal space
on (M, τ ), if

1. X ∈ E ⇒ X∗ ∈ E ;
2. X ∈ E , Y ∈ S(M, τ ) and |Y | ≤ |X | ⇒ Y ∈ E .
Such are, for example, the algebra M, the collection of all elementary operators

F(M, τ ) and L p(M, τ ) for 0 < p < ∞. For every ideal space E on (M, τ ) we have
MEM ⊂ E [11, Lemma 5]. An ideal space E on (M, τ ), equipped with an F-norm
‖ · ‖E , is called an F-normed ideal space (F-NIS) on (M, τ ), if

1. ‖X‖E = ‖X∗‖E for all X ∈ E ;
2. X , Y ∈ E and |Y | ≤ |X | ⇒ ‖Y‖E ≤ ‖X‖E (see [7–13]).

If τ(I ) < +∞ then every F-NIS on (M, τ ) is continuously embedded into S(M, τ )

in the measure topology tτ , see [6, 14].
A linear subspace E in S(M, τ ), endowed with an F-norm ‖ · ‖E is said to be

an F-normed symmetric space (F-NSS) on (M, τ ) if X ∈ E , Y ∈ S(M, τ ) and
μ(t; Y ) ≤ μ(t; X) for all t > 0 imply that Y ∈ E and ‖Y‖E ≤ ‖X‖E .

Such are, for example, the algebra M, the collection of all elementary operators
F(M, τ ), the ideal of all τ -compact operators

S0(M, τ ) =
{

X ∈ S(M, τ ) : lim
t→+∞ μ(t; X) = 0

}
,

the Banach space (L1 + L∞)(M, τ ) and the Lebesgue spaces L p(M, τ ) for 0 <

p < ∞. A wide class of Orlicz F-NSS on (M, τ ) was investigated in [15]; for other
examples see also [22] and [23]. For A, B ∈ (L1 + L∞)(M, τ ) we write A �w B,
the (Hardy–Littlewood–Pólya) weak submajorization, if

∫ t

0
μ(s; A) dt ≤

∫ t

0
μ(s; B) dt for all t > 0.

Interesting examples of such submajorizations were obtained in [4, 5, 16, 24, 25, 29,
35, 36] and others.

If M = B(H), the ∗-algebra of all bounded linear operators on H, and τ = tr
is the canonical trace, then S(M, τ ) coincides with B(H), S0(M, τ ) coincides with
the ideal S∞ of compact operators on H, the space L p(M, τ ) coincides with the
Shatten–von Neumann ∗-ideal Sp(H) of compact operators in B(H) and

μ(t; X) =
∞∑

n=1

sn(X)χ[n−1,n)(t), t > 0,

where {sn(X)}∞n=1 is the sequence of s-numbers of the operator X ; χA is the indicator
function of the set A ⊂ R [28, Chap. II].
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IfM is Abelian (i.e., commutative), thenM � L∞(�,�, ν) and τ( f ) = ∫
�

f d ν,
where (�,�, ν) is a localizable measure space, the ∗-algebra S(M, τ ) coincides with
the algebra of all complex measurable functions f on (�,�, ν), bounded everywhere
but for a set of finite measure. The function μ(t; f ) coincides with the nonincreasing
rearrangement of the function | f |; see properties of such rearrangements in [30]. The
algebra M contains no compact operators if and only if the measure ν has no atoms
[3, Theorem 8.4].

3 Themain results

The following assertion was established in [26, Lemma 9] and, independently, in [34,
Proposition 3].

Theorem 3.1 We have μ(t; A) ≤ μ(t; A + iB) for all t > 0, A ∈ S(M, τ )+ and
B ∈ S(M, τ )h.

Corollary 3.2 If E is an F-NSS on (M, τ ), then ‖A‖E ≤ ‖A + iB‖E for all A ∈ E+
and B ∈ Eh.

In the case of NIS E , we generalize our Corollary 3.2.
Theorem 3.3 (cf. with Proposition 3.7 of [2]) If E is a NIS on (M, τ ), then ‖A‖E ≤
‖A + iB‖E for all A, B ∈ Eh.

Proof Recall that ‖Z‖E = ‖ |Z | ‖E = ‖Z∗‖E for all Z ∈ E . If X ∈ E and Y ∈ Eh,
then from the representation

X − ReX = X − Y

2
− X∗ − Y

2
= X − Y

2
− (X − Y )∗

2

and from the triangle inequality for the norm ‖ · ‖E we infer that ‖X − ReX‖E ≤
‖X − Y‖E . Put X = iA for A ∈ Eh. Then |X | = |A|, ReX = 0 and for all B ∈ Eh we
have

‖A‖E = ‖ |A| ‖E = ‖ |X | ‖E = ‖X‖E = ‖X − ReX‖E ≤ ‖X − B‖E
= ‖iA − B‖E = ‖A + iB‖E ,

since |iA − B| = |i(A + iB)| = |A + iB|. The theorem is proved. ��
Corollary 3.4 If X , Y ∈ (L1 + L∞)(M, τ )h, then X �w X + iY .

Proof For every fixed number t > 0 the mapping

X �→
∫ t

0
μ(s; X) dt

is a norm on NSS (L1 + L∞)(M, τ ). ��
Theorem 3.3 cannot be extended to the class of all F-NSS on (M, τ ).
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Theorem 3.5 Theorem 3.3 cannot be extended to the Shatten–von Neumann ∗-ideals
Sp, 0 < p < 1.

Proof For M = M2(C), τ = tr and x ∈ R put

A =
(

1 −x
−x −1

)
, B =

(
0 ix

−ix 0

)
. (3.1)

Then, |A|2 = A2 = (1+x2)I , hence |A|p = (|A|2)p/2 = (1+x2)p/2 I and tr(|A|p) =
2(1 + x2)p/2 for all 0 < p < +∞. The eigenvalues of a matrix

|A + iB|2 =
(

1 −2x
−2x 1 + 4x2

)

are λ1 = 1+ 2x2 + 2x
√
1 + x2, λ2 = 1+ 2x2 − 2x

√
1 + x2. By the Taylor formula

with Peano remainder:

(1 + x2)p/2 = 1 + p

2
x2 + o(x2) (x → 0),

therefore,

tr(|A|p) = 2 + px2 + o(x2) (x → 0),

tr(|A + iB|p) = λ
p/2
1 + λ

p/2
2

=
(
1 + 2x2 + 2x

(
1 + x2

2
+ o(x2)

))p/2

+
(
1 + 2x2 − 2x

(
1 + x2

2
+ o(x2)

))p/2

= 1 + px + px2 + p

2

( p

2
− 1

) (2x)2

2
+ o(x2)

+1 − px + px2 + p

2

( p

2
− 1

) (−2x)2

2
+ o(x2)

= 2 + p2x2 + o(x2) (x → 0).

Thus, the inequality ‖A‖p
p = tr(|A|p) ≤ tr(|A + iB|p) = ‖A + iB‖p

p for every
0 < p < 1 does not hold. The theorem is proved. ��
Corollary 3.6 Theorem 3.1 cannot be extended to all operators A, B ∈ S(M, τ )h.

Proof There exist A, B ∈ M2(C)sa such that for 1 < t ≤ 2 the inequality μ(t; A) ≤
μ(t; A + iB) is not true, see (3.1). ��
Theorem 3.7 If 〈E, ‖ · ‖E 〉 is a NIS on (M, τ ), then ‖A − B‖E ≤ ‖A + B‖E for all
A, B ∈ E+.
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Proof If X ∈ E+, Y ∈ S(M, τ )h and −X ≤ Y ≤ X , then Y ∈ Eh and ‖Y‖E ≤ ‖X‖E
[8]. (This implies the assertionof [20, Proposition1.2].) Put X = A+B andY = A−B.

Corollary 3.8 If X , Y ∈ (L1 + L∞)(M, τ )+, then X − Y �w X + Y .

In the particular case, when τ(I ) = 1, the assertion of Corollary 3.8 was obtained
by another method in [21, Lemma 2.1]. For M = M2(C) and τ = tr put

X =
(
1 2
2 4

)
, Y =

(
4 2
2 1

)
.

Then, s1(X + Y ) = 9, s2(X + Y ) = 1 and s1(X − Y ) = s2(X − Y ) = 3. Hence for
1 < t ≤ 2 the inequality μ(t; X − Y ) ≤ μ(t; X + Y ) does not hold.

Lemma 3.9 If 〈E, ‖ · ‖E 〉 is an F-NIS on (M, τ ), Z ∈ E and A, B ∈ M1, then
AZ B ∈ E and ‖AZ B‖E ≤ ‖Z‖E .

Proof We have AZ B ∈ E by [11, Lemma 5]. Via the operator monotonocity of the
function λ �→ √

λ (λ ≥ 0), inequalities B∗Z∗ A∗ AZ B ≤ B∗Z∗Z B, Z B B∗Z∗ ≤
Z Z∗ and properties of the F-norm ‖ · ‖E we obtain

‖AZ B‖E = ‖|AZ B|‖E = ‖√B∗Z∗ A∗ AZ B‖E ≤ ‖√B∗Z∗Z B‖E
= ‖|Z B|‖E = ‖Z B‖E = ‖(Z B)∗‖E = ‖B∗Z∗‖E
= ‖|B∗Z∗|‖E = ‖√Z B B∗Z∗‖E ≤ ‖√Z Z∗‖E = ‖Z∗‖E = ‖Z‖E .

The lemma is proved. ��
By the Spectral Theorem in the multiplicator form, the Cayley transform

K (X) = X + iI

X − iI
= (X − iI )−1(X + iI ) = (X + iI )(X − iI )−1

of an operator X ∈ S(M, τ )h is a unitary operator inM. Since λ+i = (1+λ2)/(λ−i)
for every λ ∈ R, we have K (X) = (X − iI )−2(I + X2) for all X ∈ S(M, τ )h.

Theorem 3.10 Let X , Y ∈ S(M, τ )h and Y be invertible in S(M, τ ). Then

(i) K (X)∗ = K (−X);
(ii) K (Y −1) = −K (−Y ) = −K (Y )∗;
(iii) If X = ∑n

k=1 λk Pk with λk ∈ R, Pk ∈ Mpr and Pk Pm = 0 for k �= m, k, m =
1, . . . , n, then

K (X) =
n∑

k=1

λk + i

λk − i
Pk − Q⊥, where Q =

n∑
k=1

Pk =
n∨

k=1

Pk;

(iv) K (X) = iX ⇔ X2 = I .



   61 Page 8 of 13 A. M. Bikchentaev et al.

Proof (i). Since the operator K (X) is unitary, we have

K (X)∗ = K (X)−1 = (X − iI )(X + iI )−1 = −(−X + iI ) · −(−X − iI )−1

= (−X + iI )(−X − iI )−1 = K (−X).

(ii). We have

K (Y ) = (Y + iI )(Y − iI )−1 = (Y + iY Y −1)(Y − iY −1Y )−1

= Y (I + iY −1)[(I − iY −1)Y ]−1 = Y (I + iY −1)Y −1(I − iY −1)−1

= Y Y −1(I + iY −1)(I − iY −1)−1 = i(I + iY −1) · i−1(I − iY −1)−1

= (−Y −1 + iI )(iI + Y −1)−1 = ((−Y )−1 + iI )(iI − (−Y )−1)−1

= ((−Y )−1 + iI )((−Y )−1 − iI )−1 = −K ((−Y )−1).

Replace the operator Y with −Y and conclude that K (Y −1) = −K (−Y ). From
(i) it follows that −K (−Y ) = −K (Y )∗.

(iii). By the Spectral Theorem we have

K (X) =
(

n∑
k=1

λk Pk −
n∑

k=1

iPk − iQ⊥
)−1 (

n∑
k=1

λk Pk +
n∑

k=1

iPk + iQ⊥
)

=
(

n∑
k=1

(λk − i)Pk − iQ⊥
)−1 (

n∑
k=1

(λk + i)Pk + iQ⊥
)

=
(

n∑
k=1

1

λk − i
Pk − 1

i
Q⊥

)−1 (
n∑

k=1

(λk + i)Pk + iQ⊥
)

=
n∑

k=1

λk + i

λk − i
Pk − Q⊥.

In particular, K (P) = iP − P⊥ for all P ∈ Mpr.
(iv), “⇒”. Since K (X) = iX is unitary, we have I = (iX)∗ · iX = −iX · iX = X2.
(iv), “⇐”. Putting n = 2, λ1 = 1 = −λ2, P1 = (X + I )/2, P2 = P⊥

1 in (iii) (then
Q = I ), we obtain K (X) = iX . The theorem is proved. ��

Theorem 3.11 If E is an F-NIS on (M, τ ), X , Y ∈ S(M, τ )h and X − Y ∈ E , then
K (X) − K (Y ) ∈ E and ‖K (X) − K (Y )‖E ≤ 2‖X − Y‖E .

Proof Let X , Y ∈ S(M, τ )h. For a function f (λ) = 1/(λ − i), λ ∈ R, the inequality
| f (λ)| ≤ 1, λ ∈ R, holds. Hence

f (X) = (X − iI )−1, f (Y ) = (Y − iI )−1 ∈ M1.



Ideal spaces of measurable operators affiliated to a... Page 9 of 13    61 

If X − Y ∈ E , then the operator

K (X) − K (Y ) = (X − iI )−1(X + iI ) − (Y + iI )(Y − iI )−1

= (X − iI )−1[(X + iI )(Y − iI ) − (X − iI )(Y + iI )](Y − iI )−1

= −2i(X − iI )−1(X − Y )(Y − iI )−1 (3.2)

lies in E by [11, Lemma 5]. Now by Lemma 3.9 and the triangle inequality for the
F-norm ‖ · ‖E we obtain

‖K (X) − K (Y )‖E = ‖| − 2i(X − iI )−1(X − Y )(Y − iI )−1|‖E
= 2‖(X − iI )−1(X − Y )(Y − iI )−1‖E
≤ 2‖X − Y‖E .

The theorem is proved. ��
Note that in the proofs of Lemma 3.9 and Theorem 3.11 we follow the scheme of

the proof of Theorem 4 from [17].

Theorem 3.12 If X , Y ∈ S(M, τ )h, then μ(t; K (X) − K (Y )) ≤ 2μ(t; X − Y ) for
all t > 0.

Proof Use representation (3.2) and items (i), (ii) and (iii) of Lemma 2.1. ��
Remark 3.13 (i) If 〈E, ‖ · ‖E 〉 is an F-NIS on (M, τ ) and I ∈ E , then there is no

constant C > 0 such that ‖K (X)‖E ≤ C‖X‖E for all X ∈ Eh. Suppose that
a such constant C > 0 exists. Then for every X ∈ Eh and x ∈ R we have
|K (x X)| = I and

‖I‖E = ‖|K (x X)|‖E = ‖K (x X)‖E ≤ C‖x X‖E → 0 as x → 0;

a contradiction.
(ii) There is no constant C > 0 such that μ(t; K (X)) ≤ Cμ(t; X) (t > 0) for all

X ∈ S(M, τ )h. Let P ∈ Mpr and τ(P) < +∞. Consider an operator u P , u > 0.
Suppose that such a constant C > 0 exists. Then, for every t > 0 we have

χ(0,τ (I ))(t) = μ(t; I ) = μ(t; |K (u P)|) = μ(t; K (u P))

≤ Cμ(t; u P) = Cuμ(t; P) = Cuχ(0,τ (P))(t) → 0 as u → 0+;

a contradiction.

Lemma 3.14 ([18, Theorem 17]) If X , Y ∈ S(M, τ ) and XY , Y X ∈ L1(M, τ ), then
τ(XY ) = τ(Y X).

Theorem 3.15 LetE be an ideal space on (M, τ ), A, B ∈ S(M, τ ), A be hyponormal,
B cohyponormal and AB ∈ E . Then

(i) B A ∈ E and if E is F-NIS on (M, τ ), then ‖B A‖E ≤ ‖AB‖E ;
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(ii) If E = L1(M, τ ), then τ([A, B]) = 0.

Proof (i). The operator A is hyponormal, so

|AB|2 = B∗ A∗ AB ≥ B∗ AA∗ B = |A∗B|2;

then by the operator monotonocity of the function t �→ √
t (t ≥ 0) we infer that

|A∗ B| ≤ |AB|. Hence A∗ B ∈ E and B∗ A = (A∗B)∗ ∈ E .
Since the operator B is cohyponormal, we have

|B∗ A|2 = A∗ B B∗ A ≥ A∗B∗ B A = |B A|2,

and by the operator monotonocity of the function t �→ √
t (t ≥ 0) we obtain

|B A| ≤ |B∗ A|. Hence B A ∈ E .
For an F-NIS E we have ‖B A‖E ≤ ‖B∗ A‖E = ‖A∗ B‖E ≤ ‖AB‖E .

(ii). The assertion follows from (i) and Lemma 3.14.
��

Theorem 3.16 If E is an ideal space on (M, τ ), operators A, B ∈ S(M, τ ) and
A∗ A, B∗ B ∈ E , then AX B ∈ E for all X ∈ M.

Proof Since (X B)∗ X B = B∗ X∗ X B ≤ ‖X‖2B∗ B ∈ E , it suffices to show that
AB ∈ E . The inequality (A ± B)∗(A ± B) ≥ 0 implies that

0 ≤ A∗ A + B∗ B + A∗B + B∗ A ≤ 2A∗ A + 2B∗ B ∈ E+.

Therefore

A∗ B + B∗ A ∈ E . (3.3)

The inequality (A ± iB)∗(A ± iB) ≥ 0 shows us that 0 ≤ A∗ A + B∗ B − iA∗B +
iB∗ A ≤ 2A∗ A + 2B∗ B ∈ E+. Hence,

iA∗ B − iB∗ A ∈ E . (3.4)

From (3.3) and (3.4) it follows that A∗B ∈ E . Note that A∗ A ∈ E+ ⇔ AA∗ ∈ E+ (if
A = U |A| is the polar decomposition of A, then AA∗ = U A∗ AU∗) and A ∈ E ⇔
A∗ ∈ E . Replace A with A∗ and obtain AB ∈ E . ��

Put A = B and X = I in Theorem 3.16 and infer

Corollary 3.17 If E is an ideal space on (M, τ ), A ∈ S(M, τ ) and A∗ A ∈ E , then
A2 ∈ E .

Theorem 3.18 Let A, B ∈ S(M, τ ) and |A| ≥ λI ≥ |B| for some number λ > 0.
Then

(i) μ(t; |A| − λI ) ≤ μ(t; A − B) for all t > 0;
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(ii) If E is an F-NIS on (M, τ ) and A−B ∈ E , then |A|−λI ∈ E+ and ‖|A|−λI‖E ≤
‖A − B‖E .

Proof Step 1. By the operator triangle inequality [1, 19] there exist partial isometries
U , V ∈ M such that

|A| = |A − B + B| ≤ U |A − B|U∗ + V |B|V ∗ ≤ U |A − B|U∗ + λI .

Step 2. Now, by items (i), (ii) and (iii) of Lemma 1 for all t > 0, we have

μ(t; |A| − λI ) ≤ μ(t; U |A − B|U∗) ≤ ‖U‖‖U∗‖μ(t; |A − B|) = μ(t; A − B)

and inequality (i) is true.
(ii) Via Step 1 and Lemma 3.9, we have

‖|A| − λI‖E ≤ ‖U |A − B|U∗‖E ≤ ‖|A − B|‖E = ‖A − B‖E .

The theorem is proved. ��
Corollary 3.19 Let A = V |A| be the polar decomposition of A ∈ S(M, τ ) and |A| ≥
λI for some number λ > 0. Then

(i) μ(t; A − λV ) = inf{μ(t; A − λW )| W ∈ M1} for all t > 0;
(ii) If E is an F-NIS on (M, τ ), then ‖A − λV ‖E = inf{‖A − λW‖E | W ∈ M1}.
Proof For any W ∈ M1 we have |A| ≥ λI ≥ |λW |, hence Theorem 3.18 with
B = λW works.

(i) For all t > 0 by items (ii) and (iii) of Lemma 2.1, we conclude that

μ(t; A − λV ) = μ(t; V (|A| − λI )) ≤ ‖V ‖μ(t; |A| − λI ) = μ(t; |A| − λI ).

(ii) By Lemma 3.9 we obtain ‖A − λV ‖E = ‖V (|A| − λI )‖E ≤ ‖|A| − λI‖E .
��
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