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Chapter 1

Mathematical Analysis and Numerical Modelling of the
Guided Modes of the Step-lndex Optical Fibers

Evgenii Karchevskii *

Abstract
The original physical problem of the guided modes of the step-index optical fibers

is reduced to a nonlinear spectral problern for Fledholm holomorphic (on some Reiman
surface) operator-valued function. Ii is demonstrated that the spectrunr may consist
ouly of isolated points. Galerkin's method is proposed for the calculating of approximate
complex eigenvalues. The convergeuce of Galerkin's method is studied.

1 Formulation of the Problem
An optical fiber is a cylindrical structure which consists of a core of a dielectric material,
surrounded by a cladding of another dielectric material. By nt denote the refractive index
of the core. By nz denote the refractive index of the cladding. Assume that n1 ) nz.
Suppose the fiber extend infinitely along axis z and the fiber is perfectly cylindrical. By
ft2 denote a plain {z : const}. Let 51 c R2 be the core region, bounded curve I; let
Sz : R2 \ 51 be the cladding region; let M be a point of R2 .

We look for particular solution of the Maxwell equations

rot?l: ,"n'#, rot€ : -t "T,
which can be written as

(L) t (M, z, t) - Re (E (M) exp (i B z - iwt)), H(M, z, t) - Re (I/(M) exp (i B z - iut)) .

Here f, is the electric field,7{ is the magnetic field; E and f/ are complex amplitudes of 6
and 7{; c.r > 0 is the frequency of oscillations; B is the complex propagation constant; ee is
the dielectric constanti Fo is the magnetic constant.

The problem of the guided modes of form (1) can be formulated as an eigenvalue
problem, in terms of the complex-value parameter B, for which there exist non-trivial
solutions (u,u) of the following boundary-value problem:

(2) L"+X:i@)7.r:0, n"+x?@)?,:0, Me Si, j:L,2,

(3) n* = 1t- , xt2@) (t# * rrr|) : x;'(g)

(4) ,,)* :,u- , xL'z@) (t# - r",T) : x;'@)

?***,Y),
('Y-"'T)'

M €I,

M el.

*Assistant Professor, Kazan State University, Kazan, Russia.
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Here u : 8", u: H", }ul0u (0u/0r) is the normal (tangential) derivative on I, u- (u+)

is the limiting value of the function u from inside (outside) of f, yi(B) : ,r@ - B',
lafi : u2eop6. Let the curve I is twice continuously diflerentiable. We shall suppose that
the functions z and o for the enough large r can be presented as

oo oo

(b) 7t = t o^Hf) kz(ilr)exp(inr), ,o: t ^,.ts-f) fuz(0r)exp(int),

where (r, r) ;;;e polar coordinates of the point=i; n!j) i" th" Hankel function of the
first kind and index n.

Denote by A; the Reiman surface of the function l"Xi(91; A : ArUAz. Denote

by Ao the principal ("physical") sheet of A, which is specified by the conditions -7r <
aryXj(B) I r,Imyi(B) > 0, i : I,2. By U denote the space of continuous and continuously
differentiable in 5r and 52, twice continuously differentiable in Sr and 52 functions.

DnnrNruon 1-.1. An (u,u) e (U\{0})'is called an eigenvector of problem (2) - (5)
and a I e tt is called an eigenvalue of problem (2) - (5) if the (2, o) and B satisfy conditions
(2) - (5).

TnnoRou L.L. The eigenualues of problem (2) - (5) can not belong to imaginary and

real axes of the sheet 116, eccept for the setG: t0 e ,Lo :lmB - 0, Ic6n2 < lBl < lconrl.
This theorem rvas proved by A.I.Nosich in [1].

2 Regularization of the Problem
Denote by go'., the space of the Htrlder continuous functions. Denote by Cl'o the space

of the H6,lder continuously difierentiable functions. We use the representation of the
eigenvector (u, u) of problem (2) * (5) in the form of the single-layer potentials:

(6) l:iTrl : ! 
*,ru' M' Mo);7,1{r:\)"-"'

fte,r: =ff*f,
R+,r: 

h*t:,,

o, - f,n[t) ei@)lM - Mol),

Here M e Si, i : !,2i the unknown densities gi, lri € Co'o. Suppose the contour I is

given in the parametricform as r: r(t),,t € [0'2n]. Using (3), (4), (6), and properties of
single-layer potentials, we get nonlinear spectral problem:

(7) A(g)r=(C(P)+R(B))w=0,0 €4, A(0,H -+ H, ,=(Co'")n,

The vector rrl : (r,,,)l=, has elements ro(1) : (pr - pz)lr'1, p(2) : blr, - ,bz)lr'],

il,(3) - glr'1, and to(a) : ,hrlr'|. The operator n(B) = @;,i@D!,i=, i" defind by his

representation as

.Rr,r = L-'R\t) , Rr,z :0, ftr,e : 1-t1411) - alt)), Er,a : 0,

RzJ:0, Rz,: L-'RLtl, Rz,s:0, RzA:Z-t1611) - Rlt)),

, Rs,z: 
#r^t:', 

fts,s: #*f'-#of), Rs,+: #r*f'- #rof',
R4,z:#*Y', fta,s: h^f' - #rof', 

R+,+:ffof'*ffof',
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where

alu) t0, : * Io'" 
n!o) {F;t,to)x(ts)dto, t \\ {9;t,tr) - zrrai(B; *, Mr:) f ln I sin }t,

nt"\ {F;t,to) - anlr'(t)lh*rrl, M, Mo), n(,"\{g;t,to) :2lr'(t)l* o\t'tB;t,ts) - i.

The operator C(fi: (C;.,i@Drni=, i" defined by his representation as

CtJ: I, Ct2:0, Cr,s:0, Ct,s:0, CzJ:0, Cz,z: I, Cz,s:0,

cs,r:7r,cs,z: 
fts, 

c",u: (? -#) r, cs,s= (#r-

cs,r-- 
$rs, 

cu,":-#,,cq.t: (#, #)t,c+,+: ff

Cz,q: 0,

h)',

#),
Here 1 is the identity operator; the operators

t, : * Io'" "rr'o ;' c(to)dto * * I"'" r(ts)dts, s : co,o -+ co,o,

Lx : -* .["'" 
rn lsin ]w{ru)oru, L : co'n -+ ct'n,

are continuously invertible.
Tnponslvl 2.L. The operator-ualued, functio" A(9), 0 e lt, is holomorphic one. The

operator A(F) , H -+ H is the Fredholm one for any I e L.
Proof. For any F e L, the operatot" nr(t){P) : Co,o -+ Cr,o, Ry@: Co,o -+ Co'o,

Ie - 2,3, j : I,2, are completely continuous, hence it appears that the operator
R(9) , H -+ H is also completely continuous. The operator C(B) : H -+ f/ is continuously
invertible for any I e lt. Therefore, the operator A(B) : H -+ If is the Fredholm one

for any F e t. The functio"" nf)@;t,ts), k:1,2,3, i : L,2, are analytic functions of
F e Iv for any point (t, to) e [0,2n] x [0,22r]. Hence, as follows from [2], the operator-valued
function A(B), I e lv, is holomorphic one. 0

Dprtntttott 2.t. L w e H is called an eigenvector of operator-valued function A(B)
anda Fe Itiscalledaneigenvalueof operator-valuedfunction A(B)ltthetoandBsatisfy
equation (7).

By O denote the set {g e Ao: ReB - 0}UtB € Ao: lmp:0, -lcsn2 < lpl < konz}.

TnpoRprur 2.2. A a B e Its\O fs the eigenualue of operator-ualued function A(B);then
the same B is the eigenualue of problem (2) - (5). Il o F € Ao fs the eigenualue of problem

(Z) - (S); then th,e sarne B is the eigenaalue of operator-aalued functio" A(B).
Proof. By using the methods of potential theory, one can prove that for all I e Lo

any eigenvector (u, o) of proble* (2) - (5) can be presented in the form of the single-layer
potentials (6). Hence, if a B € Ao is the eigenvalue of problem (Z) - (f); then the same B
is the eigenvalue of operator-valued function .A(B). Also, if for a certain F e lvo \ O the
single-layer potential equals zero in ,S;, then its density is an identical zero on I. From this
it follows that if a B e Its \ O is the eigenvalue of operator-valued function A(B); then the
same p is the eigenvalue of problem (2) - (5). I

Denote by o(A) C A the spectrum of operator-valued function A(B), that is the set of
all eigenvalues of Fredholm operator-valued functiol A(B).

TspoRnu 2.3. The set o(A) can be only a set of i,solated, points.
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Proof. From theorems L.L, 2.1, and 2.2 it follows that for all A e dyo satisfying the
conditions lmB:0, lBl > lc6n1 the operator A(B) is invertible. Hence, based on the results
of [3], the spectrum of operator-valued function A(B) can be only a set of isolated points.
U

3 Galerkin's Method
We use the representation of the approximate eigenvector of operator-valued function A(B)
in the form:

,9Q): i oli)"6(t), e6(t) :exp(i/ct), j:L,2,s,4.
k=-n

We look for unknown coefficients ofi) by Galerkin's Method:

Ia= -Trr...rD, i =Ir2r3r4.

The trigonometric functions e6(t) are the orthogonal eigenfunctions of the singular operators
L-L : CL,o -+ Co'o and S : Co'o -+ Co,o, corresponding to the following eigenvalues:
\^ : {Llln2 rf m :0, 2lml if m l0} for the operator L-r and .\- : {i if m :
0, i sign(rn) 1t m I 0) for the operator S. Hence, the action of the main (singular) parts
of the integral operators in (7) on the basis functions is expressed in explicit form.

Denote by HI the set of all trigonometric polynomials of the orders up to n. Denote

by Hn C f/ the space of the elements wn = (.9')^r=r, where ,!? e nf), i : L,2,8,4.

Let pn: H -+ Hnbe the corresponding projection operator.
Using the Galerkin's method for solving problem (Z), we get finite-dimensional nonlinear

spectral problem:

(8) A-(B)w*=p^A(B)uln= (I +p"B(FDu*= (I + B"(B\u.:0, A"(B\: Hn-+ Hn,

where B(F) : C-'@)n(B), 0 e it. The operator-valued function A"(P), f e A is

holomorphic one. The operator A"(9) : Hn -+ f/, is the Fledgholm one for any B e A.
Dpuxltlott 3.1. A wn € H is called an eigenvector of operator-valued function A"(B)

and a 9. e L is called an eigenvalue of operator-valued function A-(B) if the wn and. Bn
satisfy equation (8). Denote by o(A") C A the spectrum of operator-valued function A-(B),
that is the set ofall eigenvalues ofFredholm operator-valued function A"(B).

We seek the eigenvalues B," of operator-valued function A^(P) as the zeros of the
determinant of the matrix eqation equivalent to (8):

det(A*(B)) :9, 0eL.

Denote by N', lgtr , l{ttt the infinite subsets of the set of integers N. Denote by wn -+ w,
n e Nt the convergence urn -+ ur for r, -+ oo, n e. Nt.

Tsponpu 3.I. The set o(A*) canbe onlg a set of isolatedpoints. If Fo e o(A); then
there exists sorne sequence{Bn}nsn, with 9*e o1A.1, that Bn) 9o, n € N. If 9" e o(A.),
9- -+ 9o € It, n € N' g N; then 9o € o(A).

,.: (,[!))ni=,,

2r

| {'+r*)(i) (t)e-1,(t)d.t: o,

0
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Proof.It is reduced to the verification of fulfillment of all the conditions of theorem

l from [4]. The operator p. is linear one, llp'll : t, and llp-ylln -+ llglln' n € N for

any y e H. Using the definitions of the operators A(B) and A'(p), we get llA'(B)ll <
llA(B)ll < 

"(B), 
n € N, g e Iy, where c(p) is a continuous function in A. The function

c(B) is determined by the norms of holomorphic operatott nr(*)(f) ,la : L,2,3, and by the

analytic functions Xj@), i : !,2. Therefore, the norms llA'(B)ll are uniformly bounded

with respect to n and B in any compact domain D C Iv'

For all 9 e lt the sequence ofoperatorc {A^(B)}-tr7y properly converges to the operator

A(p), i.e., for all 0 e 
^ 

the following conditions are satisfied:

1. If the sequence {y,.]''ex, un € Hn, P-converges to 3r € Ir; then the sequence

{Angn}neN P-converges to Ay.
2. Flom the uniform boundedness of {y,,}.€N, lly,ll I const, n € N, and P-

compactness of the sequence {Angn},,ex, it follows that the sequence {yn)-eN is a P-

compact one.

P-convergence {yn}'aN to y € }f, means that llg. p^gll -} 0, n € N, and

hence the validity of the first condition follows from the inequality llA.y- - p-Agll {
llA"lllly" - p*yll + llp,llllAllllp.s - Ull, n € N and the obvious limiting relationship

llp"u-sll -+0,n€N.
Now let us verify the second condition. P-compactness of the sequence {Anyn}n6y

means that for any N' C N there exists such a N// C N/ that {AnUn : Un * BnUn}neN"

P-converges to tr.r € fI. If llg.ll I const, n € Ntt, then there exists a weakly convergent

sub-sequence {grr}"re iV,,,, N"' C N//. Completely continuous operator B transforms it to
a strongly convergent one: llBy- - ull -+ 0, n € N"" u € Ir. From here, by inquality

llB,og. p-ull < llp.llllBy- zll, we conclude that the sequence {Bnyn},,q^t"' P-

"orro"rg", 
to u € I/. Hence, {Un}',Ey,,, P-converges to y :ID-u € H, and the second

condition is satisfied as well. Hence, all the conditions of theorem 1 from [4] are fulfilled in

the considered case. This proves the theorem. D

A practical efficiency of this method was shown in [5], [6] by the comparing of solutions

of some problems of the theory of electromagnetic waves with experimental data and results

obtained by other methods.
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