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ABSTRACT 

The error of neglecting fluid flow dispersion effects and influence of inhomogeneous 
polydisperse particle ensemble distribution variable along the vessel are examined in the 
framework of the shrinking core model. Computational experiments, performed on the basis 
of different correlations for axial dispersion coefficient, available from publications, show 
that the impact of the fluid flow dispersion on the Overall Extraction Curve (OEC) prediction 
does not exceed 10%. Similar conclusions are deduced from modelling SFE process in packed 
beds with different particle packing patterns, i.e. homogeneous pack, locally monodisperse 
stratified (LMS) bed with particle size decreasing along the vessel, and inversely distributed 
(ILMS) pack. Earlier, LMS and ILMS packs were proven to respectively provide the 
maximum and minimum extraction degrees. This fact allows the estimation of possible 
deviations in extraction rates for different types of particles packing to be less than 7% for 
typical laboratory-scale conditions. Nevertheless, while the OEC divergence is insignificant, 
the outlet concentration may vary up to 200%. 

INTRODUCTION 

 Supercritical Fluid Extraction (SFE) is a novel technological approach to extract 
natural compounds from plant materials. It uses solvents (e.g. CO2) at supercritical conditions 
which are environmentally friendly, and non-toxic. The new technology is widely used in 
pharmaceutical production, and food and biofuel industry [1]. 

Elaborate models facilitate the understanding of the internal and external fundamental 
processes which govern SFE [2-4]. Inside the particles, two components, cell membranes and 
cell walls, of plant buildup which potentially control the internal mass transfer, can be 
distinguished. Accordingly, two limiting approaches – Shrinking Core (SC) [5] and Broken-
and-Intact Cells (BIC) [4] models – have been developed and successfully used in data 
interpretation [4-6]. Moreover, the extended polydisperse SC-model [6] and BIC approach 
equally provide the same accuracy. 

The porous and polydisperse, e.g. bidisperse [6], nature of the packed bed leads to 
several effects theoretically and numerically investigated here. Non-uniform fluid (solvent) 
flow in the bed voids leads to Taylor axial dispersion of solute coupled with its molecular 
diffusion. Both mass-transport mechanisms are traditionally described in terms of convective 
diffusion (axial dispersion) coefficient Dax. On microscale this coefficient is generally 
determined by characteristic pore space size. At the same time, the presence of small, dust 
(~ 50 μm) particles producing solute much faster than the bigger (~ 500 μm) particle fraction 
decreases the characteristic spatial scale of solute concentration change, and, therefore makes 
dispersion more pronounced. The macroscale master-equation of convective solute-mass 
transfer in the packed bed is traditionally formulated in the one-dimensional approximation 
along the vessel with time-derivative and dispersion terms generally taken into account [7]. 
The uniform velocity distribution over the vessel cross-section is assumed. 
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Usually, the polydisperse ground raw material is considered to be well-mixed before 
packing and uniformly distributed inside the vessel. As a consequence, the macroscale mass 
transfer equation is traditionally restricted to homogeneous and isotropic packed beds [2-10]. 
Yet, the polydisperse nature of the ground plant material can result either in accidental or 
controllable axial inhomogeneity of particles packing [8]. The packed beds, non-uniformly 
distributed along the vessel, under certain special conditions [9] can provide an essential 
decrease in extraction time, therefore affecting SFE kinetics. However, to the author's 
knowledge, no publications have been devoted to this study so far. 
 The present study is focused on the impact of axial dispersion and influence of packed 
bed inhomogeneity as related to extraction characteristics, namely, Overall Extraction Curve 
(OEC) and solute concentration in the pore phase. Various theoretical [10, 11] and 
empirical [12-14] correlations for dispersion coefficient Dax and typical laboratory-scale 
extraction conditions are considered. Locally bidisperse and monodisperse fractional 
compositions in packed beds have been examined. The axial inhomogeniety of particles 
packing has been simulated for Locally Monodisperse Stratified (LMS), Inverse LMS (ILMS) 
and Uniformly Distributed (UD) packs [8, 9]. 

MODEL FORMULATION 

 Basic mass-balance equations. Let us introduce the time t of the SFE process, axial 
coordinate z varying from 0 at the vessel’s inlet to H at the top, superficial (filtration) velocity 
v, packed bed porosity e, and convective diffusion (axial dispersion) coefficient Dax. Recent 
analysis of representative SFE kinetic data [6], based on the bidisperse approximation of 
fractional composition of the packed beds, showed that even sub-division of polydisperse 
particle ensemble in two fractions may be quite sufficient to simulate relatively short-term 
laboratory experiments. With fi , i = 1..n being the volume fraction of the i-th particles 
fraction in the ground material, loaded into the extractor, particles are considered as spheres 
of radius a. In the bidisperse approach [6] dust-fraction represents the so-called free 
solute [2, 4], and the fraction of bigger particles controls the extraction rate at the final 
extraction step, with negligibly small outlet concentration.  

The mass balance master-equation in the pore phase could be written in terms of the 
solute mass concentration 0 ≤ c ≤ 1, normalized by the solute saturation concentration *θ  in 
the solvent, as follows 
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The function pi(z) shows which cross-sectional volume fraction the i-th fraction occupies in 
cross-section z, and pi = fi for UD packs. Other values correspond to various packing patterns, 
e.g. LMS and ILMS, which are discussed later in the corresponding section. The solute flux q 
from the particle surface per its unit area is determined by the microscale diffusion model and 
mass transfer resistance across the fluid boundary layer around the particle. 
 Hereinafter, we employ the SC approach, generally valid for ground oilseeds, [5, 10] 
to formulate the microscale model. This implies the existence of the moving oil extraction 
front 0 ≤ R(t, a) ≤ a inside every particle, separating its internal oil containing core from the 
outer exhausted transport zone. The core shrinks in the course of extraction, and particle 
becomes fully depleted at R = 0. The SC description is applicable in case of relatively high 



initial oil content 0 *θ θ , and assumes significantly lower mass transfer resistance of cell 
membranes in comparison with that of the transport channels (cell walls). Finally, for each 
particle, the solute transport model takes the form of the Koshi problem with respect to the 
shrinking core radius 
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where Deff is the apparent internal solute diffusion coefficient. 
Due to high oil diffusivity in solvent phase outside the particles, the external mass 

transfer resistance between particle surface and solvent is neglected [10]. 
 Scale analysis. The characteristic spatial and temporal scales of the SFE process can 
be defined [10] as 
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both for mono- and bidisperse packed beds, with corresponding choice of asc. 
For monodisperse beds (n = 1) asc is equal to a1, and zsc is the length of the so-called 

extraction zone [10, 15]. By definition, particles in this part of the vessel are currently in the 
progress of extraction, and 0 < R(t, a1) < a1. The extraction zone initially develops in the 
vicinity of the vessel inlet, and then moves towards the vessel outlet. Behind this zone, 
upstream the solvent flow, all particles are exhausted, R = 0 and c = 0, while in front of the 
extraction zone, in downstream direction they remain full, R = a1 and c = 1. Similar to zsc, 
being the width of the extraction zone where c increases from 0 to 1, the time scale tsc is the 
duration of the particle full extraction at typical particle size asc. Thus, tsc is the characteristic 
time scale of concentration decrease from 1 to 0 at any given cross-section. 
 More complicated situation is met in case of bidisperse bed [6], when particle 
ensemble consists of two fractions of essentially different particle size (representative scales), 
a1 / a2 ~ 0.1. The corresponding particle full extraction times tsc(a1) and tsc(a2) differ by two 
orders in magnitude. The total length zsc(a2) of the extraction zone is determined by the 
second fraction of bigger particles with 0 < R(a2) < a2. However, since 1 2q q , a shorter 
subzone zsc(a1) of a1 particles incomplete extraction (0 < R(a1) < a1) should be distinguished 
with much higher concentration gradients as compared to those in the other extraction zone 
sub-region controlled by extraction of the bigger particles where R(a1) = 0. 

So, the bidisperse packed bed is characterized by two pairs of time-space scales, 
defined by particle sizes a1 and a2 respectively. We are restricted here by typically short-term 
extraction processes, when the experiment duration is on the same order as initial solubility-
controlled extraction step duration. Thus, the pair of process characteristic scales is 
determined by the smallest particle size, a1, in the bed for either mono- or bidisperse beds. 
 SFE model in dimensionless form. Following [6, 8-10], Eqs. (1) and (2) can be 
rewritten in terms of dimensionless characteristics as 
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Here ζ, τ, and ξi are the scaled analogues of axial coordinate z = ζzsc, time t = τtsc, and particle 
radii ai = ξiasc.  
 Due to the scales, chosen as typical, all the derivatives in Eq. (4) are on the order of 
O(1), and the magnitude of every term in Eq. (4) is determined by the δ-factors. In particular 
case of scales (3) at asc = a1, dimensionless δ-complexes are given by 
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 Obviously, δt is small under assumption * 0θ θ0 , and the first term on the left hand 
side in Eq. (4) can be neglected. SC-model constraining [6] confirmed that the SC-approach 
and the quasy-stationary approximation at the macroscale level are valid for δt < 0.05. 
 The similarity criterion, inverse dispersion number, 1

axδ −  has the meaning of Pecklet 
number with appropriate choice of characteristic spatial scale. Physical features of the process 
under consideration, such as limited solute solubility in the solvent and finite particle full 
extraction time, result in characteristic spatial scale of concentration gradient in the pore 
phase equal to the extraction zone width, instead of vessel height. 
 Neglecting by time-derivative term, the macroscale mass-balance is written in the 
form of quasi-stationary convective approximation accounting for axial dispersion and 
homogeneous particle distribution in the vessel  
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 Conventionally, Danckwert’s boundary conditions known as the open-close vessel 
approximation are formulated for solute concentration c in the pore phase to analyze [3, 7] 
axial dispersion. They are the solute flux continuity conditions imposed at the inlet and outlet 
of the vessel  
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where η1 = H / zsc(a1) is the normalized vessel height, i.e. dimensionless outlet coordinate, 
which can be considered as a similarity criterion related to axial dispersion impact. The value 
η1 – 1 is equal to the ratio of packed bed full extraction time to the individual particle 
extraction time tsc(a1). 

The simplified convective mass transfer equation [6, 8] neglecting dispersion effects is 
formally obtained from Eq. (6) at Dax = 0 (δax = 0) 
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with the reduced inlet condition (7a) becomes 

(0, ) 0c t = . 

Packed bed axial inhomogeneity. To estimate the impact of the packed bed axial 
inhomogeneity on the OEC and outlet concentration, one can consider a limiting bidisperse 
approximation of the packed bed, at n = 2. The upper and lower bounds for the extraction 
characteristics correspond [8] to LMS and ILMS packs, respectively. The following values of 
p1 describe these two cases 
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Thus, it is assumed that the packed bed is a sequence of two monodisperse and homogeneous 
sub-beds of particles either of size a1 or a2, and the LMS and ILMS packings of the bidisperse 
ground raw material differ only by the order of the particle fractions in the vessel. 

RESULTS 

 Correlations for axial dispersion coefficient. Conventionally, semi-empirical 
correlations for Dax assume that its ratio to molecular diffusion coefficient D12 depends on 
either Pecklet number Pem = 2anv / D12, or Reynolds number Re, or both, Pem and Re. The 
first group is commonly used for modelling dispersion effects in chemical engineering, 
particularly, in SFE studies [3, 7, 10-14]. Based on these correlations, one can estimate δax-
values in Eqs. (4)-(7) typical for extraction conditions. With this in mind, for effective 
diffusion coefficient Deff ≡ εD12 on the order of 10-12 m2s-1 [6] consistent with molecular 
diffusion coefficient D12 ~ 10-9–10-8 m2s-1 and ε ~ 10-4–10-3, at typical bigger fraction particle 
size an ~ 100 –1000 μm, the calculated curves of δax as a function of v are presented in Fig 1 
for monodisperse and bidisperse packed beds. 
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Figure 1: Upper and lower bounds of δax-values versus v for monodisperse (left), and bidisperse (right), 

a1 = 50 μm, packed beds at limiting variations of an and D12 (see text) 
 



As expected, δax decreases with v not exceeding 0.04 for monodisperse beds and being 
less than 3 for bidisperse packs for v > 10-5 ms-1. Available theoretical estimates [10, 11] 
confirm this conclusion, predicting the δax-values within the same range or even smaller. 

Monodisperse packed beds. Packed beds, considered in monodisperse 
approximation, are characterized only by two similarity criteria, δax and η = η1. It is possible 
to systematically investigate the impact of convective diffusion on the principal outlet 
characteristics, i.e. OEC and concentration. With this aim, Eqs. (5)-(7) have been numerically 
solved at different η. Two {Y, c}-sets simulated at δax = 0.04 and 0 (hereinafter designated by 
respective superscripts “ax” and “0”) are presented and intercompared in Fig 2 for 
representative values of η-1 = {0.25; 0.81; 4; 9; 25; 81} Their relative deviations E[Y] and E[c] 
have been estimated as E[X] = |1 – Xax/X0| at X substituted by Y or c. 
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Figure 2: (left) OECs and outlet cross-section concentrations, and (right) relative difference E[Y] between OECs 

for monodisperse packed beds. Lines correspond to different η-values (see text) 
 
Both Y- and c-curves in Fig. 2 (left) are very similar and closely agree with each other 

at different values of axial dispersion numbers δax = 0.04 and δax = 0. The more precise 
deviation measure E[Y] is shown in Fig. 2 (right). Its maximum decreases with tCER, or, 
equally, with η. While the E[Y]-curves are smooth, the E[c] behavior is rather irregular (not 
presented here), and amplitudes of its short-term rises are one or two orders higher than those 
of OEC. As presumed by Fiori et. al. [7], the maximum of E[Y] is reached when the extraction 
zone approaches the vessel outlet. Nevertheless, the average difference remains less than 5% 
and is negligible.  
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Figure 3: (left) OECs and outlet cross-section concentrations, and (right)  relative difference between OECs and 

outlet cross-section concentrations. Lines correspond to different f1-values (see text) 



 Bidisperse packed beds. More complex, bidisperse, packed beds are characterized by 
four similarity numbers: δax, ηi ≡ η(ai), n = 1, 2, and f1. In spite of the fact that the maximum 
value of δax for bidisperse beds is two orders of magnitude greater, the influence of axial fluid 
dispersion on the SFE kinetics is even less prominent as compared to monodisperse beds. 
Similar E[Y]-behaviour can be observed in Fig. 3 where E[Y]-maximum decreases with tCER. 
However, for bidisperse packed beds tCER ~ f1 [6], and only slightly depends on ηi as 
illustrated by Fig. 3 for a representative set of f1 = {0.2; 0.5; 0.8}. 
 Packed bed axial inhomogeneity. Once the axial dispersion effects are neglected 
(δax = 0), the SFE characteristics are defined by three similarity criteria: fractional 
composition, f1, and relative particle extraction time ηi, i = 1, 2. In laboratory experiments, 
2 < η1 < 10, while 10-4 < η2 < 1, depending on the grinding degree. A typical case of 
H = 15 cm, Deff = 10-12 m2s-1, v = 10-4 ms-1, a1 = 33 μm, a2 = 735 μm, i.e. at η1 = 5 and 
η2 = 10-2, with f1 = {0.2; 0.5; 0.8} is presented in Fig. 4. The deviation between the two 
limiting types of packing is calculated as Ep = |(YLMS – YOLMS) / YUD|. 
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Figure 4: (left) relative difference between OECs and outlet cross-section concentrations, and  
(right) OECs and outlet cross-section concentrations for three types of packed bed anisotropy.  

Lines correspond to different f1-values (see text) 
 
 Ep[Y]-curves, Fig 4 (right), are similar to those of E[Y]-deviations in Figs. 2 and 3 
(right) both in their magnitude and general behaviour. The maximum of Ep[Y] and its average 
also decrease with tCER. 

CONCLUSION 

 The fluid axial dispersion and possible inhomogeneity of packing polydisperse particle 
ensemble along the vessel at SFE do not essentially affect the overall oil concentrations and 
production rates with maximum variations of 5-10 % in quasi-stationary approximation at low 
cumulative inertia of the bed, δt → 0. Thus, one may believe that other microscale models, 
different from employed SC approach, as well as non-stationary macroscale SFE description 
will not reveal any new, unexpected effects in Eq. (4) in comparison with its simplified 
analogues (6) and (8). Furthermore, axial inhomogeneity of packed beds is actually even less 
pronounced than in the considered limiting LMS and ILMS cases since the dust fraction can 
hardly be efficiently separated from the main fraction of ground material. Accordingly, fluid 
axial dispersion renders a similar effect on the overall extraction curve as bed polydispersity, 
and, for example, in bidisperse packed beds the fluid dispersion could be imitated by a 



slightly modified apparent radius a1 of the dust fraction. The significance of both examined 
effects diminishes with the constant-extraction-rate time tCER. 
 Importantly, the tCER-parameter is affected mostly by the free-oil content [6] of the 
packed bed, i.e. by the volume fraction f1 of smaller particles in the case of bidisperse particle 
ensemble. This is a typical practical situation [6], and the corresponding SC-model 
extension [4, 6], which explicitly accounts for the free-oil trapped by the dust particle 
fraction, becomes a robust tool in SFE simulations in parallel with the BIC model. 
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