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Abstract—Parametrical families of the exterior inverse boundary value problems going back to
well-known R. B. Salimov’s book became a plentiful source of new statements and methods in
the study of the above problems. Critical points of conformal radii acting as the free parameters of
such problems show interesting interrelations between their parametrical dynamics and geometric
behavior. M.I. Kinder’s formula connecting the numbers of local maxima and saddles of a conformal
radius is generalized here on the case when the derivative of the mapping function has zeros and
poles in the unit disk and on its boundary.
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1. INTRODUCTION

Problems on the change of contours have arisen as the class of the exterior inverse boundary value
problems (IBVP) with the boundary conditions depending on the additional parameters. The charm of
these problems is connected with the “Sturm und Drang Periode” in the development of the exterior
IBVP when the model problems didn’t separate yet from the applied ones, and mathematicians and
mechanics were united not only by the Memory, but mainly by the memories of the heroic cooperation.

The monograph [1] in which the additional parameter has been first introduced in the statement of
IBVP became one of the tops crowned the above “Periode” in the development of the exterior problems.

As well as in any historical milestone, it is possible to see the mystery elements in the treatise [1]: in
spite of the fact that at each stage of the solution of exterior IBVP on change of contours the linearization
with respect to the parameter is carried out, the condition of construction of the approximate solution
of the above IBVP ([1], p. 64) turns out to be the condition of existence and uniqueness of its exact
solution [2].

Thus, the book [1] stimulated a further study of the parametrical families of exterior problems and
their bifurcations (e.g., [2, 3], etc.), including the research undertaken in the present note.

Recall that here we deal with the exterior inverse boundary value problem with respect to the
parameter s in F. D. Gakhov’s posing [4], and that first of all due to the papers [5–7] the following
discourse has been formed to articulate the traditional description of the picture of solvability of such a
problem. Namely, for the fixed boundary data the set of the solutions of the exterior IBVP is exhausted
by the collection of the integral representations of the form

F (ζ) =

ζ∫

b

f ′(t)

(
1− āt

t− a

)2

dt. (1)
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Each of (1)’s is defined in the unit disk D = {ζ ∈ C : |ζ| < 1} modulo translations and rotations in the
F-plane where a run over the set Mf ⊂ D of the roots of the Gakhov equation

Φ(ζ, ζ̄) := f ′′(ζ)/f ′(ζ)− 2ζ̄/(1− |ζ|2) = 0 (2)

for a holomorphic and locally univalent function f in D. The latter function represents the solution of the
interior IBVP with respect to the same boundary data; b ∈ D \ Mf . The set Mf is exactly the basin of
the critical points of the hyperbolic derivative (conformal radius)

hf (ζ) = (1− |ζ|2)|f ′(ζ)| (3)

of the function f (see [7, 8]).
In the framework of the discourse just pronounced the above mentioned R. B. Salimov’s condition

in [1] (p. 64) may be written as the inequality

|{f, a}| �= 2/(1 − |a|2)2, (4)

where {f, ζ} = (f ′′/f ′)′(ζ)− (f ′′/f ′)2(ζ)/2 is the Schwarzian derivative of the function f . The
inequality (4) means that the Jacobian of the Gakhov equation (2) is non-vanishing at a point a ∈ Mf ,
and that ζ = a is a maximum or a saddle of the surface h = hf (ζ) given by a function (3) over the unit
disk. So, the geometric character of elements a ∈ Mf is defined by the Gaussian curvature which is
proportional to the Jacobian of (2). For a study of the geometry of this surface in the neighborhoods of
the isolated elements a ∈ Mf more precise characterization is provided by the index

γf (a) = − 1

2πi

∫

|ζ−a|=ρ

dln{(lnhf )ζ} (5)

of the point ζ = a as a singular point of the vector field ∇lnhf (ζ) ∼= Φ̄ = 2(ln hf )ζ̄ where Φ = Φ(ζ, ζ̄)

is defined in (2). Radius of the integration ρ in (5) is chosen such that Mf ∩ {|ζ − a| ≤ ρ} = {a}. The
crucial role that the index plays in the geometric analysis for the critical points of the conformal radii (and
their multiply connected analogies) in the context of IBVP has been discovered by M.I. Kinder; see, for
example, [9]. The questions concerning the equivalence of the fields ∇ lnhf and ∇hf is not considered
here.

After the gradual passage (mainly due to [6, 7, 10]) from the study of surjections f 	→ F in (1) to the
treatment of corresponding elements a ∈ Mf the notion of the change of contours began to associate
more and more with the parametrical families of conformal radii of the form (3). The particular cases of
the change of contours often appear as an instrument to obtain the new facts about the sets Mf for the
functions f ; see, e.g., [3, 11, 12]. The present note acts in the framework of this tradition and deduces
the generalization of M. I. Kinder’s formula

M − S = 1 (6)

to the simplest meromorphic case. In the holomorphic counterpart [9] by M and S the numbers of
maxima (γf = +1) and saddles (γf = −1) are denoted; the semi-saddles have the indices γf = 0, and
there are no other opportunities for a’s in Mf than just mentioned ones.

We remark that in the case of the meromorphic function f an exterior IBVP leading to the
solutions (1) can be called the exterior IBVP in the Gakhov–Nuzhin mixed posing where Gakhov’s
“non-fixed poles” a ∈ Mf—poles of (1)’s—are added to Nuzhin’s “fixed poles”—poles of the function f .
See [13–15] as the versions of such a problem.

An exit out of the holomorphy expands a set of the singular points of the vector field ∇ lnhf .
Throughout the work we shall assume that f is meromorphic function in the disk DR = {ζ ∈ C : |ζ| <
R} of radius R > 1. It follows that f has finite number of poles in D, let M∞ be their number within D,
and M∂—on ∂D. Besides this, f ′ has finite number of zeros in D; let n be the number of such zeros in the
open unit disk. Thus, the condition of a local univalence is broken only in finite number of points. The set
of all poles of the function f lying on ∂D is denoted by Pf ; recall that the number of the elements of Pf is
equal to M∂ . We don’t provide the designations for the set of f ’s zeros on ∂D and for their number since,
as it will be shown below in Lemma 3, such zeros won’t participate in the derivation of our analogue of
the formula (6).
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We denote by Sf the whole set of the poles of the function f and of the zeros of its derivative f ′

in D. Let qf be the number of elements of Sf , so qf = M∞ + n < ∞. Let us denote by Λf the set of
all singularities of the field ∇ lnhf in D. We set Mf := Λf \ Sf . The following statement shows that
the choice of the latter notation is correct: in fact, for the meromorphic f the set Mf contains only those
types of singularities which took place in the holomorphic situation too.

Proposition 1. Let a function f be meromorphic in the disk DR with R > 1. Then D \ Sf is the
smoothness domain for the surface h = hf (ζ), and the set of the singularities of the field ∇ lnhf
in this domain, i.e. the set Mf , is exhausted by the finite maxima, and also saddles and semi-
saddles.

This statement ascertains that if the domain of holomorphy and local univalence of the function f is
shrunken up to the subdomain of D, then this subdomain contains neither flattening points, nor (zero or
non-zero) minima. Instead of the superharmonicity of the function lnhf over its domain of smoothness
in the case in question we must lean on the fact that the principal normal curvatures k±(a) of the surface
h = lnhf (ζ) at a point a ∈ Mf give the sum k+(a) + k−(a) = −4/(1− |a|2)2. Hence, they can’t vanish
simultaneously.

Let kf be the number of elements of Mf . Our main result is the following
Theorem. Let f be a meromorphic function in DR where R > 1, and let the set Mf is free of

continua. Then kf < ∞, and

M +M∞ +M∂ − S = 1− n. (7)

In the second paragraph the indices of elements of the set Sf will be calculated, the third section will
be intended to study the dynamics of the boundary zeros and poles of the function f when it immerses
into the level lines family

fr(ζ) = f(rζ)/r, 0 ≤ r ≤ 1, (8)

which is used to establish the relation (7) as the limit of the formulae of the form (6) when r → 1− in the
fourth section.

2. INDEX ON Sf

We denote Kε(a) = {ζ ∈ C : |ζ − a| < ε} and Ǩε(a) = Kε(a) \ {a} for a ∈ C and ε > 0. Recall that
we consider the meromorphic f in DR of the radius R > 1. For the sake of accuracy we formulate the
following

Assumption A. A point ζ = a is the zero of the function f(ζ)− f(a) of order n ≥ 2 or the pole
of the function f(ζ) of order n ≥ 1 and lies in the domain DR \ ∂D.

Now we provide the base for the calculation of the index γf (a) of a singular point ζ = a of the vector
field ∇ lnhf satisfying the Assumption A:

Lemma 1. Let the function f be meromorphic in DR with R > 1, and let the Assumption A is
fulfilled. There exists a real number ε > 0 such that

f ′′(ζ)/f ′(ζ) = αn/(ζ − a) + φ(ζ), ζ ∈ Ǩε(a), (9)

where αn = −(n+ 1) (pole) or αn = n− 1 (zero), a function φ is holomorphic in Kε(a), and

|φ(ζ)− 2ζ̄/(1 − |ζ|2)| < |αn|/ρ, ζ = a+ ρeiθ ∈ Ǩε(a). (10)

Proof of the expansion (9) does not exit out of the traditional standard in the local theory of the analytic
functions. Estimate (10) is obtained by the shrinking of ε proceeding from the boundedness of the left
hand side of (10) in Kε(a) due to the holomorphy φ in Kε(a) and the choice ε < |1− |a|| leading to the
relation Kε(a) ∩ ∂D = ∅.

Corollary 1. In the assumptions of Lemma 1 the disk Kε(a) doesn’t contain any singularity of
the vector field ∇ lnhf , except ζ = a.

Proof. Singular points of the field ∇ lnhf (ζ) ∼= 2(ln hf )ζ̄ are its zeros, and also the zeros and poles
of the derivative f ′, that are the points satisfying the Assumption A. An absence of the latter points in
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the ring Ǩε(a) is caused by the holomorphy of the function f ′′/f ′ in it. The inequality 2(ln hf )ζ̄ �= 0,

ζ ∈ Ǩε(a), follows from the property sgn Re{2eiθ(lnhf )ζ} = sgn αn, ζ = a+ ρeiθ ∈ Ǩε(a), deducing
from the relations (9), (10) and

2(ln hf )ζ = f ′′(ζ)/f ′(ζ)− 2ζ̄/(1− |ζ|2) (11)

on the base of the fact that the fields 2eiθ(lnhf )ζ and 2(ln hf )ζ̄ have the same null-sets. �

The following statement calculates the indices of points under the Assumption A.
Proposition 2. Let the function f be meromorphic in DR, R > 1, and the Assumption A is

fulfilled for the point ζ = a. The index of this point as the singular for the field ∇ lnhf is equal to
γf (a) = +1.

Proof. We have

γf (a) = − 1

2π

∫

Γ

d arg{(ln hf )ζ} = 1 + γ̃f (a),

where Γ is the circle ζ = a+ ηeiθ with arbitrarily fixed η ∈ (0, ε), and

γ̃f (a) = − 1

2π

∫

Γ

d arg{eiθ(lnhf )ζ}

is the index of the singular point ζ = a of the vector field Ψ = 2e−iθ(lnhf )ζ̄ .

Let us prove that γ̃f (a) = 0. By virtue of (9) and (11) the estimate (10) is equivalent to the inequality
|Ψ0 −Ψ| < |Ψ0|, ζ ∈ Ǩε(a), hence the field Ψ0 = αne

−iθ/(ζ̄ − ā) is the principal part of the field Ψ in
some neighborhood of ζ = a. According to Corollary 1 the point ζ = a is an isolated singular point of
the fields Ψ and Ψ0, therefore their indices at this point are the same, that is γ̃f (a) = 0, as it was desired
(see [16], p. 61–62). �

Now the following is evident.
Corollary 2. Let the function f be meromorphic in DR, R > 1. If a ∈ Sf , then γf (a) = +1.

3. DYNAMICS OF THE BOUNDARY ZEROS AND POLES

In this case we use the Gakhov equation for the family (8) in two forms—as in (2) with fr instead
of f , i.e. in the form of

Φr(ζ, ζ̄) := f ′′
r (ζ)/f

′
r(ζ)− 2ζ̄/(1− |ζ|2) = 0, (12)

and also in the form suitable for ∂D,

Fr(ζ, ζ̄) := f ′
r(ζ)/f

′′
r (ζ)− (1− |ζ|2)/(2ζ̄) = 0, (13)

with the Jacobian JFr(ζ). The dynamics is as follows.
Lemma 2. Suppose the function f is holomorphic in some punctured neighborhood U of the

point b ∈ ∂D, and the function ζ = ζ(r) with values in U , ζ(1) = b, is continuously differentiable
with respect to r ∈ [r0, 1] (from the left in r = 1) and satisfies the following conditions when
r ∈ [r0, 1): 1) |ζ(r)| �= 1; 2) Fr(ζ(r), ζ(r)) ≡ 0 and 3) JFr(ζ(r)) �= 0. If JF1(b) < 0, then ζ(r) ∈ U ∩D,
r ∈ [r0, 1), and if JF1(b) > 0, then ζ(r) ∈ U \D, r ∈ [r0, 1).

Proof. Differentiating the identity Φr(ζ(r), ζ(r)) ≡ 0 as a result of the substitution of the function
ζ = ζ(r), r ∈ [r0, 1], in the equation (12), after the series of transformations we obtain the identity

(1− |ζ|2)2|{fr, ζ}| ≡ 2|(rζ ′/ζ − 1)/(rζ ′/ζ + 1)|, ζ = ζ(r), r ∈ [r0, 1). (14)

Let JF1(b) < 0. Third lemma’s condition may be rewrite in the form of JFr(ζ(r)) < 0, r ∈ [r0, 1). Since
the Jacobians of the mappings in (12) and (13) at a point ζ(r) have the same sign, and since the Jacobian
in (12) is equal to JΦr(ζ(r)) = |{fr, ζ(r)}|2 − 4/(1 − |ζ(r)|2)4, r ∈ [r0, 1), we come to the inequality

(1− |ζ|2)2|{fr, ζ(r)}| < 2, r ∈ [r0, 1),
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meaning that for every r ∈ [r0, 1) the point ζ(r) is the local maximum of the hyperbolic derivative hfr
(see, e.g., [11]). Hence it follows from (14) that for ζ = ζ(r) and r ∈ [r0, 1) the ratio (rζ ′/ζ − 1)/(rζ ′/ζ +
1) takes its values in the unit disk, consequently, the inequality Re ζ ′(r)/ζ(r) > 0, r ∈ [r0, 1), is
fulfilled. It is obvious that the latter is equivalent to the estimate d|ζ(r)|/dr > 0, r ∈ [r0, 1), whence
|ζ(r)| < |ζ(1)| = 1. This finishes the proof of Lemma 2 (the second implication is checked similarly, but
now the point ζ(r) will be a saddle of hfr ). �

By the use of the lemma just proved the following statement is obtained.
Lemma 3. Let V be some neighborhood of a point b ∈ ∂D, and let the function f be holomorphic

in V̌ = V \ {b}. There exist a real number r0 ∈ (0, 1) and a neighborhood U ⊂ V of ζ = b such that
1) if b is a pole of n-th order of the function f (n ≥ 1), then for every r ∈ [r0, 1) the function hfr
has the unique critical point of the local maximum ζ(r) in U ∩ D (ζ(1) = b); 2) if b is a zero of
(n− 1)-th order of the derivative f ′ (n ≥ 2), then for any r ∈ [r0, 1) the domain U ∩D is free of the
critical points of hfr .

Proof. Without loss of generality we assume that f is holomorphic and locally univalent in V̌ , and one
of the expansions f(ζ) = (ζ − b)±nϕ±(ζ), ζ ∈ V , takes place where the functions ϕ± are holomorphic
in V with ϕ±(b) �= 0. It is evident from these expansions that in both cases ζ = b is a root of the
equation (13) when r = 1, which permits us to use the implicit function theory. Jacobian JF1 at ζ = b is
equal to

JF1(b) =

{
[(n− 1)2/(n + 1)2 − 1]/4 < 0,

[(n+ 1)2/(n − 1)2 − 1]/4 > 0;
(15)

upper line in (15) corresponds to the pole, lower line—to the zero of the function f ′ at the point ζ = b.
In view of (15) by the implicit function theorem there exist the numbers r0 ∈ (0, 1) and r1 > 1,

a neighborhood U ⊂ V of the point ζ = b, and a continuously differentiable function ζ = ζ(r) with
ζ(1) = b such that for any r ∈ [r0, r1] the point ζ(r) is the unique root of the equation (13) in U ,
JFr(ζ(r)) �= 0, and for any r ∈ [r0, 1) the following inclusion takes place,

{rζ : ζ ∈ U ∩ ∂D} ⊂ V ∩D. (16)

Further, for any r ∈ [r0, 1) the inequality |ζ(r)| �= 1 is fulfilled. In fact, assuming the contrary, we should
obtain that for some r ∈ [r0, 1) the following identities

f ′(rζ(r))/f ′′(rζ(r)) ≡ rf ′
r(ζ(r))/f

′′
r (ζ(r)) ≡ 0 (17)

hold with rζ(r) ∈ V ∩D (see (13) and (16)). This is not the case in view of the holomorphy and the local
univalence of the function f in V̌ , whence we have also the equivalence of the equations (12) and (13) in
Ǔ . So, we have verified the conditions of Lemma 2 which completes the proof. �

4. PROOF OF THE THEOREM

According to the results of [8] the assumption of the infinity of the set Mf leads to the presence of the
continua in Mf which is excluded by the conditions of Theorem. Hence kf < ∞. Since also qf < ∞,
the set Λf will be finite. Moreover, the set Pf of the poles of the function f on ∂D will be finite too.

Two latter facts allows us to establish the existence of the numbers ε > 0 and r0 ∈ (0, 1) such that for
any a ∈ Λf ∪ Pf there are k = k(a) functions c1, c2, . . . , ck ∈ C1[r0, 1] having the following properties
when r ∈ [r0, 1):

1) Λfr ∩Kε(a) = {c1(r), . . . , ck(r)};
2) Λfr ⊂

⋃
a′∈Λf∪Pf

Kε(a
′);

3)
∑k

j=1 γfr(cj(r)) = γf (a) when a ∈ Λf , and k = 1 with γfr(c1(r)) = +1 when a ∈ Pf .

The base for such a conclusion is made by the results of [3]—for the points a ∈ Mf , by the direct
verification using (8)—for the elements a ∈ Sf , and by Lemma 3—for the elements of the set Pf . By
Lemma 3 we also conclude that the boundary zeros of f don’t branching into the unit disk for the values
r < 1 near 1. When r ∈ [r0, 1), all of the points in Λfr will be the isolated singularities of the field ∇ lnhf ,
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and the relation limζ→∂D hfr(ζ) = 0 is valid. The proof of the formula (6) transferred on this case word
by word from [9], therefore for every r ∈ [r0, 1) we have

1 =
∑

a∈Λf∪Pf

k(a)∑
j=1

γfr(cj(r)) =
∑
a∈Λf

γf (a) +M∂ ,

and it remains only to calculate the indices (for the elements of the set Sf—by Corollary 2). The proof is
complete.
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