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Abstract—The design of a ”smart hospital” environment is
described in this paper. Mobile ground robots perform trans-
portation tasks between multiple stations located in different
rooms while navigating in an environment with moving objects
such as humans and other mobile robots. The robot is equipped
with a distance sensor (LIDAR), based on the indicators of which
objects are detected and the robot is localized. Robots can be
assigned tasks to be executed through a centralized interface.
Tasks are assigned to a specific robot, and, depending on the
type of task, the robot is autonomously directed to the station
associated with the task in the building. We are considering the
concept of defining possible robot behaviors as a finite set of
states with certain transitions. To test the system, a hospital map
was constructed in a Gazebo simulation.

Index Terms—Hospital service robot, robot navigation, path
planning, task-based robotic system, service robots

I. INTRODUCTION

In robotics, in addition to the industrial field, noticeably
developing the use of robots in the role of assistants, operating
in the same environment with humans and other robots [1].
The development of this area is especially noticeable in
relation to places where there are constant routine tasks of
transporting objects from one point to another or being a social
companion - such as hotels, hospitals and offices. The use
of robots for transportation tasks would significantly reduce
the cost of resources and work time of people for some
routine tasks [2], however, this approach requires solving such

problems as robust navigation, the safety of movement of
robots, and the logistics of performing tasks by the robot.
A variety of mobile robots design performing service tasks
(mainly transportation) in conditions of close movement in a
dynamic environment, dynamic obstacle avoidance approaches
have been studied [3].

Solving these problems requires testing the robotic system
for a variety of situations. The system described in the article
was tested using virtual simulation, which, together with the
use of software tools, made it possible to debug the behavior
of robots in accordance with the criteria of the tasks at
no significant cost. The virtual testing was carried out in a
simulation of a floor of a medical facility, with personnel
moving in rooms and corridors and robots performing delivery
tasks in the same environment. The simulation allows the
use of robot models that match the actual physical charac-
teristics and are equipped with sensors. Tasks were assigned
to the robots through the interface, after which the robots
were sent to perform them (usual task is bypassing several
”stations” located in different rooms of the simulated hospital)
in accordance with the priority of the tasks, while avoiding
collisions with other traffic participants, which required the use
of dynamic obstacle avoidance algorithms in robot navigation
setup. Robust navigation of mobile robots was implemented
using the TEB planner - the path planning algorithm with
underlying method called Timed Elastic Band was used [4],
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[5]. The next section provides an overview of related work
in order to highlight relevant work and proposals. Next, our
approach and technical details are discussed (sections 3 and
4), followed by a description of the virtual test environment
(section 5) and the simulation tests results (section 6).

II. RELATED WORK

One of the most important tasks for operating a robot
in an environment consisting of many corridors and rooms
in which other moving objects (for example, people, other
robots) also operate is correct navigation, which should not
only ensure that the robot reaches its next destination, but also
avoid collisions with other moving objects. In [3] authors have
proposed a moving and static obstacle avoidance method for an
omni-directional mobile robot with a platform for loads, using
the MKR robot (Muratec Keio Robot) as an example. Their
approach is based on path planning using virtual potential
fields [6]. However, this approach is not suitable for use
by differential drive robots, the navigation algorithms for
which usually shows effectiveness and robustness with static
obstacles, however, which do not always provide possibility for
handling dynamic obstacle avoidance problem [7]. In another
approach, authors propose a mobile robot system designed
to solve the problems of delivering various medical items
from one station to another in the hospital environment [8].
Nomadic XR4000 is used as a mobile platform. The hospital
ceilings are equipped with florescent lamps, which are used by
the robot as natural landmarks to determine its own position
and orientation in the operating area. Next work considers
the problem of coordinated execution of separate tasks by
several robots, where a robot can incrementally receive tasks
from different providers [9]. The authors described robots
sparse- coordination what requires of robots keeping track of
their states and being able to request states of each other’s
when needed. The approach is based on representing tasks
as Instruction Graphs and sparse-coordination using Sparse-
Coordination Instruction Graphs [10]. Another approach is the
problem of task management for a mobile robot operating in
an environment with people with the ability to receive new
tasks from them [11]. Initially, robots receive tasks through a
centralized source (web interface), and perform them without
the ability to change the process of completing tasks during
their execution. The authors presented a solution allowing task
interruption, as cancelling tasks, querying the current task
status of the robot, assigning a new task to be completed
immediately or later, all of above using voice dialog interaction
with the robot. The results were tested based on various
scenarios for interrupting the current robot tasks.

III. TASK-BASED ARCHITECTURE IMPLEMENTATION

A. Task receiving and execution

The workflow of the developed system can be described as
follows. The user can use the GUI to assign a task to the robot
by selecting the type of task, the station (location) where the
task will be performed and where the robot should follow, the
priority of the task, according to which the task sequence is

built, the id of the robot to which the task will be assigned, and,
optionally, task completion time - in order to define how long
robot should wait when arrived at the station. If waiting time
is not specified, the robot will start the next task (or switch to
the WAIT FOR GOAL state) immediately after completing
the current task. The states are described in more detail in the
next subsection.

Task data structure is described in Table 1. After the task
is assigned, the task manager sends it to the robot, which, on
receiving new task, sorts its list of tasks according to their
priorities and proceeds to perform the highest priority task
from the list. Tasks can be assigned to a robot without waiting
for the previous ones to be completed, and each robot has
its own list of tasks, while the task manager stores all tasks
and displays the current status of tasks in the GUI, dividing
them into running, completed, and pending tasks. Task statuses
are updated when robots transitions its state from one to
another. For example, the robot notifies the task manager after
completing a task or or when it starts executing the next task.
The appearance of the interface is shown in Figure 1. At the
moment, two basic types of tasks are implemented: waiting
and autonomous movement to the station.

TABLE I
TASK OBJECT FIELDS DESCRIPTION

Field Description

id Unique identifier

priority
An integer value that defines task
execution sequence, from 0 to 10

isDone
Boolean value, sets to true when task is

executed

isCurrent
Boolean value, sets to true when task is

being started to execute
goalId Unique identifier of the station on a map
taskType Determines what the robot should do
robotName Determines to which robot task is assigned

waitTime
Optional value, represents the time

robot should wait after task is executed

B. Finite state machines with SMACH

The entire robot behaviour is described using a finite state
machine with different types of transition from one state to
another, depending on the conditions of completing the current
state. The structure of finite state machines was implemented
using the SMACH package [12], free and available for use
in the ROS (Robot Operating System) framework. SMACH
is a package providing task-level architecture for complex
robot behavior, which allows to create state machines (or
state containers), define their hierarchy using nested finite
state machines, introspect states, state transitions and data flow
between them in runtime, and so on. This approach allows
to completely determine the behavior of the robot, dividing
it into states, and manage states using conditional transitions
and data transferring from state to state during the transition.
At the moment, the structure visualization of the implemented
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Fig. 1. Graphical user interface of task manager

state machine is shown in Figure 2. In Table 2 possible robot
states and transitions between them are described.

Fig. 2. Current state machine structure

The robot’s behavior during the task execution is transferred
to a nested state machine, the transition from which is cur-
rently possible with the status ”success”, which means that the
task is completed, after which the robot is in the ”task waiting”
state, which describes the process of waiting for a new task.
If there are outstanding tasks in the robot’s task list, the robot
will immediately switch to the NAVIGATE TO GOAL state,
thus starting to move to the station described in the task being

performed.
State changing is always accompanied by a transition.

Transitions from the NAVIGATE TO GOAL state are inher-
ited from the move base package [13], which is used as an
interface and to control to the robot navigation stack. The
transition ”success” is triggered if move base reported the
correct reaching of the navigation goal. ”Preempted” transi-
tion is executed if processing of the goal was canceled by
receiving another goal. ”Aborted” transition is called if goal
was terminated by the action server without requesting it, for
example, if specified goal is unreachable or if the robot is
stuck [14]. For now, this is sufficient for simple navigation
tasks, but it is planned to add more states and transitions to
describe more complex behavior.

TABLE II
ROBOT BEHAVIOUR STATES DESCRIPTION

State Description

NAVIGATE TO GOAL
Robot autonomously navigates
to the point specified in task

EXECUTING GOAL
Robot executes goal

(i.e. waits of task time is specified)

WAIT FOR GOAL
Robot stands still

until goal is received

IV. MOVEMENT RULES MODEL IMPLEMENTATION

A. Navigation

As the robot’s navigation module, there was used ROS
integrated move base package, which provides tools for route
planning [15], [16], localization and SLAM [17], [18]. The
move base package provides an implementation of an nav-
igation action module, which, given a goal in the map,
will attempt to reach it with a mobile base [19]. During
the operation this package combines the local and global
planner functions to accomplish global navigation task [13].
As local path-planner TEB local planner was used. ROS
teb local planner package implements an optimal local trajec-
tory planner for navigation and control of mobile robots as a
plugin for the ROS navigation package. The initial trajectory
generated by a global planner is optimized in runtime with
regard to minimizing the trajectory execution time, obstacle
avoidance and compliance with constraints such as satisfying
maximum velocities and accelerations. The optimal trajectory
is efficiently obtained by solving a sparse scalarized multi-
objective optimization problem. Weights can be provided as
input parameters to the optimization problem in order to
specify the behavior in case of conflicting objectives [4],
[5], [20]. An extension of the algorithm was implemented
for this package due to the tendency of local planners (such
as TEB local planner) to get stuck on a locally optimal
trajectory as they are unable to transit across obstacles. A
subset of admissible trajectories of distinctive topologies is
optimized in parallel. The local planner is able to switch to
the current globally optimal trajectory among the candidate set.
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Fig. 3. Application block diagram

Distinctive topologies are obtained by utilizing the concept of
homology/homotopy classes [21]–[23].

For robot localization purposes, the AMCL (Adaptive
Monte-Carlo Localization) method is used, which provided
by amcl ROS package. It implements the adaptive Monte
Carlo localization approach (as described by Dieter Fox),
which uses a particle filter to track the pose of a robot
against a known map [24], [25]. In a hospital environment,
in addition to static obstacle avoidance, the robot needs to
avoid collisions with moving objects such as hospital staff,
patients and other robots performing their service tasks. For
handling dynamic obstacle avoidance problem, the plugin
called costmap converter::CostmapToDynamicObstacles pro-
vided by the costmap converter ROS package was used.
The costmap converter package provides plugins designed to
convert points from costmap 2D (points represent data about
the occupied space around the robot and are provided by some
sensor, in our case, LiDAR was used) into geometric primi-
tives. Primitives can be points, lines or polygons, and they
represent obstacles on the map, and then in working with, in
our case, navigation, all obstacle processing is performed with
the resulting geometric shapes, abstracting from the previous
set of individual points. These transformations are performed
at runtime [27], [28]. Costmap converter provides parameter
to select a plugin to specify the algorithm by which the clusters
will be determined. Below some of the possible algorithms
are described. Plugin called CostmapToPolygonsDBSMCCH
converts occupied cells to a set of convex polygons using
the DBSCAN algorithm [29], this approach also was used in
described system. This algorithm was chosen because convex

Fig. 4. Costmap converted by CostmapToPolygonsDBSMCCH plugin, vizual-
ized with RVIZ tool. Yellow cells represents occupied cost cell, red polygons
are converted clusters [26].

shapes are more suitable for describing obstacles such as a
human or another robot, since all occupied points of such ob-
stacles must be completely inscribed in the resulting polygon
on the cost map in order to reduce the likelihood of collision.
CostmapToPolygonsDBSConcaveHull plugin converts occu-
pied cells to a set of concave polygons previously converting
them into convex polygons using the DBSCAN algorithm [30].
Conversion of occupied cells into points and straight lines is
possible using the CostmapToLinesDBSMCCH and Costmap-
ToLinesDBSRANSAC plugins, with clusters generation also
based on DBSCAN and RANSAC approaches.

V. VIRTUAL ENVIRONMENT SETUP

All experiments were conducted on a virtual building floor
with a variety of rooms of different sizes and corridors of
different widths using the Turtlebot3 Burger and Turtlebot3
Waffle robots. Before the experiments, a map of the virtual
room was constructed using gmapping ROS package [31],
[32]. Localization of the robot on the map is carried out using
the AMSL, using this method, the most probable position
of the robot is determined based on the set of its probable
positions [25].

On the virtual map, in the rooms there are station signs that
imitate the position of some objects with which the robot will
interact in a hospital environment. In addition to stations, the
simulation includes other moving people, robots, and a number
of static obstacles such as furniture or rubbish. The robots
are equipped with a 360°LiDAR sensor for localization and
navigation, and the whole process of the robot’s functioning
relies only on this sensor.

VI. VIRTUAL EXPERIMENTS

At the start of virtual experiments, multiple Turtlebot3
Burger and Turlebot3 Waffle robots are located at random
positions on the virtual map. The stations are located in the
map rooms, mainly in the corners, and for visual purposes
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Fig. 5. The virtual environment model map constructed with gmapping
algorithm.

they are presented as helipad models located outside the
visibility zone of the robot’s sensors (above the simulation
surface). The initial state of the robot from the state machine is
WAIT FOR GOAL. The input data for starting the execution
of the robot is the Task data structure, which is described in
more detail in Table 1. Tasks are assigned to the robot using
the user interface with the choice of task parameters and choice
of the robot responsible for the task execution.

After receiving the task, the robot enters the nested Task
automaton with the NAVIGATE TO GOAL state and moves
to the task assigned station.

Fig. 6. TurtleBot3 Waffle is approaching the station in Gazebo simulation.

Upon reaching the station, the robot enters the EXECUT-
ING TASK state and, depending on the type of task, either
waits for the time specified in the waitTime parameter, or waits
for the standard value of the task execution time, after which
its state exits to the original state machine and transitions to
the WAIT FOR GOAL state, being here before receiving next
task (if there are already tasks in the robot’s task queue, then
the robot will immediately go to the nested Task state machine
with the initial state NAVIGATE TO GOAL).The robot stores
information about the queue of its tasks, about stations and

Fig. 7. TurtleBot3 Burger and moving human model in Gazebo simulation.

their positions on the map and the history of its completed
tasks.
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[20] C. Rösmann. Teb local planner ros package web page. [Online].
Available: http://wiki.ros.org/teb\ local\ planner
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